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Abstract. Operator splitting is a powerful concept used in many diversed fields of applied mathematics for the
design of effective numerical schemes. Following the success of the additive operator splitting (AOS) in performing
an efficient nonlinear diffusion filtering on digital images, we analyze the possibility of using multiplicative operator
splittings to process images from different perspectives.

We start by examining the potential of using fractional step methods to design a multiplicative operator splitting as
an alternative to AOS schemes. By means of a Strang splitting, we attempt to use numerical schemes that are known to
be more accurate in linear diffusion processes and apply them on images. Initially we implement the Crank-Nicolson
and DuFort-Frankel schemes to diffuse noisy signals in one dimension and devise a simple extrapolation that enables
the Crank-Nicolson to be used with high accuracy on these signals. We then combine the Crank-Nicolson in 1D
with various multiplicative operator splittings to process images. Based on these ideas we obtain some interesting
results. However, from the practical standpoint, due to the computational expenses associated with these schemes
and the questionable benefits in applying them to perform nonlinear diffusion filtering when using long timesteps,
we conclude that AOS schemes are simple and efficient compared to these alternatives.

We then examine the potential utility of using multiple timestep methods combined with AOS schemes, as means
to expedite the diffusion process. These methods were developed for molecular dynamics applications and are
used efficiently in biomolecular simulations. The idea is to split the forces exerted on atoms into different classes
according to their behavior in time, and assign longer timesteps to nonlocal, slowly-varying forces such as the
Coulomb and van der Waals interactions, whereas the local forces like bond and angle are treated with smaller
timesteps. Multiple timestep integrators can be derived from the Trotter factorization, a decomposition that bears a
strong resemblance to a Strang splitting. Both formulations decompose the time propagator into trilateral products
to construct multiplicative operator splittings which are second order in time, with the possibility of extending
the factorization to higher order expansions. While a Strang splitting is a decomposition across spatial dimensions,
where each dimension is subsequently treated with a fractional step, the multiple timestep method is a decomposition
across scales. Thus, multiple timestep methods are a realization of the multiplicative operator splitting idea. For
certain nonlinear diffusion coefficients with favorable properties, we show that a simple multiple timestep method
can improve the diffusion process.
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methods
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1. Introduction

There are various applications of nonlinear diffusion
filtering [16, 31] in image processing. Such ‘filters’
can be used for denoising, gap completion and com-
puter aided quality control among many other tasks.
These kind of applications demand high processing ca-
pabilities. The balance between accuracy, stability and
computational efficiency, as well as splittings across
different dimensions and scales to guide the diffusion
process are therefore important issues in the design of
such filters. As processing capabilities advance, these
considerations are expected to play an increasing role
in future applications.

In this paper, we first present numerical schemes
for diffusion processes that have been used in other
areas of application and examine them as alternative
extensions to Weickert-Romeny-Viergever’s additive
operator splitting (AOS) schemes [32] to process im-
ages. Historically, AOS schemes were developed for
the Navier-Stokes equations [12, 13]. In image pro-
cessing applications AOS schemes are efficient and re-
liable, in the sense that they permit the use of larger time
steps, whereas the straight-forward explicit schemes
that were proposed originally in Perona and Malik’s
classical paper [16] are restricted to small time steps in
order to ensure stability. However, the AOS schemes
are limited in their accuracy to first order in time even
for the linear case. We therefore examine the possibil-
ity of increasing the accuracy in one-dimension, along
with preserving this increase in accuracy by a suit-
able split-operator scheme. The splittings are across
dimensions and are multiplicative in nature, although
a combined additive-multiplicative operator splitting
(AMOS) is suggested since the additivity is essential to
make the splitting symmetric. Our approach closely re-
sembles the use of alternating direction implicit (ADI)
type schemes [15], which are second order in time
for the linear case. We show that as we increase the
time steps the gain in accuracy can be visualized, with
an efficiency tradeoff. Although the immediate advan-
tages over the use of simple and efficient AOS schemes
are not apparent, future applications may benefit from
these alternative schemes.

Next, we consider a different type of multiplicative
operator splittings, across scales. These can be used in
conjunction with AOS schemes or any other splitting
schemes across dimensions. These type of splittings,
known as multiple timestep (MTS) methods, have been
developed extensively for use in the area of biomolec-

ular simulations (see [20] for a general discussion).
They were introduced [25, 26] in an effort to reduce
the computational cost of molecular simulations
and have been actively pursued since the reversible
multiple timestep methods [29] were developed. It
was shown in [29] and subsequent work that a Trotter
expansion of the Liouville propagator can lead to
designing MTS integrators with favorable properties.
The Trotter factorization is essentially a multiplicative
operator splitting and therefore all ideas discussed in
this paper, either in splitting operators across spatial
dimensions or by splitting operators across time scales,
belong to the general class of multiplicative operator
splittings.

Nonlinear diffusion filtering is a continuous filter,
formulated as a partial-differential-equation (PDE).
The filter operation is practically performed by solv-
ing the nonlinear PDE numerically. Related PDE
approaches can be found [17, 19, 21], as well
as connections to certain nonlinear digital filters
that offer noniterative ways of performing edge-
preserving smoothing [6, 27]. For example, the bilateral
filter [27], is closely related to the geometrical frame-
work in [10, 22], as explained in [1]. For illustration,
Fig. 2 demonstrates two approaches of performing
edge-preserving smoothing on the original image in
Fig. 1. The result of using several iterations of nonlin-
ear diffusion filtering with a 3 x 3 kernel size and the
result of the noniterative bilateral filtering procedure
with an extended kernel performed on a test image is
similar but not identical [1]. In some applications one
might prefer to use a middle-way approach (i.e., a sin-
gle or very few long timesteps with a 3 x 3 kernel) for
integrating the nonlinear diffusion PDE. The middle
way approach is considered in this paper and leads

Figure 1. Original image: Laplace.
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Figure 2. Edge-preserving smoothing: Anisotropic diffusion with
20 time-steps of T = 1.0 (left) and Gaussian bilateral filtering with
a 30 x 30 window size, op = 5.0 and og = 30.0 (right). op and og
are bilateral filtering parameters, see [27] for details. The one-step
bilateral filtering can be viewed as an extreme example of using a
nonlinear diffusion-like process with a very long timestep, by ex-
tending the size of the kernel [1].

us to examine how various numerical schemes per-
form on the nonlinear diffusion PDE when using long
timesteps.

