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Abstract

A framework for generating differential affine invariant signatures based on the gray
level images of planar shapes is introduced. Non trivial invariant signatures and their
corresponding arclengths are computed for planar shapes. These signatures are useful
for pattern recognition and classification under partial occlusion. We deal only with
implementable signatures, which practically means using up to second order deriva-
tives, and restrict the affine transformation group accordingly. Based on the theory of
affine curve evolution, an invariant gradient magnitude along the geometric scale space
is defined and used as an invariant edge enhancer. The geometric heat equation for
weighted (by the enhancer) affine arclength definition is shown to yield an invariant
selective smoothing algorithm. This algorithm is used for image denoising in cases
where we need to clean noisy images before computing invariant features. The denois-
ing operation deforms the geometry of the object in a predictable invariant way, unlike
traditional image denoising algorithms, so that the mapping between planar shapes
after the denoising is preserved. The relation between the afline curvature and the
Euclidean one leads to an eflicient method for approximating the affine curvature sig-
nature, while the Fuclidean curvature itself is used for generating the affine arclength
parameter. Both curvatures are computed from the gray level image, using the implicit
representation of the object’s boundary as it appears in real world images. When the
projection invariance assumption of the gray levels is added, robust non-trivial signa-
tures are obtained.
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1 Introduction

An important problem in image analysis and shape understanding is the segmentation prob-
lem. The question is how to isolate an object in a given image and how to integrate object
boundaries in noisy data images to achieve a good model of the object under inspection.
The low level segmentation problem was addressed in many ways over the years, starting
with gray level thresholding, region growing, and deformable contours based on energy min-
imization along a given curve called ‘snakes’. At the higher level, after an object is isolated,
the problem of recognition rises. In this case the question is how to classify the given object.

Euclidean invariant operations refer to those operations for which movements and rota-
tions of the objects in the image plane do not effect the result of the operation. We know
that for pictures in the ‘real’ world, the class of transformations we encounter is much richer
than pure Euclidean. In this paper we take one step into the world of transformations and
deal with the affine group. The cases in which the camera is far away from the objects, so
that perspective contributes minor distortions, and the objects are almost planar, may be
considered (approximated) as part of the affine group. A framework that takes the affine
invariance demand into consideration even before the shape is segmented, is introduced. It
is shown how to deal with noisy images, and how to make use of the gray level information
for generating invariant signatures and denoising algorithms.

One of the fundamental problems in pattern recognition is the problem of classitfying a
partially occluded object using a local description of its boundary [4, 5, 6, 7, 8, 16, 26]. On
the other hand, in the field of image processing, recent non-linear geometric based algorithms
were shown to give very promising results compared to ‘optimal’ linear algorithms [2, 3, 30,
32, 33]. These two research fields, that appear to be unrelated in nature, are treated in this
paper by gaining the motivation from the theory of curve evolution. Specifically, we will use
the affine scale space, generated by the affine heat equation as introduced in [35], to construct
an affine invariant gradient magnitude. The affine gradient magnitude (affine edge enhancer)
will help us in constructing an image denoising algorithm that is efficient as well as invariant
to affine transformations. This algorithm is useful for denoising images before generating
invariant signatures. In fact, the invariance property of the selective smoothing procedure
guarantees that the change in the geometry of the shapes® signature in the smoothed image
can be predicted by applying the same algorithm to a clean reference image of the shape we
try to recognize. The affine gradient magnitude will also serve as a non trivial signature for
pattern classification when projection invariance of the gray levels along the shape boundary
is assumed. The projection invariance of gray levels [2] states that the order of gray levels
along the boundary is preserved, so that the image of the planar shape is defined as a range
of gray levels and not just as interior and exterior (i.e. black and white). In other words, it is
assumed that the affine transformation is operating on the gray level image. This case might
be different from the case in which we first apply an affine transformation on the planar
object and only then take its image. We will show how to use this gray level information
along the boundary for generating simple invariant signatures.

It will be shown that the affine curvature can be approximated by a simple implementable
equation exploiting the gray level information in the data image. This approximation is used
for computing a simple differential affine invariant signature. A different interesting approach



for computing the affine curvature while keeping the order of derivatives low was recently
introduced in [19]. It is based on the affine curvature evolution equation through the affine
scale space as presented in [34].

