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1 IntroductionAn important problem in image analysis and shape understanding is the segmentation prob-lem. The question is how to isolate an object in a given image and how to integrate objectboundaries in noisy data images to achieve a good model of the object under inspection.The low level segmentation problem was addressed in many ways over the years, startingwith gray level thresholding, region growing, and deformable contours based on energy min-imization along a given curve called `snakes'. At the higher level, after an object is isolated,the problem of recognition rises. In this case the question is how to classify the given object.Euclidean invariant operations refer to those operations for which movements and rota-tions of the objects in the image plane do not e�ect the result of the operation. We knowthat for pictures in the `real' world, the class of transformations we encounter is much richerthan pure Euclidean. In this paper we take one step into the world of transformations anddeal with the a�ne group. The cases in which the camera is far away from the objects, sothat perspective contributes minor distortions, and the objects are almost planar, may beconsidered (approximated) as part of the a�ne group. A framework that takes the a�neinvariance demand into consideration even before the shape is segmented, is introduced. Itis shown how to deal with noisy images, and how to make use of the gray level informationfor generating invariant signatures and denoising algorithms.One of the fundamental problems in pattern recognition is the problem of classifying apartially occluded object using a local description of its boundary [4, 5, 6, 7, 8, 16, 26]. Onthe other hand, in the �eld of image processing, recent non-linear geometric based algorithmswere shown to give very promising results compared to `optimal' linear algorithms [2, 3, 30,32, 33]. These two research �elds, that appear to be unrelated in nature, are treated in thispaper by gaining the motivation from the theory of curve evolution. Speci�cally, we will usethe a�ne scale space, generated by the a�ne heat equation as introduced in [35], to constructan a�ne invariant gradient magnitude. The a�ne gradient magnitude (a�ne edge enhancer)will help us in constructing an image denoising algorithm that is e�cient as well as invariantto a�ne transformations. This algorithm is useful for denoising images before generatinginvariant signatures. In fact, the invariance property of the selective smoothing procedureguarantees that the change in the geometry of the shapes` signature in the smoothed imagecan be predicted by applying the same algorithm to a clean reference image of the shape wetry to recognize. The a�ne gradient magnitude will also serve as a non trivial signature forpattern classi�cation when projection invariance of the gray levels along the shape boundaryis assumed. The projection invariance of gray levels [2] states that the order of gray levelsalong the boundary is preserved, so that the image of the planar shape is de�ned as a rangeof gray levels and not just as interior and exterior (i.e. black and white). In other words, it isassumed that the a�ne transformation is operating on the gray level image. This case mightbe di�erent from the case in which we �rst apply an a�ne transformation on the planarobject and only then take its image. We will show how to use this gray level informationalong the boundary for generating simple invariant signatures.It will be shown that the a�ne curvature can be approximated by a simple implementableequation exploiting the gray level information in the data image. This approximation is usedfor computing a simple di�erential a�ne invariant signature. A di�erent interesting approach2



for computing the a�ne curvature while keeping the order of derivatives low was recentlyintroduced in [19]. It is based on the a�ne curvature evolution equation through the a�nescale space as presented in [34].The structure of the paper is as follows: Section 2 describes equi-a�ne invariant proper-ties of planar curves, like the a�ne arclength, the a�ne normal, and the a�ne curvature. InSection 3 the a�ne heat equation as introduced in [35] is used for constructing an a�ne gra-dient magnitude and Laplacian de�ned along the geometric scale space. Section 4 presentsan invariant selective smoothing procedure for image denoising. This procedure is shown tobe equivalent to the geometric heat equation of the `weighted a�ne arclength'. In Section5, the invariant arclength and the geometric heat equation for the linear a�ne arclength arepresented. The knowledge about the location of one point is added to the equi-a�ne groupyielding a subgroup of the equi-a�ne referred to as the `linear' subgroup. Section 6 presentsthe intrinsic property of the weighted arclength, and an expression of the a�ne curvatureas a function of the Euclidean curvature and its derivatives according to the Euclidean ar-clength. Then, Section 7 presents considerations for implementing the proposed procedures,and an approximation of the a�ne curvature that uses up to second order derivatives alongthe implicit representation of the boundary (i.e. the data image). Section 8 presents someexamples of using the proposed techniques for generating e�cient and robust a�ne invari-ant signatures, and of using the dynamic weighted a�ne geometric heat equation for imagedenoising. In the appendix, it is shown how to express the Euclidean curvature and itsderivatives from an implicit representation of the boundary, and how to approximate thea�ne curvature.2 A�ne Invariants of Planar CurvesWe shall start by introducing some basic concepts from the theory of a�ne di�erentialgeometry of planar curves. More details can be found in [11].Let C(p) : [a; b]! IR2 be a simple regular parametric planar curve (in its planar coordi-nates: C(p) = fx(p); y(p)g). Let v be the Euclidean arclength so that1v(p) = Z p0 hC~p; C~pi1=2d~p;where ~p 2 [a; b] is an arbitrary parameterization. The tangent is known to be given byCv = ~T ; and the Euclidean curvature vector is given by Cvv = � ~N ; where ~N is the curvenormal and � is the Euclidean curvature. We will use (X;Y ) as the determinants of the2 � 2 matrix whose columns are given by the vectors X;Y 2 IR2. The equi-a�ne group isa sub-group of the a�ne in the sense of restricting the a�ne to preserve area. Given thegeneral a�ne transformation Ĉ = AC + b, the restriction is: det(A) = 1. We will considertwo cases of the equi-a�ne transformation. The �rst operating on the whole image, I(x; y),of the object: Î(x; y) = I(ax + by + c; dx + ey + f), which will be referred to as the graylevel projection invariance assumption. This assumption usually simplify the complexity1We will use the following notations along the paper: Cp � @C@p , hfa; bg; fc; dgi � ac + bd, and(fa; bg; fc; dg)� ad� bc. 3