The outline of the paper is as follows. Section 2
presents the continuous model used throughout the
paper for applying nonlinear diffusion as a filter.
Section 3 illustrates one-dimensional schemes that are
the building blocks for higher dimensions, by splitting
the evolution operator across dimensions. In Section 4,
extensions of these one-dimensional schemes to higher
dimensions are discussed and the motivation for using
operator splitting schemes is given. Section 5 provides
the operator splitting schemes which have been pro-
posed by Weickert et al. [32], all of which are accurate
to first order in time for the linear case. Motivation
for examining alternative methods by constructing
multiplicative operator splitting schemes is given. Con-
sequently, in Section 6, two operator splitting schemes
that preserve second-order for the linear case are
introduced. The performances of all operator splitting
schemes for nonlinear image diffusion are compared.
In Section 7 the idea of multiple timestep (MTS) meth-
ods, a realization of multiplicative operator splitting
across scales that is borrowed from the field of molec-
ular dynamics, is introduced. In molecular dynamics,
these type of methods have been developed on the
basis of splitting the forces into classes according to
their range of interaction. We examine the possibility
of using MTS methods in nonlinear diffusion, by
providing an example and suggesting other strategies
to exploit their use. Section 8 concludes this paper.

2. Nonlinear Diffusion Filtering

Let us first provide a model for nonlinear diffusion in
image filtering. We briefly describe the filter proposed
by Catté et al. [5]. The CLMC filter leads to well-posed,
mathematically correct approach for image selective
smoothing that was used in [32] as a benchmark for
studying various numerical schemes. The basic equa-
tion which governs nonlinear diffusion filtering is
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where u(x, t) is a filtered version of the original image.

The original image f(x) is given as the initial condition

u(x,0) = f(x), (2
and reflecting boundary conditions are used

0
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where 7 is the normal to the image boundary 9€2.

The goal of selective smoothing in edge-preserving
applications is to reduce smoothing across edges. In
order to achieve this goal, the diffusivity g is chosen as
arapidly decreasing function of the gradient magnitude
(edge indicator). Specifically, the following form for
the diffusivity is suggested in the CLMC filter

1 (=<0

8(s) = —3.315
1 —exp (m> (s > 0),

where A =10.0 throughout this paper. In addition,
CLMC suggest at each time step a presmoothing mech-
anism, in which the image u is convolved with a
Gaussian of standard deviation o to obtain u,. This
can be achieved by solving the linear diffusion filtering

(g=1D
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for a very small time step of size T = o'2/2. This step is
called regularization, or presmoothing, and can be ap-
proximated by any of the splitting schemes that will be
mentioned in the paper (as well as a direct convolution
of u with a Gaussian kernel). For example, a simple lo-
cally one-dimensional (LOD) scheme is a convenient
choice. In the remaining of this paper, 0 = 0.25 is
chosen for the presmoothing, except when quantita-
tive comparisons are performed and presmoothing is
excluded.

The continuous image f(x) can be considered as a
discrete image, in particular a vector f € R"Y whose

=V - (Vu,), &)
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components f; display the grey values at each pixel.
Pixel i corresponds to the location x; and # is the spa-
tial grid spacing. Discrete times #;, = kT are considered,
where 7 is the time step size. uf‘ denotes an approxi-
mation to u(x;, #;). Having obtained u,, which from
now on is referred to as uf‘ , the gradient magnitude
can be approximated (in one-dimension) by a central
difference scheme

k2 _ 1 uy — Uy ’
|Vuf| =5 > ( 5 ) (6)

p.qeN()

where A/(i) is the set of all neighbors of a pixel i.
Boundary pixels have only inner pixels as neighbors, as
aresult of the boundary conditions. In addition, closely
following the notation used in [32], the diffusivities in
their discrete form will be denoted by glk = g(ufC ). In
the next sections, numerical schemes are presented for
the implementation of nonlinear diffusion filtering.

3. One-Dimensional Schemes

This section briefly describes the one-dimensional ex-
plicit and semi-implicit schemes, before we explore
the Crank-Nicolson and DuFort-Frankel schemes. It
is mentioned how all these schemes satisfy discrete
nonlinear diffusion scale-spaces criteria, and in partic-
ular the accuracy of these schemes is discussed. For
more details and theoretical considerations regarding
the framework for discrete nonlinear diffusion scale-
spaces, the reader is referred to [31, 32].

It follows from (1) that the basic equation which gov-
erns one-dimensional nonlinear diffusion filtering is

du_ 0 ( (v |2)8—”> 7
ot ax \SUYHADGT]

A simple numerical scheme for solving this equation
numerically was suggested by Perona and Malik [16]
(an independent pioneering work that originated this
approach, based on functional minimization, can be
found in [17]). The simple scheme uses the following
discretization

k+1 k k k
u —ur _ 8T8 k&
T - Z 252 (uj - ui)’ ®)
JeN ()

where A/(i) is the set of two neighbors of i, one
neighbor for the boundary pixels. A compact way of

writing this scheme is

uk Lk

= A", )
where u* is a signal vector of size N and A(u*) =

(a; j(uk)) isan N x N matrix whose elements are given
by

k k
8 t+8; . .
e j e N,
k k
dij(uk) =1 Z 8 T & j=i (10)
2k
neN()
0 otherwise.