The structure of the paper is as follows: Section 2 describes equi-affine invariant proper-
ties of planar curves, like the affine arclength, the affine normal, and the affine curvature. In
Section 3 the affine heat equation as introduced in [35] is used for constructing an affine gra-
dient magnitude and Laplacian defined along the geometric scale space. Section 4 presents
an invariant selective smoothing procedure for image denoising. This procedure is shown to
be equivalent to the geometric heat equation of the ‘weighted affine arclength’. In Section
5, the invariant arclength and the geometric heat equation for the linear affine arclength are
presented. The knowledge about the location of one point is added to the equi-affine group
yielding a subgroup of the equi-affine referred to as the ‘linear’ subgroup. Section 6 presents
the intrinsic property of the weighted arclength, and an expression of the affine curvature
as a function of the Fuclidean curvature and its derivatives according to the Euclidean ar-
clength. Then, Section 7 presents considerations for implementing the proposed procedures,
and an approximation of the affine curvature that uses up to second order derivatives along
the implicit representation of the boundary (i.e. the data image). Section 8 presents some
examples of using the proposed techniques for generating efficient and robust affine invari-
ant signatures, and of using the dynamic weighted affine geometric heat equation for image
denoising. In the appendix, it is shown how to express the Euclidean curvature and its
derivatives from an implicit representation of the boundary, and how to approximate the
affine curvature.

2 Affine Invariants of Planar Curves

We shall start by introducing some basic concepts from the theory of affine differential
geometry of planar curves. More details can be found in [11].

Let C(p) : [a,b] — IR* be a simple regular parametric planar curve (in its planar coordi-
nates: C(p) = {z(p),y(p)}). Let v be the Euclidean arclength so that!

P
o(p) = [(C5.C) 2 dp,

where p € [a,b] is an arbitrary parameterization. The tangent is known to be given by
C, = ’]1, and the Euclidean curvature vector is given by C,, = kN , where N is the curve
normal and & is the Fuclidean curvature. We will use (X,Y") as the determinants of the
2 % 2 matrix whose columns are given by the vectors X, Y € R?. The equi-affine group is
a sub-group of the affine in the sense of restricting the affine to preserve area. Given the
general affine transformation C = AC + b, the restriction is: det(A) = 1. We will consider
two cases of the equi-affine transformation. The first operating on the whole image, I(x,y),
of the object: j(:z;,y) = [(ax + by + ¢,dx 4+ ey + f), which will be referred to as the gray

level projection invariance assumption. This assumption usually simplify the complexity

'We will use the following notations along the paper: €, = g%a ({a,b},{e,d}y = ac + bd, and
({a’ b}a {C, d}) = ad — be.



involved in generating invariant signatures. The second transformation operates only on the
a boundary of the planar object, while the transformation relating the intensity at the rest of
the original image to the transformed one is unknown (a more realistic assumption in most
practical cases).

The equi-affine arclength s is defined so that

(Cs,Css) = 1, (1)
and is given by [11]
P
s(p) = [ 155",
0

see Figure 1, which is an intrinsic integral (as we will see in Section 6).

Figure 1: For s = the affine arclength and v = the Fuclidean one, the relations between
Cs,Css,C, and C,, are presented.

Using the intrinsic property, the relation between the Euclidean and affine arclength [36]
is obtained from

S :/|(CU,CUU)|1/3dv,

that yields

d_s
dv



Using the above expression, the affine tangent is given by

C, = cvg—” = |k|7V3T.

S

Differentiating Equation (1) we have
(Csacsss) = 07 (3)

which means that the vectors C; and Cy,; are linearly dependent: Cs,s = —puC,. The scalar p
is the simplest affine differential invariant of the curve C, known as the affine curvature, and
C,s 1s the affine normal vector. A direct result form the last equation is

H = (Cssa Csss)-

Differentiating Equation (3) with respect to s, it also follows that

H = (Cssssa Cs)

It can be shown that p, the affine curvature, is the fastest normal velocity minimizing the
affine arclength. However, unlike the Euclidean arclength shortening flow (C; = kN ) which
is identical to the Euclidean geometric heat equation (C; = C,,), it does not lead to any
constructive smoothing scale space. The result of minimizing the affine arclength itself
will lead to polygons, since along the straight lines the affine arclength measure is zero?.
Moreover, the vertices of the polygon are also of measure zero, since as was just shown
ds = |£'3|dv. So when either the curvature or the Euclidean arclength are equal to zero,
the affine arclength will be zero. One may argue that at the vertices the curvature goes to
infinity. However, note that when approximating a vertex as a small circle with radius that

goes to zero, it is straight forward to verify that the arclength measure is zero at the vertices:

1
/ds = / K3y < lim (—271'7“)
vertex r—0 \ r1/3

= 27 lir% r2/3
= 0.