involved in generating invariant signatures. The second transformation operates only on thea boundary of the planar object, while the transformation relating the intensity at the rest ofthe original image to the transformed one is unknown (a more realistic assumption in mostpractical cases).The equi-a�ne arclength s is de�ned so that(Cs; Css) = 1; (1)and is given by [11]s(p) = Z p0 j(C~p; C~p~p)j1=3d~p;see Figure 1, which is an intrinsic integral (as we will see in Section 6).
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Figure 1: For s = the a�ne arclength and v = the Euclidean one, the relations betweenCs; Css; Cv and Cvv are presented.Using the intrinsic property, the relation between the Euclidean and a�ne arclength [36]is obtained froms = Z j(Cv; Cvv)j1=3dv;that yieldsdsdv = j(Cv; Cvv)j1=3= j(~T ; � ~N )j1=3= j�j1=3: (2)4



Using the above expression, the a�ne tangent is given byCs = Cv @v@s = j�j�1=3~T :Di�erentiating Equation (1) we have(Cs; Csss) = 0; (3)which means that the vectors Cs and Csss are linearly dependent: Csss = ��Cs: The scalar �is the simplest a�ne di�erential invariant of the curve C, known as the a�ne curvature, andCss is the a�ne normal vector. A direct result form the last equation is� = (Css; Csss):Di�erentiating Equation (3) with respect to s, it also follows that� = (Cssss; Cs):It can be shown that �, the a�ne curvature, is the fastest normal velocity minimizing thea�ne arclength. However, unlike the Euclidean arclength shortening 
ow (Ct = � ~N ) whichis identical to the Euclidean geometric heat equation (Ct = Cvv), it does not lead to anyconstructive smoothing scale space. The result of minimizing the a�ne arclength itselfwill lead to polygons, since along the straight lines the a�ne arclength measure is zero2.Moreover, the vertices of the polygon are also of measure zero, since as was just shownds = j�1=3jdv. So when either the curvature or the Euclidean arclength are equal to zero,the a�ne arclength will be zero. One may argue that at the vertices the curvature goes toin�nity. However, note that when approximating a vertex as a small circle with radius thatgoes to zero, it is straight forward to verify that the arclength measure is zero at the vertices:Z ds � Zvertex�1=3dv � limr!0� 1r1=32�r�= 2� limr!0 r2=3= 0:This is the reason that causes direct a�ne arclength minimizations to fail when trying toform `a�ne snakes.' The a�ne scale space [36] is achieved by the a�ne geometric heatequation Ct = Css.In the next section, the a�ne gradient magnitude along the scale space [34] is used tode�ne an invariant edge enhancer. The edge enhancer will be used for signature generationand for constructing an image invariant denoising algorithm.2Basically, the a�ne geometry is de�ned for strictly convex curves in which straight lines are excluded.Nevertheless, we will use the extended de�nition following Sapiro and Tannenbaum [37].5



3 A�ne Edge EnhancerFor constructing an edge enhancer we will use the a�ne geometric heat equation as presentedin [35]. In the proposed model all the level sets of the data image are simultaneously evolvedso that each gray level set is propagating according toCt = Css: (4)Now C(s; t) : [a; b]� [0; T )! IR2, is a two parametric curve, where s is the a�ne arclength,and t indicates the `time' of evolution. Observe thatCss = @@s  Cv @v@s!= Cvv  @v@s!2 + Cv @2v@s2= � ~Nj��1=3j2 + ~T @2v@s2= �1=3 ~N + ~T @2v@s2 :Considering only the normal component in the evolution (the tangential component a�ectsonly the internal parameterization and does not in
uence the shape of the propagating curve[17]) the corresponding evolution equation is given [34] byCt = �1=3 ~N : (5)Consider the three dimensional function �(x; y; t) : IR2� [0; T )! IR for which each level setC = ��1(c) is evolving according to Equation (5). The implicit (Eulerian) formulation [31]of (5) (see Section 7 and the appendix) is given by:�t =  r �  r�jr�j!!1=3 jr�j= ��xx�2y � 2�x�y�xy + �yy�2x�1=3 :Given �(x; y; 0) = I(x; y) one can evolve the whole image according to the `a�ne ge-ometric heat equation' so that �(x; y;�T ) is the result of propagating � for t = �T (see[2, 35, 38] for more details on the above equation used as an a�ne invariant geometricsmoothing operator on images.) We shall denote by E(�T ) the evolution operation fort = �T , i.e. �(�T ) � E(�T ) � �(0). Obviously E is an a�ne invariant operation [35], i.e.A � E(�T ) � �(0) = E(�T ) �A � �(0), where A is the a�ne transformation.De�ne the a�ne gradient magnitude G(�T ) � �(0) � �(�T )��(0)�T . Then we readily havethe following lemmaLemma 1 The operation de�ned by G(�T ) ��(0) � �(�T )��(0)�T ; is invariant under the equi-a�ne transformation. 6



