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We study the problem of shape reconstruction from stereo images based on a
weighted area minimization process of a depth function. As a simple example
we present an efficient shape reconstruction from computer generated autostere-
ograms. A minimal surface area based correlation is applied to accurately reconstruct
the surface structure embedded first in one autostereogram image and next in two or
more stereo images. The minimal area approach proved itself as a useful geometric
measure in recent reconstruction and enhancement applications in computer vision
and image processing. Here we develop a simplified version for the O. Faugeras and
R. Keriven (1998, IEEE Trans. Image Process. 7, 336–344) stereo reconstruction
model and apply a weighted area measure as part of a solution to the correspondence
extraction in the shape from stereo and the shape from autostereogram problems.
The proposed schemes are computationally efficient and yield accurate 3D recon-
structions for smooth as well as nonsmooth surfaces. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

Shape from stereo is a classical computer vision problem in which we try to extract the
3D shape of a scene from two or more pictures taken at two or more known camera posi-
tions. For almost three decades scientists have tried to develop automatic methods for three
dimensional shape reconstructions from images. Shapes can be reconstructed from their
shading image [6, 7], their texture, photometric stereo, structured light, defocus, motion
sequences, zoom, etc. Some reconstruction approaches couple deterministic image forma-
tion models with stable numerical techniques, sometimes enforced by statistical properties.
Early shapes from stereo techniques in computer vision were tested on two random dot
images, where the disparity was extracted by solving the correspondence problem between
the specific points. Modern techniques try to balance between feature and point matching,
where the feature scale depends on the locality of the feature, its validity, robustness to
noise, and its similarity between the two images (robustness to deformations).
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Before we explore the stereo problem and propose a solution, let us start with a toy
problem of shape construction from autostereogram that is similar to the classical shape
from stereo problem, yet simpler in some sense, Nevertheless, the expected quality of the
results makes this problem a challenging task.

Autostereogram is a method for embedding 3D shapes in a single image that at first glance
appears like a flat repeating pattern or noise. An observer can construct a three dimensional
interpretation in his or her perception by matching picture elements along horizontal lines
from the image plane. Autostereograms were invented by C. W. Tyler [14–16] as a tool for
psychophysics research and the understanding of human vision. Such images became part
of popular art and appear in posters and books such as “The Magic Eye” [13].

There are simple algorithms for generating autostereograms as we present in Section 2.
The basic idea is to scan a given hight array horizontally and duplicate pattern elements from
the image plane that are located at a distance inversely proportional to the hight profile at the
relevant point location [16]. An initial pattern is needed as initialization. Bruckstein et al. [3]
controlled the spectral behavior of this initial pattern in order to generate autostereograms
that are “easy to interpret.”

Let us first deal with this simple problem, the problem of 3D shape reconstruction from
computer generated autostereograms. The simpler the problem, the better the accuracy of
the 3D reconstruction should be. Our goal is to show that geometric smoothness eliminates
noise and echoes and allows an almost perfect three dimensional reconstruction. We start
with a simple correlation procedure that solves the local correspondence problem of match-
ing between distant points in the image domain. The local nature of this straightforward
correlation yields noisy reconstructions with repeating echoes near the boundaries. Inter-
estingly, we had similar visual misinterpretations that correspond to common perceptual
mistakes of human observers. See [12] for discussions on geometric distortions such as
echoes formation and incorrect convergence due to false fusion.

A minimal area based correlation was recently used by Faugeras and Keriven [5] to
solve the stereo problem in which two or more images from different given locations of
the same object are used to reconstruct its 3D shape. A dynamic surface that serves as a
virtual correlation interface between the different images locks onto the best correlation
position that corresponds to the 3D reconstruction. Motivated by Faugeras and Keriven we
first present a related, yet simpler, reconstruction algorithm for 3D shapes embedded in
autostereograms. It is based on correlations between picture elements that result in a first
estimation of the surface. A minimal area based approach is then applied to enhance and
smooth the first naive correlation result. Next, we explore the shape from stereo problem
and introduce an efficient iterative approach to solve the weighted area formulation of the
problem.

The minimal weighted area measure is chosen because of several reasons. (1) It is a
geometric measure which is invariant to the choice of coordinates and is reparameterization
invariant. (2) Most of the surfaces in nature tend to be minimal with respect to some
geometric measure, so there is a connection to our natural physical world. (3) We can use
implicit representations of the surface and design stable numerical schemes that work on
fixed regular grids and efficiently find the surface of minimal weighted area.