This is the reason that causes direct affine arclength minimizations to fail when trying to
form ‘affine snakes.” The affine scale space [36] is achieved by the affine geometric heat
equation C; = Cg.

In the next section, the affine gradient magnitude along the scale space [34] is used to
define an invariant edge enhancer. The edge enhancer will be used for signature generation
and for constructing an image invariant denoising algorithm.

?Basically, the affine geometry is defined for strictly convex curves in which straight lines are excluded.
Nevertheless, we will use the extended definition following Sapiro and Tannenbaum [37].



3 Affine Edge Enhancer

For constructing an edge enhancer we will use the affine geometric heat equation as presented
in [35]. In the proposed model all the level sets of the data image are simultaneously evolved
so that each gray level set is propagating according to

Ct — Css- (4)

Now C(s,t) : [a,b] x [0,T) — R?, is a two parametric curve, where s is the affine arclength,
and t indicates the ‘time’ of evolution. Observe that

0 ov
Css — % (CU %)

o\’ 9%
— CUU (%) —|_va
= /<;./\7|/<;_1/3|2—|—’]1@
0s?

IRV i

ds?’
Considering only the normal component in the evolution (the tangential component affects
only the internal parameterization and does not influence the shape of the propagating curve

[17]) the corresponding evolution equation is given [34] by
C, = kPN (5)

Consider the three dimensional function ¢(z,y,?): R* x [0,T) — R for which each level set
C = ¢7*(c) is evolving according to Equation (5). The implicit (Eulerian) formulation [31]
of (5) (see Section 7 and the appendix) is given by:

v 1/3
b= (V(%)) Vel

= (62002 = 26,0,00, + 6007

1/3

Given ¢(x,y,0) = I(x,y) one can evolve the whole image according to the ‘affine ge-
ometric heat equation’ so that ¢(x,y, AT) is the result of propagating ¢ for t = AT (see
[2, 35, 38] for more details on the above equation used as an affine invariant geometric
smoothing operator on images.) We shall denote by FE(AT) the evolution operation for
t=AT,ie o(AT)= FE(AT)o ¢(0). Obviously F is an affine invariant operation [35], i.e.
Ao E(AT) o ¢(0) = E(AT)o Ao ¢(0), where A is the affine transformation.

Define the affine gradient magnitude G(AT) o ¢(0) = lA—TA;MQZ. Then we readily have

the following lemma

Lemma 1 The operation defined by G(AT)o ¢(0) = HAT=00O) ;s invariant under the equi-

AT
affine transformation.



Proof.
E(AT) 0 ¢(0) — ¢(0)

AoG(AT)o¢(0) = Ao

AT

_ Ao E(AT) o ¢(0) — Ao ¢(0)
AT

_ E(AT)o Ao ¢(0) — Ao ¢(0)
AT

= G(AT)o Ao ¢(0).
|

The question is why can we consider |G(AT)oI(x,y)|, where [ is the image, to be an edge
enhancer? It is obvious that edges are traversed by the evolution operation E£(AT') and that
constant regions in the image will stay still. Yet edges of high curvature will propagate in a
higher velocity than those that appear as straight lines. The curvature dependent evolution
yields a non-homogeneous result along the edges when applying G(AT). The fact that
at edges of high curvature the edges are enhanced may as well be considered as a desired
property. For example, active contour models [14] that are used to integrate edges so as
to segment object boundaries, are pushed by a geometric force that is proportional to the
curvature of the propagating contour. The result of the geometric affine edge enhancer that
enhances edges of high curvature therefore helps in the convergence of the active contour
near the boundary, when used as the underlying potential.

In a similar way one can define the affine Laplacian L(AT') to be:

P(2AT) — 26(AT) + $(0)

L(AT) o0 ¢(0) = AT .

In the following sections it is shown how to use the affine gradient magnitude for constructing
invariant differential signatures for object recognition under partial occlusion, and image
invariant denoising algorithm.

4 Invariant Image Denoising Procedure

Base on ideas put forward in [38], we now construct an invariant image selective smoothing
algorithm. The proposed algorithm is a procedure for image denoising with invariant control
on the changing geometry of the shape through the smoothing operation. The procedure
is useful for denoising images before computing the invariant signatures. It can thus be
considered as a step towards the calculations leading to the invariant signatures. Its relation
to the total variation decreasing algorithms and to geometric heat equations are explored.