Proof.A �G(�T ) � �(0) = A � E(�T ) � �(0)� �(0)�T= A � E(�T ) � �(0)�A � �(0)�T= E(�T ) �A � �(0)�A � �(0)�T= G(�T ) �A � �(0):The question is why can we consider jG(�T )�I(x; y)j, where I is the image, to be an edgeenhancer? It is obvious that edges are traversed by the evolution operation E(�T ) and thatconstant regions in the image will stay still. Yet edges of high curvature will propagate in ahigher velocity than those that appear as straight lines. The curvature dependent evolutionyields a non-homogeneous result along the edges when applying G(�T ). The fact thatat edges of high curvature the edges are enhanced may as well be considered as a desiredproperty. For example, active contour models [14] that are used to integrate edges so asto segment object boundaries, are pushed by a geometric force that is proportional to thecurvature of the propagating contour. The result of the geometric a�ne edge enhancer thatenhances edges of high curvature therefore helps in the convergence of the active contournear the boundary, when used as the underlying potential.In a similar way one can de�ne the a�ne Laplacian L(�T ) to be:L(�T ) � �(0) � �(2�T )� 2�(�T ) + �(0)�T 2 :In the following sections it is shown how to use the a�ne gradient magnitude for constructinginvariant di�erential signatures for object recognition under partial occlusion, and imageinvariant denoising algorithm.4 Invariant Image Denoising ProcedureBase on ideas put forward in [38], we now construct an invariant image selective smoothingalgorithm. The proposed algorithm is a procedure for image denoising with invariant controlon the changing geometry of the shape through the smoothing operation. The procedureis useful for denoising images before computing the invariant signatures. It can thus beconsidered as a step towards the calculations leading to the invariant signatures. Its relationto the total variation decreasing algorithms and to geometric heat equations are explored.Gradient based edge detectors are usually based on the discretization of edge enhancerjrG� � Ij, see [13], which is equivalent to G� � jrIj. The convolution with a Gaussian kernelG� is performed in order to overcome small perturbations and insigni�cant, high frequency,spatial noise. The variance of the smoothing operator � is analog in our jG(�T ) � Ij model,to �T the amount of smoothing. 7



In [33], the authors deal with image denoising they named nonlinear total variation basednoise removal by minimizing the integralZ jrIjdxdy:Convergence is achieved by limiting the displacement of the result from the noisy image tobe proportional to the noise variance. It is done by adding a stopping condition to preventover smoothing, e.g. R (�(t) � �(0))2dxdy = �2 (for �(0) = I(x; y)). We have noticed thatthe same results (in some cases even more e�ciently, yet without the convergence property)are achieved by limiting the time of evolution in the following scheme. Where the time ofevolution is now proportional to the noise variance.The resulting minimization scheme is�t = �2x�yy � 2�x�y�xy + �2y�xx(�2x + �2y)3=2 given �(0) = I(x; y);according to which3, each level set of the function � is evolving viaCt = 1jr�j� ~N :The last equation can be read asCt = 1edge enhancer of �(t) � geometric smoothing;that leads to conditional geometric smoothing or `selective smoothing' according to [2], sothat at regions of high gradient (close to an edge) the smoothing is low, while at constantregions the smoothing is high. It is possible to replace the 1=jr�j with more sophisticateddynamic edge enhancers which take us to other kinds of algorithms [3].In cases where clean edges are given, yet the image itself is very noisy, it is possible touse the edges information for selecting the smoothing regions. A mask of weights is builtfrom the initial given edges, and then used to control the smoothing process so that eachlevel is propagating byCt = W (x; y)� ~N ;where W (x; y) = 1given clean edges of I(x; y) ; is the control mask.The same motivation from the above Euclidean case direct us towards the construction ofan a�ne invariant image denoising algorithm. De�ne a potential function f : IR2� [0; T )!IR+, f(x; y; t) = F (jG(�T ) � �(t)j);where F (�) : IR+ ! IR+ is a decreasing function. Then, the invariant denoising procedure isperformed via�t = f(x; y; t)(�2x�yy � 2�x�y�xy + �2y�xx)1=3 given �(0) = I(x; y); (6)3One should be careful in dealing with the fact that the gradient may vanish (jr�j = 0). However, herewe give the total variation approach only as a motivation.8