Isolating u*+1 on the left hand side, we obtain
W= (I + T AWk, (11)

This scheme is known as an explicit scheme, since
u**1 is obtained explicitly from u* without a matrix
inversion. This scheme is simple, straight-forward,
and computationally cheap because only matrix-vector
multiplications are required. However, it is condition-
ally stable and therefore limited to small time steps.
A way to analyze numerical schemes in our context is
to verify that they satisfy six criteria in order to create
a discrete scale-space [32]. The matrix on the right
hand side (in this case, 7 + T A(u%)) needs to satisfy
continuity in its argument, symmetry, unit row sum,
nonnegativity, positive diagonal, and irreducibility.
It follows that these conditions are satisfied for (11)
if 7 <% (in one-dimension, for g < 1), assuming
h = 1 (see [32] for exact details). This means that
implementation of (11) is restricted by small time
steps, and even though each iteration by itself is
computationally cheap, as a whole, the efficiency for
applying the filter can be improved. The improvement
comes by a different numerical scheme

Wk

= A, (12)

Rearranging terms, so that u**! is on the left
hand side and u* is on the right hand side, we
obtain

(I — T AW))u**! = uk. (13)

This scheme is known as a semi-implicit scheme, since
u**1 is obtained implicitly from u* by inverting a
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matrix. Although a matrix inversion is in general an
expensive O(N?) operation, the matrix in Eq. (13) is
tridiagonal, which can be inverted efficiently using the
Thomas algorithm which is O(N). Furthermore, the
scheme is unconditionally stable, and in the discrete
scale-space framework one can verify that it satisfies
all six criteria. However, both the explicit scheme and
the semi-implicit scheme are only first order in time.
A scheme which is a combination of (11) and (13)
and is second order in time for the linear case is the
Crank-Nicolson scheme

(1 _ %A(u"))u"“ - (1 + %A(u"))uk. (14)

Another candidate scheme to try and achieve higher ac-
curacy is the DuFort-Frankel method [8]. However, its
inconsistency results (see Fig. 5) in a scheme that is not
reliable from a certain time step onwards. Nevertheless,
an extended DuFort-Frankel in higher dimensions that
averages the fluctuations at higher time steps might
perform well in the anisotropic cases like the Beltrami
framework [22], or coherence enhancement [31] as
well as for the Perona-Malik [16] or TV [17] (which
are simplifications of the Beltrami). Experimental
results with all schemes are shown in Figs. 3-7, in
which a 1D cross-section of a natural image was
taken (Fig. 3) and edge-preserving smoothing was
applied using small and large time steps. It is seen in
Fig. 4 (right) that the Forward-Euler scheme becomes
unstable for larger time steps. Reducing the time-step
by two orders of magnitude can recover an edge-
preserved smoothed signal (Fig. 4 left), but this is
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Figure 3. Original noisy signal.

Table 1. [, norm error estimation.

T Linear CN  Nonlin CN  Extrapolation
0.4 0.0079 0.052 0.0262
0.2 0.002 0.024 0.0068
0.1 4.94.107* 0.0113 0.0024
0.05 1.22-1074 0.0052 56-107%
0.025 29.107° 0.0022 1.18-107*
0.0125  5.81-107% 7.34.107%  2.37.107
0.00625 0 0 0

inefficient. We are left with Backward-Euler and
Crank-Nicolson for obtaining a robust nonlinear
diffused signal at large time steps. An /, norm error
comparison between the different output signals (see
Section 6 on how this is calculated for images) reveals
that in the nonlinear case, the 1D Crank-Nicolson
scheme without extrapolation remains first-order ac-
curate in time. This is because the nonlinear diffusivity
term, calculated at a specific time step, interferes with
achieving higher order accuracy in time. In order to
retain second-order accuracy, extrapolation is needed
such that the diffusivity is calculated according to two
levels of time step. Table 1 indicates that a simple ex-
trapolation along with the Crank-Nicolson, in the form
of g% = 2.g"" — g0l for each time step, can boost the
accuracy. We will refer to some more involved extrapo-
lation procedures, such as the Douglas Jones predictor-
corrector method proposed in [31], in Section 6.

4. Higher-Dimensional Schemes

This section builds upon the one-dimensional semi-
implicit scheme (13) and the Crank-Nicolson scheme
to construct schemes for higher dimensions. It fol-
lows from (1) that the basic equation which governs
m-dimensional nonlinear diffusion filters is

m

u N~ 9 2 du
=2 T <g<|wa| )8x1> : (15)

=1

And, a straight forward extension to the one-
dimensional semi-implicit scheme (13) is

(1 —ty Al(uk)> utt =k, (16)
=1

where the matrix A;(u") corresponds to the derivatives
along the /-th coordinate axis. It is shown in [32] that
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Figure 4. Explicit scheme (Forward-Euler). Left: 100 time steps of T = 0.5. Right: 5 time steps of 7 = 10.0.
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Figure 5. DuFort-Frankel. Left: 8 time steps of t = 0.4. Right: 4 time steps of T = 0.8.
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Figure 6. Semi-implicit scheme (Backward Euler). Left: 5 time steps of © = 10.0. Right: same as left, except the diffusivity g(s) = (1 +
358)~1(s > 0) was used.
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Figure 7. Crank-Nicolson. Left: 5 time steps of = 10.0. Right: same as left, except the diffusivity g(s) = (1 4 35%)(s > 0) was used.