Gradient based edge detectors are usually based on the discretization of edge enhancer
VG, * 1], see [13], which is equivalent to G, * |V I|. The convolution with a Gaussian kernel
G, 1s performed in order to overcome small perturbations and insignificant, high frequency,
spatial noise. The variance of the smoothing operator o is analog in our |G(AT) o I| model,
to AT the amount of smoothing.



In [33], the authors deal with image denoising they named nonlinear total variation based
noise removal by minimizing the integral

/|V]|d:1;dy.

Convergence is achieved by limiting the displacement of the result from the noisy image to
be proportional to the noise variance. It is done by adding a stopping condition to prevent
over smoothing, e.g. [(¢(t) — ¢(0))*dazdy = o* (for ¢(0) = I(x,y)). We have noticed that
the same results (in some cases even more efficiently, yet without the convergence property)
are achieved by limiting the time of evolution in the following scheme. Where the time of
evolution is now proportional to the noise variance.

The resulting minimization scheme is

_ ¢?g¢yy - 2¢x¢y¢xy + ¢3¢xw
(63 + ¢3)*?
according to which?, each level set of the function ¢ is evolving via

1

P given  ¢(0) = I(z,y),

Ct = /i/\7.
Vol
The last equation can be read as
1 . .
Ci = x geometric smoothing,

edge enhancer of ¢(t)

that leads to conditional geometric smoothing or ‘selective smoothing’ according to [2], so
that at regions of high gradient (close to an edge) the smoothing is low, while at constant
regions the smoothing is high. It is possible to replace the 1/|V¢| with more sophisticated
dynamic edge enhancers which take us to other kinds of algorithms [3].

In cases where clean edges are given, yet the image itself is very noisy, it is possible to
use the edges information for selecting the smoothing regions. A mask of weights is built
from the initial given edges, and then used to control the smoothing process so that each
level is propagating by

C = Wi, y)/i./\7,

_ 1 :
where W(x,y) = aiven clean edges of 1(z,y) is the control mask.

The same motivation from the above Fuclidean case direct us towards the construction of
an affine invariant image denoising algorithm. Define a potential function f : R* x [0,7") —

R,
[z, 1) = F(IGAT) 0 ¢(1))),

where () : Rt — IR is a decreasing function. Then, the invariant denoising procedure is
performed via

oy = f(xv Y, t)(¢?g¢yy — 2050y Py + ¢12/¢M)1/3 given 45(0) = ](:1:, y)v (6)

30ne should be careful in dealing with the fact that the gradient may vanish (|[Vé| = 0). However, here
we give the total variation approach only as a motivation.




according to which, each level set of the function ¢ is evolving by
Ci = f(xv yvt)/il/?)-/\?' (7)

Selecting a static inverse edge enhancer function f(x,y,t) = f(x,y,0) = F(|G(AT)o ¢(0)]),
Equation (7) becomes exactly the geometric heat equation C; = Cjs; of the ‘weighted equi-
affine arclength’:

ds = g(C)|(Cy,Cp) |1/3dp

where g(x,y) = 1/1/f(x,y), and since f is affine invariant, ds is also affine invariant. Using
the causality property, the arclength may be redefined dynamically along the propagation,
vielding the general invariant evolution, Equation (6).*

Taking AT — 0 in the affine gradient magnitude definition, results

G(0)0 $(0) = Jlim (G(AT)o 6(0) = Jim_ (W)
_ d¢(f)|

dr "
= #V6(0)]

= (626 — 2000y00y + 62002) - (8)

A version (without the 1/3 factor) of the above operation was found to be a useful tool as an
‘edge-curvature strength’ [20] (which was obviously found to be ‘relative affine invariant’),
or ‘stronger response of the curvature near edges’ [24], etc.

As an example, let f(x,y,t) = 1/|G(AT)o ¢(t)] and AT — 0, so that f(z,y,t) =

WW' Then Equation (6) becomes

¢ = sign(k),
and each level set of ¢ is propagating via

C, — sign(k) V.
Vol

which is a conditional offsetting procedure. Although affine invariant as well as conditionally
‘variation decreasing’, the above evolution is unstable near inflection points, and tends to
form shocks. Selecting AT > 0 results a smoothed version of the above example.