This paper is organized as follows: In Section 2 we review a simple algorithm for generat-
ing random dot autostereograms. Next, Section 3 presents a minimal area based reconstruc-
tion procedure that filters out the reconstruction noise. Section 4 generalizes the area idea
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FIG. 1. The distance between repeating patterns is interpreted as depth.

and introduces the minimal weighted area framework for the stereo problem. The proposed
methods are applied both to synthetic and to real stereo data.

2. GENERATING AUTOSTEREOGRAMS

Given the 3D hight profile as a function z(x, y) sampled on a discrete grid (e.g., grid
size of M × M), such that 0 < Z (i, j) < N (e.g., M = 400, N = 70) where Z (i, j) =
z(i�x, j�y), and a strip of random noise or a given pattern R(i, j) of size N × M , a
simple autostereogram image synthesis algorithm is given as follows:

for { j = 0; j < M ; j + +} for {i = 0; i < M ; i + +}
if {i < N }I (i, j) = R(i, j); else I (i, j) = I (i − N + Z (i, j), j);

The artificial disparity between patterns is interpreted as depth, so that the larger the
distance is between repeating patterns the further a point is perceived in the eyes of the
observer; see Fig. 1. A symmetric algorithm, with somewhat better performances, was
introduced by Thimbleby et al. in [12]. Most autostereograms are generated in a similar
way, by swiping the disparity relation between pixels as a constraint. The reconstruction
algorithm can be considered as one measure for the quality of the generated autostereogram.

3. SHAPE RECONSTRUCTION FROM AUTOSTEREOGRAM

In case the strip R(i, j) does not include repeating colors for each line, i.e., R(i, j) 	=
R(i − k, j), ∀i 	= k, and there is a unique k such that 0 < k ≤ N and I (i, j) = I (i − k, j),
then there are no ambiguities in the reconstruction. The shape reconstruction procedure
then proceeds as follows: For every (i, j), such that 0 ≤ j ≤ M − 1 and N ≤ i ≤ M − 1,
find the unique k(i, j) such that 0 < k ≤ N − 1 and I (i, j) = I (i − k(i, j), j) that yields
the 3D shape given as the function Z (i, j) = i − k(i, j).

When the random strip fails to satisfy the above demand, or as i increases and the number
of random values decreases, more than one correlation may occur. In this case we define a
vector of all possible Z values for each point (i, j) and initiate the reconstructed surface to
be the largest Z at that point (determined by the distance to the closest pixel that correlates
with the one under inspection). This value corresponds to the minimal k such that 0 < k
and I (i, j) = I (i − k, j). The surfaces reconstructed this way are noisy as shown in the
middle column of Fig. 4.



SHAPE RECONSTRUCTION FROM STEREO 327

FIG. 2. The area of the six triangles is minimized by changing the Z (i, j) candidate.

In order to overcome the noise problem we add the assumption that the surface is smooth.
This assumption leads us to apply a minimal area rule that selects a smoother result subject to
the correlation requirement. For each point we measure the total area of the six neighboring
triangles as shown in Fig. 2. The Z value of the point is replaced by a different candidate
from the vector of possible heights if the total area is reduced.

This area minimization procedure causes the total area of all the triangles to strictly
decrease at each update step. We also know that the total area is bounded from below by the
area of the flat image plane and that each update step reduces the total area by more than a
constant that can be previously determined. Thereby, we have convergence of our minimal
area correlation algorithm in finite update steps. One scan over the domain is practically
enough to result in a smooth reconstruction with the above initial guess.

Figure 3 shows the random dot autostereogram test images of six 3D profiles. In all cases
the width of the pattern used for the initial random dot strip is N = 70, and its spectral
behavior is 1/ f 2; see the easy patterns in [3]. The hight resolution is set to 30.

FIG. 3. Random dot autostereograms.
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FIG. 4. Left to right: Original surface, first correlation, minimal surface refinement.

Figure 4 left to right are as follows: The original surface as gray levels (before embedding
as an autostereogram), the reconstruction by the first correlated pixel, and the correction by
minimal surface area correlation.