the m-dimensional semi-implicit scheme uncondition-
ally satisfies all the requirements of the discrete scale-
space. However, the accuracy of the scheme in (16)
is limited because it is built upon a one-dimensional
scheme that is only first order in time. An extension to
second-order in the linear case, can be built upon the
Crank-Nicolson

<1 -t ZA,(M’)) uktl = (1 + I Z Az(uk)) uk
2= 243

A7)

It is worthwhile noticing that a drawback of implicit
schemes when moving to higher dimensions is in
the efficiency of (17): the matrix Y A;(w*) is no
longer tridiagonal and therefore the matrix inversion
at each time step is costly. This occurrence in higher-
dimensional diffusion equations has been known since
the early days of numerical solutions to parabolic
PDEs. The work of Peaceman and Rachford [15] is a
famous example for overcoming this problem by split-
ting methods [11, 14, 35]. For simplicity, let us consider
m = 2 (two-dimensions) for the time being, noting that
it is possible to extend splitting methods to three and
higher dimensions. In addition, let us assume the case of
a linear diffusion equation, g = «, where « is constant.
We start from the two-dimensional linear diffusion
equation

9 Pu 02
”—a< ”+—”>. (18)

o 8—)612 ax3

The scheme in (17) now reads
at [ %u 9%u
I——(—+— )
(-5 G+ 53)
I+ at [ 8%u n 3%u x (19)
= — | —=+—) ) u".
2 E)xlz Bxg
However, this scheme amounts to inverting a non-
tridiagonal matrix at each time step, which is ineffi-

cient. The alternating direction implicit (ADI) scheme
[15] suggests approximating the scheme in (19) the

following way
I — ﬂaz_u I — ﬂé}z_u s
2 9x? 2 9x?

ot 9%u ot 3%u
—(r+ Y (T k20
<+2ax%)<+2ax§>” 0)

It is now possible to perform two half time steps, split-
ting the two dimensions such that in each half time step
one of the two dimensions is treated implicitly

[t u\ . I+
— R ke =
2 9x}

at 3%u at 8%u
I ——2) W= (14 0
2 9xj 2 9x;

where k* is an intermediate time step. The ADI scheme
is both efficient, since at each time step a tridiagonal
matrix inversion is performed, and accurate to second
order in time. Our goal is to seek a splitting scheme for



40 Barash et al.

the nonlinear case (15), that will be as good as the ADI
scheme for the linear case. More precisely, it should
amount to inverting tridiagonal matrices, uncondition-
ally satisfy all discrete scale-space requirements, and
retain the time accuracy which was achieved before
the splitting by starting from accurate one-dimensional
schemes.

5. Operator Splitting Schemes

Before we introduce more accurate splitting schemes
for solving (15), let us review the first-order accurate
splitting schemes which have been proposed in [32].
The simplest splitting scheme that might be considered
is the locally one-dimensional (LOD) scheme

m

]_[(1 — T AN = Uk, (22)
=1

which belongs to the general class of multiplicative
operator splitting schemes. It is the most efficient
and straight-forward for implementation. However, the
main drawback of the LOD scheme is that the system
matrix in (22) is non-symmetric, which violates one
of the criterions for discrete diffusion scale-spaces as
proposed in [32]. Because of the non-commutativity of
the operators A;, the order of applying these operators
can affect the final result. For example, the filtered two-
dimensional image will not be the same after a rotation
by 90 degrees. Figure 8 illustrates this disadvantage and
motivates the search for a symmetric splitting which

Figure 8. The difference between applying first the operator which
corresponds to the x-axis and then the operator which corresponds to
the y-axis and vice versa, on the original image in Fig. 1. The LOD
scheme (left) is sensitive to the order, whereas the AOS scheme
(right) is independent of the order. Nonlinear diffusion filtering was
performed with 20 time-steps of T = 1.0.

does not suffer from this deficiency. It is worthwhile
noticing that the splitting suggested in (22), when ap-
plied to any of the one-dimensional schemes discussed
in Section 3, results in a multi-dimensional scheme that
is first-order accurate in time.

The splitting operator scheme proposed in [32] as
the method of choice, the additive operator splitting
(AOS), is

1 m
ut = = Z(l — mt A () k. (23)
ma3

Unlike the LOD scheme the AOS scheme is symmet-
ric, see Fig. 8, and unconditionally satisfies all discrete
diffusion scale-space requirements. It is almost as ef-
ficient as the LOD scheme; instead of applying the
operators in a pipeline, one calculates the operators in-
dependently and then sums them up at each time step.
It is therefore a reliable and efficient scheme. However,
similar to the LOD scheme it is first-order accurate in
time. Moreover, it is less accurate then the LOD scheme
since operators of type (I — mtA;)~! that are used
in the AOS scheme, represent one-dimensional diffu-
sions with a step size mt, whereas operators of the type
(I — tA;)~! that are used in the LOD scheme possess
smaller time steps when stepping in one dimension.
Let us illustrate how in some potential applica-
tions, the better accuracy of the LOD scheme can be
noticeable. We compare the AOS and the LOD
schemes’ performances on the veneer image in Fig. 9.
Figure 10 is the reference image, after applying nonlin-
ear diffusion filtering with 256 time steps of T = 0.78
each. We now keep the time constant (T = 200) and de-
crease the number of iterations while increasing the du-
ration t of each time step accordingly. In the reference

1 .r,_
Figure 9. Original image of a veneer, taken from [34] with
permission.
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Figure 10. Reference image: LOD vs. AOS, nonlinear diffusion
filtering with 256 time-steps of T = 0.78.

image, Fig. 10, the LOD and the AOS schemes re-
sults are practically identical. As we increase the time
steps, the results start to deviate from the reference by
a certain amount which is related to the accuracy of
the scheme. Figures 11 and 12 demonstrate nonlinear
diffusion filtering approximated by two time steps of
T = 100 and eventually one time step of T = 200.
The LOD scheme is found to be more accurate than
the AOS scheme, as it is closer to the reference filtered
image. These results motivate us to look for more ac-
curate schemes, as well as symmetric accurate ones,

Figure 11. Checking visual accuracy: LOD vs. AOS, nonlinear
diffusion filtering with two time-steps of T = 100.0.