To summarize, using the geometric heat equation that is based on the right arclength,
we have constructed an affine invariant noise removal algorithm. The algorithm is invariant
in the sense that the result of the algorithm when applied to a given image is transferred
exactly to the result of applying the algorithm to the transformed image. It is useful for
cleaning noisy images with the ability to predict the geometry deformation that is caused
by the smoothing process.

*Such an affine invariant evolution of all the gray level sets simultaneously is invariant under the ‘projec-
tion invariance’ assumption as presented in [2].



In [8] the arclength and curvature for the projective and its general subgroups were
introduced. In the following section, simple arclength for the linear affine group are used
to define the corresponding heat equation. Here, we add one point to the affine group. In
practice, we deal with shape descriptors in which there exist one anchor point to simplify
the arclength definition. This arclength is referred to as semi-differential invariant in [6, 26].
By ‘simple arclength’ we refer to an invariant arclength that is defined by, at most, second
order derivatives of the curve.

5 Linear-Equi-Affine Arclength and Evolution

In [10, 27] the authors argue that Equation (4), leads towards the geometric heat evolution
equation of any given metric which is given by

Ct = CTT7

where r is the arclength defined for the specific transformation group. Simulating these
evolution equations it is enough to track only the normal component of the evolution velocity,
so that geometrically the above equation may be written as®

—, —,

Ct - <CTT,N>N.

This way it is possible [34] to reformulate the affine heat equation C; = Cy; into its geometric
equivalent C; = &'2N. In [27] it was also shown that for the similarity group the inverse
geometric heat equation, given by

1—)
Ct:—_N,
K

is invariant. Yet it can be applied only to convex shapes.

In this section we introduce an invariant evolution of the affine group with one given
point (e.g. given origin, or any other point). Using the same argument as for the equi-affine
arclength, that is areas are invariant under the affine transformation, let the linear affine
arclength be given by [6, 26]

w= [1(¢.C,)ldp

See Figure 2. As may be easily verified (following the same steps as the proof of Lemma 2
in the following section) this is an intrinsic measure that does not depend on the parameter,
and therefore equivalent to

w= [le.T)dv,

where v is the Fuclidean arclength as before.

5The Eulerian formulation of C; = (Crr,./\?)./\? is ¢ = (Cpr, V@), see Section 7.
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Figure 2: For w = linear affine arclength, the area |(C,C,)| = 1.

The area of a closed shape [21] is given by

1 -
A = ﬂ{(c,f)dv

= L fe M.

Therefore, the arclength (as for the equi-affine one) corresponds to an area, and thus
invariant. An arclength element is given by

dw = |(C,T)|dv

= |(C,N)|dv.
Thus,
cw_cv@_cv Lo T,
s (C, A (C,A)]
and

Jw
1 9%
= &N = + 7
(|<67N>|) Ow?
1 —,
= kN + tangential component.
(C.N)?
The corresponding linear affine heat equation given by its geometric Euclidean version is
1 —
C, = ——rN. 9
NG v

11



Observe that when considering closed curves, the interesting cases are those in which
the anchor point is located inside the curve and no tangent points are formed. In other
cases, it is possible to locate the smallest triangle that is formed by two tangent points (it
is easy to prove that there exist at least two) and the anchor point. This triangle is then
mapped into a given reference triangle for every data image, and the same mapping is used to
eliminate the transformation effect, see Figure 3. So, considering only the ‘interesting’ cases,
the geometric heat equation (9) is not influenced by singular values since tangent points are
excluded. Equation (9) is given here as an example for using the second derivative according
to the invariant arclength. It is not claimed here to perform better than the affine heat
equation. However, observe that the embedding property is preserved under this flow by
the fact that when two embedded curves touch at a point, their normals coincide, and the
curvature flow (normalized by a constant) takes over.

Figure 3: There are three possible locations for the given point: Outside the shape, in which
C(p) is tangent at least twice to the boundary of the shape. Inside a shape which consists
of a concave part that leads again to at least two tangent points. Inside a shape with no
tangents at all, which is the interesting case from our point of view.

6 Arclength Definition and Intrinsic Functionals

In this section, we show that by ‘weighing’ the affine arclength, the intrinsic property of the
arclength does not break. Then, the relation between the affine curvature and the Euclidean
one is used to generate a simple non trivial differential shape descriptor. We refer to such
as affine invariant signatures.