according to which, each level set of the function � is evolving byCt = f(x; y; t)�1=3 ~N : (7)Selecting a static inverse edge enhancer function f(x; y; t) = f(x; y; 0) = F (jG(�T ) � �(0)j),Equation (7) becomes exactly the geometric heat equation Ct = C~s~s of the `weighted equi-a�ne arclength':d~s = g(C)j(Cp; Cpp)j1=3dpwhere g(x; y) = 1=qf(x; y), and since f is a�ne invariant, d~s is also a�ne invariant. Usingthe causality property, the arclength may be rede�ned dynamically along the propagation,yielding the general invariant evolution, Equation (6).4Taking �T ! 0 in the a�ne gradient magnitude de�nition, resultsG(0) � �(0) � lim�T!0 (G(�T ) � �(0)) = lim�T!0 �(�T )� �(0)�T != d�(t)dt jt=0= �1=3jr�(0)j= ��2x�yy � 2�x�y�xy + �2y�xx�1=3 : (8)A version (without the 1=3 factor) of the above operation was found to be a useful tool as an`edge-curvature strength' [20] (which was obviously found to be `relative a�ne invariant'),or `stronger response of the curvature near edges' [24], etc.As an example, let f(x; y; t) = 1=jG(�T ) � �(t)j and �T ! 0, so that f(x; y; t) =1j�1=3 jjr�(t)j. Then Equation (6) becomes�t = sign(�);and each level set of � is propagating viaCt = sign(�)jr�j ~N ;which is a conditional o�setting procedure. Although a�ne invariant as well as conditionally`variation decreasing', the above evolution is unstable near in
ection points, and tends toform shocks. Selecting �T > 0 results a smoothed version of the above example.To summarize, using the geometric heat equation that is based on the right arclength,we have constructed an a�ne invariant noise removal algorithm. The algorithm is invariantin the sense that the result of the algorithm when applied to a given image is transferredexactly to the result of applying the algorithm to the transformed image. It is useful forcleaning noisy images with the ability to predict the geometry deformation that is causedby the smoothing process.4Such an a�ne invariant evolution of all the gray level sets simultaneously is invariant under the `projec-tion invariance' assumption as presented in [2]. 9



In [8] the arclength and curvature for the projective and its general subgroups wereintroduced. In the following section, simple arclength for the linear a�ne group are usedto de�ne the corresponding heat equation. Here, we add one point to the a�ne group. Inpractice, we deal with shape descriptors in which there exist one anchor point to simplifythe arclength de�nition. This arclength is referred to as semi-di�erential invariant in [6, 26].By `simple arclength' we refer to an invariant arclength that is de�ned by, at most, secondorder derivatives of the curve.5 Linear-Equi-A�ne Arclength and EvolutionIn [10, 27] the authors argue that Equation (4), leads towards the geometric heat evolutionequation of any given metric which is given byCt = Crr;where r is the arclength de�ned for the speci�c transformation group. Simulating theseevolution equations it is enough to track only the normal component of the evolution velocity,so that geometrically the above equation may be written as5Ct = hCrr; ~Ni ~N :This way it is possible [34] to reformulate the a�ne heat equation Ct = Css into its geometricequivalent Ct = �1=3 ~N . In [27] it was also shown that for the similarity group the inversegeometric heat equation, given byCt = �1� ~N ;is invariant. Yet it can be applied only to convex shapes.In this section we introduce an invariant evolution of the a�ne group with one givenpoint (e.g. given origin, or any other point). Using the same argument as for the equi-a�nearclength, that is areas are invariant under the a�ne transformation, let the linear a�nearclength be given by [6, 26]w = Z j(C; Cp)jdp:See Figure 2. As may be easily veri�ed (following the same steps as the proof of Lemma 2in the following section) this is an intrinsic measure that does not depend on the parameter,and therefore equivalent tow = Z j(C; ~T )jdv;where v is the Euclidean arclength as before.5The Eulerian formulation of Ct = hCrr; ~Ni ~N is �t = hCrr;r�i, see Section 7.10
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Figure 2: For w = linear a�ne arclength, the area j(C; Cw)j � 1.The area of a closed shape [21] is given byA = 12 I (C; ~T )dv= 12 I hC; ~Nidv:Therefore, the arclength (as for the equi-a�ne one) corresponds to an area, and thusinvariant. An arclength element is given bydw = j(C; ~T )jdv= jhC; ~Nijdv:Thus,Cw = Cv @v@s = Cv 1jhC; ~Nij = 1jhC; ~Nij ~T ;and Cww = Cvv  @v@w!2 + Cv @2v@w2= � ~N  1jhC; ~Nij!2 + @2v@w2 ~T= 1hC; ~Ni2� ~N + tangential component:The corresponding linear a�ne heat equation given by its geometric Euclidean version isCt = 1hC; ~Ni2� ~N : (9)11