4. SHAPE FROM STEREO AS A SURFACE OF MINIMAL WEIGHTED AREA

Let us formulate the stereo problem as a weighted area minimization problem. Given
the implicit surface representation S = {(x, y, z) | φ(x, y, z) = 0}, we have that min∫

g(x, y, z) da,where da is an area element, may be expressed as min
∫

g(x, y, z) |∇φ| dx dy
dz (see the Appendix for a proof) for which the Euler Lagrange (EL) equation is given by

div

(
g(x, y, z)

∇φ

|∇φ|
)

= 0, (1)

where∇φ ≡ (φx , φy, φz) and div ≡ (d/dx, d/dy, d/dz). Geometrically, we have the equiv-
alent expression for the level sets of φ, given by

(g(x, y, z)H − 〈∇g(x, y, z), �N 〉) �N = 0, (2)

where �N = ∇φ

|∇φ| is the normal of the level set surface of φ, and H = div( ∇φ

|∇φ| ) is the mean
curvature of the level set surface.
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The main problem with this implicit representation is the relatively large numerical
support needed to enjoy the fixed coordinates formulation. This usually leads to high
computational cost when using the EL as a gradient descent procedure. In order to over-
come the problem let us define the same geometric measure, yet now for the graph sur-
face S = (x, y, z(x, y)). The weighted area minimization is given formally by minz E(z)
where

E(z) =
∫

g(x, y, z(x, y)) da =
∫

g(x, y, z(x, y))
√

1 + z2
x + z2

y dx dy. (3)

Taking the first variation with respect to z yields

δE

δz
= div


g(x, y, z(x, y))

∇z√
1 + z2

x + z2
y


 − gz

√
1 + z2

x + z2
y, (4)

where now div ≡ (d/dx, d/dy) and ∇z ≡ (zx , zy). This first variation equation should
obviously have the same geometric meaning as above. It is given explicitly by the EL
equation

0 = gH + gx zx + gyzy − gz√
1 + z2

x + z2
y

, (5)

where now the mean curvature of the graph surface is given by H = div(∇z/
√

1 + |∇z|2).
Next, we use our freedom of parameterization, multiply by

√
1 + |∇z|2, and end up

with the same geometric equation (gH − 〈∇g, �N 〉) �N = 0, where the normal of the graph
surface is �N = (−zx , −zy, 1)/

√
1 + |∇z|2, and now ∇ ≡ (d/dx, d/dy, d/dz) as before.

We can write the EL equation as a steepest descent flow that minimizes the weighted area
by the flow equation

zt = g

(
1 + z2

y

)
zxx − 2zx zyzxy + (

1 + z2
x

)
zyy

1 + z2
x + z2

y

+ gx zx + gyzy − gz . (6)

This formulation is inspired by Faugeras and Keriven level-set based stereo reconstruc-
tion model [5]; however, there are some fundamental differences. The above method op-
erates on a function and as such is restricted to be a function. It is more efficient from
a computational point of view, since while working with a fixed coordinate system we
are processing a single surface function rather than the 3D space in which the level set
surface is embedded or handling a narrow band around the surface with an effective
width around it (Fig. 5). This formulation also allows us to introduce discontinuities of
the reconstructed function by including a Mumford–Shah-like penalty for discontinuous
contours. It can be implemented by the 	-convergence methods as in [1, 2, 10, 8]. The
function restriction stabilizes the solution and guarantees uniqueness in case boundary
conditions are provided. However, unlike Faugeras and Keriven, the surface is kept a
graph and its topology is thereby restricted to be a function, which is a limitation. The
correspondence function we use does not take into consideration the geometry of the
reconstructed surface, as done in [5]. While it appears like a limitation, this simplifica-
tion actually provides us with the powerful property of convergence into a stable solution
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FIG. 5. The correspondence induces a position dependent scalar function in 3D space. The question is how
to engrave a minimal weighted area from this isotropic nonhomogeneous space.

as proved in [4], and practically we did not experience any dramatic drop in the perfor-
mances.

4.1. Reconstruction from Stereo: Results

Figure 6 shows a reconstruction result from a stereo pair of a smooth synthetic hight
profile. The initial conditions are set by a greedy process for each coordinate on the
image plane. Next, a spatial median smoothing filter followed by a weighted minimal
area minimization approach brings the reconstructed surface very close to the original
profile.