Figure 12. Checking visual accuracy: LOD vs. AOS, nonlinear
diffusion filtering with one time-step of = = 200.0.

that will lead to higher accuracy compared to the AOS
schemes.

6. Accurate Operator Splitting Schemes

In this section, we propose accurate operator splitting
schemes. For simplicity, we will choose the two di-
mensional case which corresponds to images, noting
that these schemes can easily be extended to three
and higher dimensions. We then compare the perfor-
mance of the additive-multiplicative operator splitting
(AMOS) schemes and the AOS schemes.

In order to increase the accuracy achieved by the
LOD scheme (22), we may use a device of Strang
[11, 23] who alternates two steps of a LOD scheme.
In the linear case, if we start with a second order in
time one-dimensional scheme, the order of accuracy
will be kept by the so-called “Strang Splitting”. If we
use the first order semi-implicit scheme in each one of
the dimensions, for simplicity in writing, the proposed
scheme is given by

(1 - %Al(uh)u - TAz(uk))<1 - §A1<uk>)u"“
—uk 24)

This scheme for the linear case preserves second order
accuracy [11] provided the Crank-Nicolson scheme is
used in each one of the dimensions, instead of the semi-
implicit scheme as in (24) which is only first-order ac-
curate. This is an advantage over the LOD and AOS
schemes, which do not preserve the second order accu-
racy of the Crank-Nicolson. However, the splitting is
not symmetric and the non-symmetry which was also a
deficiency in the LOD scheme has not been recovered.
In practice, results after a rotation by 90 degrees (not
shown) appear cleaner with this scheme compared to
the LOD scheme, but there is no guarantee the symme-
try criterion in the list of criteria for discrete diffusion
scale-spaces will be satisfied. Therefore, after several
trials in which the rotation by 90 degrees was still no-
ticeable, we abandoned the Strang splitting suggested
in (24). A split operator scheme which unconditionally
meets the scale-spaces criteria and offers an improve-
ment in accuracy is desired.

Motivated by ADI [15] which was mentioned in
Section 4 as a favorable splitting scheme for the lin-
ear diffusion equation, we wish to combine the merits
of the AOS scheme as a symmetric scheme, together
with the family of multiplicative operator splittings (to
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which the ADI belongs, as well as the first order LOD
and the Strang splitting suggested in (24)). Multiplica-
tive operator splittings are known in general to be more
accurate than the AOS schemes. We therefore propose
another scheme, also mentioned by Strang in [23, 24],
which is both additive and multiplicative operator split-
ting (AMOS)

ukt = %[(1 - ‘L'A](Mk))_l(l _tAZ(uk))_l

+( — AU - rAl(u"»l] ut (25)

As in (24), Eq. (25) applies the AMOS scheme to the
semi-implicit scheme. Such a combination is known
in the literature [8] as the approximate factorization
implicit (AFI) scheme, which is first order accurate
in time. However, even in the case where it is built
upon the semi-implicit scheme, the AMOS scheme is
expected to be more accurate than the AOS scheme
while preserving symmetry. Furthermore, it is possible
to try to achieve better accuracy by applying the AMOS
scheme on the Crank-Nicolson scheme. At each time
step, two calculations are performed

(1 — %Al(uk)>uk* = (1 n %Al(uk)>uk

. ) (26)
(1 - EAz(uk)>uk+1 = (1 + EAg(uk))uk*,
and
(1 _ %Az(uk))uk* - (1 + %Ag(uk)>uk
27

(1 - %Al(uk)>uk+l - (1 + %Al(uk))uk*.

After the time step is completed, the two results are
averaged together which ensures a symmetric split-
ting. Although the directions are not alternating in each
of the two calculations, i.e. the forward and backward
Euler are performed on the same direction, in effect this
scheme belongs to the family of alternating direction
implicit (ADI) type methods. In our experiments, alter-
nating the directions as in the classical ADI, produced
no better results when applied to nonlinear diffusion
filtering. Therefore, we refer to (26) and (27) as ADI,
whereas (25) is AFI. We also note that adding the ex-
trapolation suggested in the one-dimensional case, as
in Table 1, did not increase the order of accuracy to
exactly second when performing quantitative calcula-
tions with very small time steps in two dimensions. At

the expense of more computations, one can try to im-
prove the extrapolation procedure by using the Wynn
extrapolation or predictor-corrector methods, such as
Adams Bashforth [8] or Douglas Jones [31], in which
the Crank-Nicolson is the corrector. While these more
complicated procedures are costly, it is not obvious
how much accuracy will be gained as a consequence
of larger time steps and whether this will be justifi-
able. However, practical use in applications requires
mostly large time steps to perform the filtering, and
it turns out the ADI scheme in (26) and (27) leads to
visually better results for such time steps as can be
seen in Figs. 13-15. We take 512 time steps of 0.05
as a reference, then decrease the number of iterations
to check the deviation from the reference. First, we
observe that the ADI scheme acts as a slightly better
filter than the AOS scheme already in the reference im-
age calculation, Fig. 13. As we decrease the number of
iterations, we observe that the deviation from the con-
verged result is smaller with the ADI scheme than with
the AOS scheme. Filtering effect becomes stronger in
the ADI scheme, while preserving fine details, which
is an indication that the ADI scheme is visually more
accurate than the AOS scheme, Figs. 14 and 15.