Observe that when considering closed curves, the interesting cases are those in whichthe anchor point is located inside the curve and no tangent points are formed. In othercases, it is possible to locate the smallest triangle that is formed by two tangent points (itis easy to prove that there exist at least two) and the anchor point. This triangle is thenmapped into a given reference triangle for every data image, and the same mapping is used toeliminate the transformation e�ect, see Figure 3. So, considering only the `interesting' cases,the geometric heat equation (9) is not in
uenced by singular values since tangent points areexcluded. Equation (9) is given here as an example for using the second derivative accordingto the invariant arclength. It is not claimed here to perform better than the a�ne heatequation. However, observe that the embedding property is preserved under this 
ow bythe fact that when two embedded curves touch at a point, their normals coincide, and thecurvature 
ow (normalized by a constant) takes over.
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2222222222Figure 3: There are three possible locations for the given point: Outside the shape, in whichC(p) is tangent at least twice to the boundary of the shape. Inside a shape which consistsof a concave part that leads again to at least two tangent points. Inside a shape with notangents at all, which is the interesting case from our point of view.6 Arclength De�nition and Intrinsic FunctionalsIn this section, we show that by `weighing' the a�ne arclength, the intrinsic property of thearclength does not break. Then, the relation between the a�ne curvature and the Euclideanone is used to generate a simple non trivial di�erential shape descriptor. We refer to suchas a�ne invariant signatures.De�ne a `non-edge' penalty function g : IR2 ! IR+, g(x; y) = F (G(�T ) � I(x; y)) that Fbeing a one to one mapping makes g also a�ne invariant. For example, letg(x; y) = 1jG(�T ) � I(x; y)j: (10)The function g maps edges to low positive values and constant regions to high positive values.Actually any decreasing positive function g of an a�ne gradient magnitude is valid for therest of our discussion. 12



Without breaking the invariance property, we integrate g along the a�ne arclength. LetL(C; Cp; Cpp) = g(C(p))(Cp; Cpp)1=3:We will consider the following functional as the `weighted a�ne arclength'S[C] = Z L(C; Cp; Cpp)dp: (11)Let us prove that (11) is free of parameterization [22] (i.e. an intrinsic integral). We notethat this is only an example, and the intrinsic property should hold for any arclength.Lemma 2 The functionalZ p1p0 g(C(p))(Cp; Cpp)1=3dpdepends only on the curve in the xy-plane6 de�ned by the parametric equation x = x(p),y = y(p), and not on the choice of the parametric representation of the curve.Proof. We show that if we go from p to a new parameter r by setting p = p(r); wheredp=dr > 0 and the interval [p0; p1] goes into [r0; r1], thenZ r1r0 g(C(r))(Cr; Crr)1=3dr = Z p1p0 g(C(p))(Cp; Cpp)1=3dp:Since we have yr = yppr, yrr = yppp2r + ypprr and similarly xr = xppr, xrr = xppp2r + xpprr, itfollows thatZ r1r0 g(C(r))(Cr; Crr)1=3dr= Z r1r0 g(C(r)) �xppr(yppp2r + ypprr)� yppr(xppp2r + xpprr)�1=3 dr= Z r1r0 g(C(r)) �xpyppp3r � ypxppp3r�1=3 dr= Z r1r0 g(C(r)) (xpypp � ypxpp)1=3 dpdrdr = Z p1p0 g(C(p))(Cp; Cpp)1=3dp:Lemma 2 guarantees that the functional (11) is free of the parameterization of the curve.In fact, in the general case of selecting an arclength for a given transformation group, theintegral must be intrinsic! It should have the general form of dl = [geometric quantity]�jCpjdp, where `geometric quantity' is 1 for the Euclidean group, jk(p)j1=3 for the equi-a�negroup, jk(p)j for the similarity, j(C(p); ~T (p))j for the linear-a�ne, etc..Lemma 2 can be used to �nd the relation between the a�ne curvature � and the curvaturederivatives �; �v and �vv, by minimizing the a�ne arclength, using the resulting Euler-Lagrange equations, and the relations presented in Section 2. The same relation could befound in other ways as well [11, 26, 34].6often referred to as the `orbit', `trace' or `image' of the curve C(p)13