Next, we tested our scheme on real images. Here we applied a version of the correspon-
dence measure discussed in [9, 11]. A correspondence disparity measure is assigned to each

FIG. 6. Top: The two stereo images projected onto the same plane. Bottom Left: Original surface. Middle:
Reconstruction by rough best match for the correspondence function from the stereo pair. Right: Reconstructed
surface after smoothing via minimal weighted area.
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FIG. 7. Shape from stereo. Top: The stereo pair and their normalized addition. Middle: The reconstructed
surface with the right image textured mapped onto it before the weighted area minimization phase. Bottom:
Reconstructed surface after the weighted area minimization.

pixel (w.l.o.g) of the right image such that

SE(x, y, d) = Gσ ∗ (IL (x − d, y)) − IR(x, y))2

Ī L (x, y) = Gσ ∗ IL (x, y)

VarL (x, y) = Gσ ∗ (IL (x, y))2 − ( Ī L (x, y))2 (7)

Corr(x, y, d) = (SE(x, y, d))2

1 + VarR(x, y)VarL (x − d, y)
,

where d is the disparity, Gσ is a normalized Gaussian kernel with variance σ , and the ∗ is
a convolution operator. This measure could be easily extended to more than two images.

The goal is again to extract a surface with minimal weighted area as above, yet now
we first search in the x, y, d discretized space explicitly. That is, instead of minimiz-
ing

∫
g(x, y) da, through its Euler Lagrange equation, we first search for the minimal

weighted area by iteratively changing the values of zi j ≡ z(i�x, j�y) at each point, so
that the total discrete area

∑
i j gi j dai j is always decreasing by the update, as we did

for the autostereogram case. This discrete step accelerates the convergence. Finally, we
apply the differential minimization by the Euler Lagrange as a steepest descent flow
Eq. (6).

Figure 7 presents perspective views of the same reconstruction from two images before
and after the weighted area minimization phase. The surface presented in this example is
the right image textured mapped onto the reconstructed surface.
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5. CONCLUSIONS

We experimented with new solutions for the shape from the stereo family of problems.
As a first example we explored a minimal discrete area correlation approach to solve the
shape from a computer generated autostereograms problem. The minimal correlation area
approach is one quality indicator for computer generated autostereograms, as well as an
example for the discrete area as a promising measure for this correspondence problem.

Next, motivated by [5] we used the more general weighted area, where the weight is
defined by an isotropic nonhomogeneous correspondence function, to solve the classical
shape from stereo problem. Our tests indicate that the modulated area is indeed a very
promising geometric measure for this family of shape reconstruction problems.

APPENDIX

Let us prove that, given the implicit surface representation S = {(x, y, z) | φ(x, y, z) =
0}, we have that min

∫
g(x, y, z)|Su × Sv | du dv may be expressed as

min
∫

g(x, y, z)|∇φ| dx dy dz,

where S(u, v) is a parametric representation of the surface, and the second minimization is
restricted to the zero level set of φ. We also assume that w.l.o.g. S(u, v) = S(u, v, φ)|φ=0.
That is, we can consider a family of surfaces S(u, v, φ) in which our surface is embedded.

Proof. Recall that
∫ ∫ ∫

du dv dw = ∫ ∫ ∫ |J |−1dx dy dz where the Jacobian (the
volume scaling ratio) is given by J = 〈(xu, yu, zu) × (xv, yv, zv), (xw, yw, zw)〉. In our case,
for the general parameterized surface S(u, v), and its implicit representation φ(x, y, z) = 0,
we have that the normal is given by �N = (Su × Sv/|Su × Sv|) = ∇φ/|∇φ|. We thereby
have that Su × Sv = |Su × Sv| �N = |Su × Sv|∇φ/|∇φ|.

We also know that 1 = dφ

dφ
= 〈∇φ, (xφ, yφ, zφ)〉. Thus, Sφ = (xφ, yφ, zφ) = ∇φ/|∇φ|2,

and the Jacobian is given by

J = 〈Su × Sv,Sφ〉 =
〈
Su × Sv,

∇φ

|∇φ|2
〉

=
〈
|Su × Sv| ∇φ

|∇φ| ,
∇φ

|∇φ|2
〉

= |Su × Sv|
|∇φ| .

We can now conclude with∫
φ

∫
u

∫
v

g(S(u, v, φ))|Su × Sv| du dv dφ =
∫

x

∫
y

∫
z

g(x, y, z)|J |−1|Su × Sv| dx dy dz

=
∫

x

∫
y

∫
z

g(x, y, z)|∇φ| dx dy dz. �
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