Figure 13. Reference: AOS vs. ADI, nonlinear diffusion filtering
with 512 time steps of © = 0.05.

Figure 14. Checking visual accuracy: AOS vs. ADI, nonlinear dif-
fusion filtering with 32 time steps of T = 0.875.
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Figure 15. Checking visual accuracy: AOS vs. ADI, nonlinear dif-
fusion filtering with one time step of T = 28.0.

Quantitative examination of the deviations from
the reference is calculated as follows. We start from
the original image in Fig. 16, which is a texture
image taken from a neutron diffraction experiment.
Figs. 17-19 show the comparison in terms of accuracy
between the AOS, AFI and ADI schemes, which are
discussed next. In terms of speed, the AOS and AFI
schemes in actual simulations indicate that the AFI
scheme takes roughly 1.5 the time it takes the AOS
scheme to perform the filtering. The ADI scheme is

Figure 16. Original texture image.

Figure 17. Reference: ADI vs. AOS, nonlinear diffusion filtering
with 2000 time steps of T = 0.1.

Figure 18. AFIvs. AOS, nonlinear diffusion filtering with four time
step of T = 50.0.

Figure 19. ADI vs. AOS, nonlinear diffusion filtering with four
time step of T = 50.0.

roughly a factor of 2 to 3 longer in processing the im-
ages in Figs. 9 and 16, relative to the AOS scheme. We
note that simply increasing the time step with the AOS
scheme by this ratio does not produce the fine filtering
that is achieved with the ADI scheme. This fact can be
visually observed in practice and will not be reflected
in the results of Table 2, as will be explained in the next
paragraph.

In Table 2, the relative /; norm errors are calculated
for the example in Figs. 17-19 as follows. Let v denote

Table 2. [, norm error estimation.

T AOS AFI (%)  ADI (%)
025 0.09 0.06 0.08
0.5 0.13 0.1 0.11
1.0 0.17 0.14 0.13
2.0 0.22 0.17 0.17
5.0 0.29 0.24 0.19

10 0.36% 0.27 0.21
20 0.47% 0.32 0.23
50 0.79% 0.41 0.47

100 1.3% 0.54 1.25

200 2.07% 0.81 3.14
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the reference solution: AOS, T = 0.1, in the case of the
AOS and AFI schemes, and ADI, T = 0.1, in the case of
the ADI scheme. Let u denote the approximate solution
in each of the schemes. The relative error percentages
are calculated by

l[u —vll2

(28)
lvll2
Note that the small relative error percentage values
do not completely reflect the strength of the devia-
tions and accuracies, since large propagation times pro-
duce smooth images, where the differences between
the schemes appear only in small regions near promi-
nent features within the original image. Moreover, the
comparison with the ADI scheme is done for a sepa-
rate reference frame, since even with a small time step
the ADI scheme acts as a better filter, see Figs. 13
and 17, and hence its reference to measure deviations
should be different. Therefore, Table 2 and the plot
in Fig. 20 should be analyzed with caution, especially
with respect to the comparison between the ADI and
the AOS/AFI. From Table 2 and Fig. 20 it can be ob-
served that up to a time step of T = 50.0, the ADI
scheme is the most accurate, which is expected because
the Crank-Nicolson is used as its building block. With
very large time steps of more than r = 50.0, the
AFI scheme is the most balanced scheme in deviations
from the corresponding references, probably because
the higher order error terms affect the closeness of
the ADI scheme to its reference in Fig. 17. Among

Accuracy Comparison
T T T T

error

00 20 40 60 80 100 120 140 160 180 200

time step

Figure 20. Comparison of error estimation for different time steps
based on Table 2: AOS, AFI, ADI. However, note that for the ADI,
a different reference image was used.

the schemes which are based on the semi-implicit
scheme as their building block, the AFI scheme will
produce more accurate results than the AOS scheme
since the AMOS scheme is a more accurate splitting
scheme than the AOS scheme at the expense of some
increase in computations. We also note that in [32]
(Figs. 1 and 2 of that reference) an illustrative compar-
ison between implicit and explicit schemes was per-
formed. It was shown that AOS schemes will not af-
fect discontinuous structures in the processed images
nor introduce distortion artifacts because the scheme
is non-explicit. The ADI scheme contains both the im-
plicit component of the AOS and an explicit component
in addition. Therefore, as expected, we have not noticed
any undiserable effects when examining discontinuous
structures while smoothing out noise in additional ex-
periments. Finally, we tried to obtain better accuracy
out of the results in Fig. 15 by using Richardson’s ex-
trapolation [8] for our case

4R(1/2) — R(7)

Ri(r/2) = 3 ; (29)

where R;(t/2) denotes an improved result, using a time
grid with a spacing of 7 /2 or coarser. R(7/2) and R(t)
are the results of applying nonlinear diffusion filtering
for time steps t/2 and t, respectively. Our trials (with
t = 28.0) failed to show an improvement of R;(7/2)
relative to R(7/2). An improvement is not guaranteed
to begin with, since our equation is nonlinear and the
solution is non-smooth.