The computation of the a�ne curvature � involves derivatives of the forth order, andmay be computed as presented in [11]. Expressing the a�ne curvature � as a function ofthe Euclidean curvature � (see [26, 34]), yields� = �4=3 � 59��8=3�2v + 13��5=3�vv: (12)In the following section and in the appendix, we show how to approximate the a�ne curvaturebased on Equation (12), and use it to construct invariant signatures. This approximation willuse up to second order derivatives of the the implicit representation of the object boundary.Which means a direct operation on the data image, before any thresholding is performed.7 Implementation ConsiderationsBefore thresholding, the object boundary is given in an implicit representation, e.g. theboundary is de�ned as a given gray level set of the data image: I(x; y) =Threshold, see [23].For all of our implementations of curve evolution as well as the computation of the a�neand Euclidean curvatures this implicit level set representation is used. Similarly, implicitrepresentation of planar curves will be used for the curve evolution implementations. Werefer the interested reader to the growing literature on level set motion for curve and surfaceevolution, starting with the Osher Sethian classical paper [31].The basic idea is to map the `time' dependent coordinates (p; t) to �xed coordinates(x; y; t) by embedding the propagating contour in a higher dimensional function. The levelsets of the function �(x; y; t) : IR2 � [0; T )! IR propagating according to�t = �jr�j;where jr�j � q�2x + �2y, are evolving according toCt = � ~N :This result may be easily obtained form ~N = f�yv; xvg = r�=jr�j, and the chain rule�t = hr�; Cti = hr�; � ~Ni = �jr�j.While the embedding is preserved, as was proven for curvature based evolutions [18], thereis no need to control the propagation of the higher dimensional function �. The embedding ispreserved for morphology evolutions as well (which require additional `entropy condition').However, in other cases it is needed to supervise the level sets behavior so that the zeroset evolution is the dominant one, and the rest are only swept by its in
uence. For thispurpose some numerical methods were developed like the narrow strip introduced in [1, 15],re-initialization of the function every iteration [39], expansion of the zero set velocity to thewhole image domain [25], etc.In the appendix we introduce formulas expressing �; �v and �vv as a function of the x andy derivatives of � (up to the fourth order for �vv). Then to achieve practical formulas, weassume that the implicit representation along the boundary is given by polynomial patches ofup to second order. This assumption holds only after a�ne geometric smoothing is performed14



so that sharp edges are smoothed and the approximation is valid. The a�ne curvature asgiven in Equation (12) is approximated by (see Appendix A)� � ~� = �xx�yy � �2xy(�xx�2y � 2�x�xy�y + �2x�yy)2=3 : (13)An important observation is that ~� is an a�ne invariant quantity when considering thea�ne transformation of the gray level image (i.e. under the projection invariance assump-tion). It is actually the ratio of the Hessian H = �xx�yy � �2xy and (G(0) � �)2 that wasde�ned in Equation (8). De�ning J = (G(0) � �)3, it is claimed in [29] that H and J arethe two basic independent a�ne invariant descriptors, and that all second order di�erentialinvariants are functions of H and J , see [28]From above observation it follows that:Corollary 1 ~� = H=J2=3 is a�ne invariant under the projection invariance assumption ofthe gray levels, namely �̂(x; y) = �(ax+by+c; dx+ey+f), and a second order approximationof the a�ne curvature of the level sets of �(x; y).7.1 Relation to ConicsIn the Euclidean case, we know that the curvature of a point along a curve is equivalent tothat of the osculating circle at that point. Where the curvature of a circle is obviously aconstant. In a very recent paper [12], it was noted that the a�ne curvature at a given pointalong a curve is equivalent to the a�ne curvature of the osculating conic to the curve at thatpoint. Where the a�ne curvature of a conic is constant. The authors of [12] also presentedthe following theorem:Theorem 1 The a�ne curvature of a nondegenerate conic de�ned implicitly byax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0;is given as a function of two equi-a�ne invariants of the conic S and T , by� = ST 2=3 ;whereS = ac� b2 = det ����� a bc d ����� ; T = det ������� a b db c ed e f ������� :The above result may be obtained directly from Corollary 1 above. While in Corollary 1the gray level image is assumed to locally have conic level sets, Theorem 1 considers a singleconic curve. I.e. considering the level sets �(x; y) =constant, with the additional assumption�(x; y) = ax2 + 2bxy + cy2 + 2dx + 2ey + f , the a�ne curvature of the level sets curves isgiven by Equation 13 which may be easily checked to be equivalent to the result of the abovetheorem. 15



8 ExamplesThe �rst example, Figure 4, presents the evolution of a shape according to the a�ne ge-ometric heat equation Ct = Css, or in its implicit form (after eliminating the tangentialcomponent) �t = (�xx�2y � 2�x�xy�y + �2x�yy)1=3. Next, Figure 5 demonstrates the power ofthe proposed framework in tracking the convex hull of objects by using the `weighted a�ne'heat equation.A�ne invariant signatures ~�(s), and G(�T ) � I(x; y) along the (smoothed) boundaryG(s) � G(�T ) � �(0)j�(�T )=0 where �(0) = I(x; y);as a function of the a�ne arclength, are computed by the proposed methods. It is shown inFigure 6 that the signatures of the same object under di�erent a�ne transformations remainalmost the same. The gradient magnitude G(s) along the boundary of the smoothed object,(the zero level set of �(�T )) is a robust signature, yet requires the projection invariance of thegray levels. While ~�(s), approximating the a�ne curvature, is free of any assumptions on thethe gray levels in the interior and exterior of the object in the image. The signature functionsare presented without any smoothing or �ltering. For closed curves, Fourier descriptors of theperiodic signature function may be the right choice for classi�cation, while for recognition andclassi�cation of objects under partial occlusion, local matching methods should be applied.Another possibility is to construct a `signature image' similar to the one introduced in [9].The idea is to `collect' the signatures along the scale parameter t into a family of ~�(s; t) orG(s; t). This results in robust signatures, however, more consuming from the matching pointof view, since now the matching problem is performed in a higher dimension. Observe thatthe signatures of the two images are very similar, while obviously �(v) is di�erent. The a�nearclength was computed by using the implicit representation of the boundary in the graylevel image (see Appendix A). The Euclidean curvature at each pixel grid is interpolated atthe grid intersection points with the boundary of the object. Then ds is approximated by�s = �1=3�v, where �v is the length of the line connecting the zero crossings of the objectboundary with a given pixel cell (a square de�ned by f(i; j); (i; j+1); (i+1; j+1); (i+1; j)g.)The Euclidean curvature is computed using its implicit representation � =div(r�=jr�j), andinterpolated at the intersection points of the boundary and the pixel grid lines.Denoising algorithm results are presented in Figure 7. The `dynamic weighted a�ne'heat equation, is an a�ne selective smoothing operator. It is used to e�ciently removenoise perturbations from the image, while preserving the edges. It is possible to predict thegeometric deformation caused by this invariant selective smoothing operation, by applyingthe same procedure to a reference image which is an a�ne transformation of the data image,see Figure 8.9 Concluding RemarksIn this paper the a�ne invariant gradient magnitude along the a�ne scale space was in-troduced and used to construct image denoising algorithms and shape invariant signaturefunctions. The geometric heat equation of the `a�ne weighted arclength' that integrates thea�ne edges and the a�ne arclength from `A�ne Di�erential Geometry' [11] was shown to16



be an invariant selective smoothing procedure, resulting in the image denoising algorithmwhen the `dynamic a�ne weighted arclength' is used.The forth order derivatives and the non-linear nature of the calculations of the geometricalproperties, make the computation of the a�ne curvature signature a complicated task. Wehave shown that it is possible to reduce this complexity by locally approximating the implicitrepresentation of the boundary contour as a second order polynomial function. Althoughsuch an approximation is valid only at smooth regions of the image, it is possible to treatobject boundaries as such, after a�ne smoothing is applied to the image. Moreover, thatapproximation is invariant under the projection invariance assumption.A simple di�erential signature was obtained directly from the a�ne scale space, underthe projection invariance assumption. It was shown to result a robust invariant non trivialdi�erential signatures. In most cases, the fact that the object includes non-homogeneousregions helps in making these signatures `more interesting'.We conclude by a table presenting the arclength and the geometric heat equations forsome of the transformation groups we dealt with. The geometric heat equations may be usedfor generating the invariant signatures in the same manner we did for the equi-a�ne group.Group Arclength L(p) Geom. Heat Eq.Euclidean hCp; Cpi1=2 = 1 � jCpj Ct = � ~NWeighted Euclidean g(C)hCp; Cpi1=2 Ct = �g2 ~NEqui-A�ne j(Cp; Cpp)j1=3 = j�j1=3jCpj Ct = �1=3 ~NWeighted A�ne g(C)j(Cp; Cpp)j1=3 = g(C)j�j1=3jCpj Ct = 1g2�1=3 ~NSimilarity j(Cp;Cpp)jhCp;Cpi = j�jjCpj Ct = 1� ~NLinear-Equi-A�ne j(C; Cp)j = j(C; ~T )jjCpj Ct = �(C;~T )2 ~NWeighted Linear-Equi-A�ne g(C)j(C; Cp)j = g(C)j(C; ~T )jjCpj Ct = �g2(C;~T )2 ~NLinear A�ne j(Cp;Cpp)j(C;Cp)2 = j�j(C;~T )2 jCpj Ct = (C;~T )4� ~Nj(C;Cpp)jj(C;Cp)j = �����(C; ~N)(C;~T ) ���� jCpj Ct = (C;~T )2�(C; ~N )2 ~NAcknowledgmentsI would like to thank Freddy Bruckstein, Guillermo Sapiro, Doron Shaked, and NahumKiryati for their comments the presentation of some of the methods proposed in this report.Appendix AHere the curvature � of the planar curve C = ��1(c), and its �rst and second derivatives(�v and �vv) are computed as a function of �. We use the fact that along the level sets Cof �, the function does not change its values, i.e. @n�=@vn = 0, for any n. Particularly, forn = 2; 3; 4. From this, and the knowledge of the geometrical properties of Cv; Cvv; Cvvv andCvvvv , we compute (using Mathematica algebraic calculations):� = 2�x�xy�y � �xx�2y � �2x�yy(�2x + �2y)3=2 17