7. Multiple Timestep Methods

Since their introduction in the 1970s, multiple timestep
(MTS) methods have been developed extensively to re-
duce the cost of molecular dynamics simulations. In
deriving the classical equations of motion for a molec-
ular system, the total force consists of long-range terms
(e.g., electrostatic and van der Waals interactions) and
short-range terms (e.g., bond-length, bond-angle and
torsion). The basic idea is to split the total force into
components that allow more efficient integration of the
equations of motion by resolving the slowly-varying
long-range components with a large timestep and the
fast components with a small timestep. Thus, calcula-
tions of the most time-consuming part (the nonbonded
terms) can be enhanced significantly. The early MTS
variants [25, 26] suffered from instabilities until sym-
plectic and time-reversible MTS methods [7, 29] were
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formulated, the latter based on the Trotter factorization
[28] of the Liouville operator. These methods were ex-
tensively investigated and applied to biomolecular sim-
ulations [3, 9, 30]. A general overview on the develop-
ment and applications of MTS methods in the field of
biomolecular simulations can be found in [20].

To examine the use of MTS methods in performing
nonlinear diffusion, we follow their derivation using
the formulation outlined in [29]. Although for most
modern MTS implementations in molecular dynamics
packages it is customary to define three classes (fast,
medium, and slow) and assign corresponding forces ac-
cording to their range of interaction [2, 20], we will use
atwo-level mode for simplicity. We briefly describe the
method using the standard notation used in molecular
dynamics that appears in [29], and refer the interested
reader to reference [29] for more discussion. First, let
us define the Liouville operator £ for a system of N
degrees of freedom in Cartesian coordinates:

i L Y X 0 F 9 30
: _;[lax,-+ ’aP,-]’ (30)
where X; and P; are the position and conjugate mo-
menta components for coordinate i, X; is the time
derivative of X;, and F; is the force acting on the ith
independent variable. The state of the system at a time
t, I'(¢), is defined as the collective set of positions and
conjugate momenta (X (¢), P(¢)). The state of the sys-
tem at time ¢ is given by applying the classical time
evolution propagator, exp(i Lt), to the initial state of
the system:

['(t) = exp(i L)I'(0). 31

Second, for systems with two different time scales, we
factor the propagator exp(i Lt) into a propagator with a
smaller timestep ¢ combined with a propagator with a
larger timestep Af. Let us split the Liouville operator
into two distinct components:

iL =il +ils. (32)

After simplifications [29], the Trotter factorization [28]
of the split Liouville propagator becomes:

exp(i L) +iLy)At

A A
= exp(i[ll?t) exp(iﬁzAt)exp<i£1 Tt)

+ O(A) = exp<i£1 %)[exp(iﬁz&)]”
X exp(i£1 %) + 0(AP), (33)

where n is the number of steps taken with the prop-
agator associated with £, to complete a timestep At
of the propagator associated with £;. Note the similar-
ity to the Strang splitting in (24), since we are using
closely related formulations to construct second-order
multiplicative operator splittings. Here, our goal is to
further examine the multiple timestep idea without ac-
curacy considerations that were prioritized in previous
sections. Thus, we examine the least expensive multi-
plicative operator splitting (and hence only first-order
accurate in time) for a decomposition across scales:

exp(i Ly +iLy)At
= exp(i L1 AD)[exp(i L281)]" + O(AL?).  (34)

Note that in this type of splitting symmetry need not be
preserved, since rotation between scales is of no con-
cern. Furthermore, each of the two propagators, namely
the one corresponding to a timestep &¢ and the other cor-
responding to a timestep A¢ can be treated using the
AOS scheme for splitting the spatial coordinates which
is independent from the splitting to distinct time scales.

For nonlinear diffusion, several ways can be consid-
ered to make use of the multiplicative operator split-
ting into different scales, suggested in (33) and (34).
As an example, one may think of accelerating the
calculation in the same manner as in molecular dy-
namics simulations, except that the force splitting is
replaced by a partitioning of the nonlinear diffusion
coefficient into smooth and non-smooth regions. Con-
tinuing with this analogy, it may be advantageous to
use a large timestep At in smooth regions whereas the
non-smooth regions, separated by a threshold, can be
treated with small timesteps §¢ such that At = nét
(if n is an integer, the two timesteps are synchro-
nized after the larger timestep At¢, otherwise we ob-
tain non-synchronized propagations which may have
certain advantages). Thus, image pixels belonging to
smooth regions need not be processed for a whole du-
ration At though pixels in non-smooth regions are pro-
cessed every 6¢. In molecular dynamics applications,
the timesteps are synchronized (i.e., n is an integer) and
the Verlet integration is commonly used [20]. We may
do the same with the AOS schemes. The idea is to skip
iteration steps (i.e., no need to set up the matrix a; )
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of Eq. (10) followed by matrix inversion) each 8¢, when
pixels in smooth regions are encountered, since these
pixels can be updated each At without loss of accu-
racy. Thus, we can attempt to accelerate the calculation
when the added work for splitting pays off overall (by
skipping iteration steps for selective pixels). However,
because of the way the AOS schemes are structured, in
each iteration a fixed amount of pixels are processed at
once regardless of their separation to smooth and non-
smooth regions. Matrix inversions are performed each
iteration using the Thomas algorithm, which requires
as input four one-dimensional vectors. Each of these
vectors is of fixed length, corresponding to the number
of pixels in a row (or column) of the image, with ele-
ments ordered according to the location of the pixels
within the row (or column). It is possible to avoid cal-
culating off-diagonal elements of the pixels belonging
to non-smooth regions before calls to the Thomas algo-
rithm are made. Still, standard implementation of the
Thomas algorithm will process them regardless of their
values. It is therefore challenging to devise strategies to
speed up this process, by modifying the Thomas algo-
rithm to perform more efficiently in places where the
off-diagonals are zeroes. Various other strategies are
possible, such as constructing a function or a transfor-
mation between the diffusion coefficient and the corre-
sponding timestep size. In that way, many timesteps can
be performed in parallel during the integration, with-
out necessarily worrying about a synchronization of the
different propagations. As a compromise between the
two extremes, from the one side a non-synchronized
multi-level breakup strategy and from the other side
a synchronized (i.e., At = ndt) two-level breakup as
suggested in (34), a synchronized three-level breakup
strategy such as used in (33) and in modern molecular
dynamics simulations [20] may prove optimal for some
applications.