�v = (6�3x�2xy�y � 3�4x�xyy�y + 3�3x�xxy�2y � 9�2x�xx�xy�2y + 3�x�2xx�3y��2x�xxx�3y � 6�x�2xy�3y � 3�2x�xyy�3y + 3�x�xxy�4y+3�xx�xy�4y � �xxx�5y � 3�4x�xy�yy + 3�3x�xx�y�yy + 9�2x�xy�2y�yy�3�x�xx�3y�yy � 3�3x�y�2yy + �5x�yyy + �3x�2y�yyy)=(�2x + �2y)3�vv = (24�5x�3xy�y � 24�6x�xy�xyy�y + 4�7x�xyyy�y � 6�6x�xxyy�2y + 36�5x�xxy�xy�2y�72�4x�xx�2xy�2y + 18�5x�xx�xyy�2y + 4�5x�xxxy�3y�24�4x�xx�xxy�3y + 60�3x�2xx�xy�3y � 16�4x�xxx�xy�3y � 96�3x�3xy�3y+12�4x�xy�xyy�3y + 8�5x�xyyy�3y � 15�2x�3xx�4y + 10�3x�xx�xxx�4y � �4x�xxxx�4y�12�4x�xxyy�4y + 12�3x�xxy�xy�4y + 132�2x�xx�2xy�4y + 6�3x�xx�xyy�4y+8�3x�xxxy�5y � 18�2x�xx�xxy�5y � 48�x�2xx�xy�5y�12�2x�xxx�xy�5y + 24�x�3xy�5y + 36�2x�xy�xyy�5y + 4�3x�xyyy�5y+3�3xx�6y + 10�x�xx�xxx�6y � 2�2x�xxxx�6y � 6�2x�xxyy�6y�24�x�xxy�xy�6y � 12�xx�2xy�6y � 12�x�xx�xyy�6y + 4�x�xxxy�7y + 6�xx�xxy�7y+4�xxx�xy�7y � �xxxx�8y � 12�6x�2xy�yy + 6�7x�xyy�yy � 12�6x�xxy�y�yy+36�5x�xx�xy�y�yy � 18�4x�2xx�2y�yy + 6�5x�xxx�2y�yy + 132�4x�2xy�2y�yy�18�5x�xyy�2y�yy + 6�4x�xxy�3y�yy � 144�3x�xx�xy�3y�yy+33�2x�2xx�4y�yy + 2�3x�xxx�4y�yy � 72�2x�2xy�4y�yy � 24�3x�xyy�4y�yy+18�2x�xxy�5y�yy + 36�x�xx�xy�5y�yy � 3�2xx�6y�yy � 4�x�xxx�6y�yy�3�6x�xx�2yy � 48�5x�xy�y�2yy + 33�4x�xx�2y�2yy + 60�3x�xy�3y�2yy�18�2x�xx�4y�2yy + 3�6x�3yy � 15�4x�2y�3yy + 4�7x�xy�yyy � 4�6x�xx�y�yyy�12�5x�xy�2y�yyy + 2�4x�xx�3y�yyy � 16�3x�xy�4y�yyy + 6�2x�xx�5y�yyy+10�6x�y�yy�yyy + 10�4x�3y�yy�yyy � �8x�yyyy � 2�6x�2y�yyyy � �4x�4y�yyyy )=(�2x + �2y)9=2Although impressive in length, the above expressions are too long for practical imple-mentation. Moreover, dealing with pixel based images, the large support required for thecomputation of the high order derivatives leads to inaccurate and noise sensitive operationsaround the edges.Assuming that the implicit function � is smooth (can be achieved by a�ne smoothing)and therefore can be locally approximated by ax2+ bxy+ cy2+ dx+ ey+ f . The third andfourth order derivatives of � may thus be neglected. Using this approximation considerablysimplify the scheme, and reduces the local support to a 3 � 3 pixel mask, with truncationerror of O(�x2) (where �x is the distance between neighboring pixels).Thereby, taking all third and forth partial derivatives of � (with respect to x and y) tobe zero, the a�ne curvature � is simpli�ed into� = �4=3 � 5�2v9�8=3 + �vv3�5=3 � ~� = �xx�yy � �2xy(�xx�2y � 2�x�xy�y + �2x�yy)2=3 :18
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I ~I ÎFigure 7: Image denoising algorithm results based on the weighted a�ne heat equation:From left to right: The original image I, the noisy image ~I = I + n, and the image afterdenoising Î. The noise was selected to be a Gaussian white noise, with SNR = 9 for theface and SNR = 15 for the tiger image. The results for the tiger are obtained after 12iterations with dt = 0:005, and 4 smoothing iterations (performed every two iterations) forthe computation of the edge enhancer with �T = 0:05. For the face we have chosen 120main iterations and 6 iterations for the enhancer (every two main iterations).
21
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