Here, we implement the simplest strategy, namely
a non-synchronized two-level breakup. The goal is to
demonstrate potential improvement in the diffusion
process. This idea is similar to algebraic multigrid
methods [4]. We note that scale-based diffusion has
recently been tried in [18] by an ad hoc procedure of
altering the diffusion coefficient, without the mathe-
matical framework of multiple timestep methods given
here. Instead of evolving the nonlinear diffusion equa-
tion with the same timestep for all spatial regions, we
specifically double (or multiply by a desired factor) the
timestep for non-smooth regions while preserving the
same timestep for smooth regions. Thus, regions with

texture and edges will be given preference in the diffu-
sion process. This is performed with a minimal added
effort (by adding a few selection statements that con-
tribute negligibly to the execution time) for a certain
diffusion coefficient suggested in [36]. In [36], a be-
havioral analysis was performed in detail for several
diffusion coefficients. Specifically, it was found that
the following diffusion coefficient leads to well-posed
nonlinear diffusion possessing good behavior and dis-
tinguishing between smooth and non-smooth regions
by using a threshold T':

1 T + e)P!
+p( )

— , x<T
=11 e (35)
-+ pi, x>T,

X X

where € > 0 and 0 < p < 1. It was explained in [36]
how the diffusion coefficient (35) was constructed in
order to avoid “blocky effects” [36] and achieve back-
ward diffusion [16, 36] at the same time. Furthermore,
it was noted in [36] that staircasing effects will eventu-
ally disappear during the diffusion process when using
the above diffusion coefficient.

We apply the diffusion coefficient (35) on the origi-
nal image of Fig. 9. Figure 21 (left) shows the result of
applying a single timestep A¢r = 0.5 for 18 iterations
with the values T = 10, € = 1, and p = 0.5 for the
parameters of the diffusivity in (35). We observe that re-
gions in the original image containing rich texture and
edges have shrunk to blotted dots. If we increase the
timestep as in Fig. 21 (right) to At = 2.0, we achieve
over-smoothing. As a compromise, a timestep At =
1.25is taken in Fig. 22 (right) and succeeds in achieving
less smoothing. Still, there are noticeable tradeoffs (the

Figure 21. AOS, nonlinear diffusion filtering with 18 single
timesteps of Ar = 0.5 (left) and At =2.0 (right). Diffusion was
performed using the diffusion coefficient (35) with parameter values
T=10,e=1,p=0.5.
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|

Figure22. AOS withmultiple timesteps [t = 0.5, At = 2.0] (left)
vs. AOS with a single timestep Ar = 1.25 (right). In both cases, 18
iterations were performed using the diffusion coefficient (35) with
parameter values T = 10, e = 1, p = 0.5.

blotted dot near the center remains, and some bands are
lost). However, by using two timesteps (e.g., 8t = 0.5,
At = 2.0) it is possible to reach a state in which all
blotted dots disappear and possibly desired band fea-
tures of the original image remain. By tuning all other
parameters, we have tried reaching the same state with
a single timestep approach (examining At values be-
tween 0.5 and 2.0) without success. Such a selective
state can only be reached by using multiple timesteps.

8. Conclusions

In this paper, multiplicative operator splitting schemes
across dimensions and scales are examined for de-
signing nonlinear diffusion integrators. Multiplicative
splitting schemes across dimensions are gradually con-
structed step by step, starting from one dimension and
the linear case, by reviewing various schemes which
are relevant and have been suggested in this context
to other applications. These are presented as alter-
natives to the very efficient additive operator split-
ting (AOS) scheme. Subsequently, multiplicative op-
erator splitting schemes across scales (i.e., multiple
timestep methods) are introduced and discussed. These
can be combined with Weickert et al’s [12, 32] AOS
scheme.

For the splitting schemes across dimensions, it is
found that better accuracy can be visually inspected
and might become a desirable feature in some fu-
ture applications. The two splitting methods which
unconditionally satisfy all discrete scale-space crite-
ria are Weickert et al’s AOS scheme and our proposed
scheme, the AMOS scheme. Both are reliable, sim-
ple and parallelizable [33] splittings for implemen-
tation. The AOS scheme is more efficient than the
AMOS with Backward-Euler scheme, the AFI scheme,

by approximately a factor of 1.5, and the AMOS with
Crank-Nicolson scheme, the ADI scheme, by a factor
of 2 to 3, depending on the efficiency of the implemen-
tation. Multiplicative operator schemes are in general
more accurate than their additive counterparts, and the
combination of the two in the AMOS schemes ensures
both symmetry and better accuracy at the expense of an
increase in execution time. In the arsenal of numerical
schemes for performing nonlinear diffusion filtering
the AMOS scheme can be considered as an extension
to the AOS scheme for applications that require high
accuracy. However, the advantage of constructing ac-
curate numerical schemes for the nonlinear diffusion
of images with long timesteps is not clear at present,
and the AOS remains the simplest and most efficient
choice for implementation.

Consequently, multiple timestep methods are intro-
duced for examining multiplicative operator splittings
across scales. Following a discussion of their use in
molecular dynamics, possible ways to incorporate them
in nonlinear diffusion are suggested. An example is
given to illustrate how multiple timestep methods can
be used to improve the diffusion process. Additional
work on targeting selective scales in regions of interest
by processing them individually is a natural continua-
tion of these ideas.
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