Define a ‘non-edge’ penalty function g : R* — R*, g(z,y) = F(G(AT) o I(x,y)) that F

being a one to one mapping makes ¢ also affine invariant. For example, let

(2,) = !
RO ZNGAT) o Iz, )|

(10)

The function ¢ maps edges to low positive values and constant regions to high positive values.
Actually any decreasing positive function ¢g of an affine gradient magnitude is valid for the
rest of our discussion.

12



Without breaking the invariance property, we integrate g along the affine arclength. Let

L(Cv Cp, Cpp) = g(C(p))(Cp, Cpp)l/?)-

We will consider the following functional as the ‘weighted affine arclength’
s[c] = /L(c,cp,cpp)dp. (11)

Let us prove that (11) is free of parameterization [22] (i.e. an intrinsic integral). We note
that this is only an example, and the intrinsic property should hold for any arclength.

Lemma 2 The functional
p1
[ (€€, iy
depends only on the curve in the xy-plane® defined by the parametric equation x = x(p),

y = y(p), and not on the choice of the parametric representation of the curve.

Proof. We show that if we go from p to a new parameter r by setting p = p(r), where
dp/dr > 0 and the interval [pg, p1] goes into [rg,r], then

/Tl g(C(r)(Cy, Cpp) P = /

To Po

P1

9(C(p))(Cy, Cpp)l/Sdp-

Since we have v, = y,pr, Yrr = YppD? + Ypprr and similarly x, = x,p,, T = Tppp? + Tpprr, it
follows that

[ e, e

70

1 1/3
= / 9(C(r)) (2ope(Ypuh? + Yobrr) — Yo (T + 2ypre)) | dr

To
1/3

- /Tl 9(C(r)) (xpypppf - ypxpppf) dr

70

7’1 dp
= [ €0 ot = sy L =

0

P1

9(C(p))(Cp, Cpp)l/?)dp-

0

Lemma 2 guarantees that the functional (11) is free of the parameterization of the curve.
In fact, in the general case of selecting an arclength for a given transformation group, the
integral must be intrinsic! It should have the general form of dl = [geometric quantity] x
C,|dp, where ‘geometric quantity’ is 1 for the Euclidean group, |k(p)|'/® for the equi-affine
group, |k(p)| for the similarity, |(C(p), ’f(p))| for the linear-affine, etc..

Lemma 2 can be used to find the relation between the affine curvature g and the curvature
derivatives k,k, and k,,, by minimizing the affine arclength, using the resulting Euler-
Lagrange equations, and the relations presented in Section 2. The same relation could be
found in other ways as well [11, 26, 34].

Soften referred to as the ‘orbit’, ‘trace’ or ‘image’ of the curve C(p)

13



The computation of the affine curvature p involves derivatives of the forth order, and
may be computed as presented in [11]. Expressing the affine curvature p as a function of
the Euclidean curvature s (see [26, 34]), yields

= K43 §/<;_8/3/<;12] + l/43_5/3/431”]. (12)
9 3
In the following section and in the appendix, we show how to approximate the affine curvature
based on Equation (12), and use it to construct invariant signatures. This approximation will
use up to second order derivatives of the the implicit representation of the object boundary.
Which means a direct operation on the data image, before any thresholding is performed.

7 Implementation Considerations

Before thresholding, the object boundary is given in an implicit representation, e.g. the
boundary is defined as a given gray level set of the data image: I(x,y) =Threshold, see [23].
For all of our implementations of curve evolution as well as the computation of the affine
and Euclidean curvatures this implicit level set representation is used. Similarly, implicit
representation of planar curves will be used for the curve evolution implementations. We
refer the interested reader to the growing literature on level set motion for curve and surface
evolution, starting with the Osher Sethian classical paper [31].

The basic idea is to map the ‘time’ dependent coordinates (p,t) to fixed coordinates
(x,y,t) by embedding the propagating contour in a higher dimensional function. The level
sets of the function ¢(x,y,t): R? x [0,T) — R propagating according to

¢t = oz|V</$|,
where |[Vo| = /@2 + ¢Z, are evolving according to
Ct = Oé/\7.

This result may be easily obtained form N = {=yu,2,} = V¢/|Vg|, and the chain rule
b1 = (V6,C) = (V) = a|V4.

While the embedding is preserved, as was proven for curvature based evolutions [18], there
is no need to control the propagation of the higher dimensional function ¢. The embedding is
preserved for morphology evolutions as well (which require additional ‘entropy condition’).
However, in other cases it is needed to supervise the level sets behavior so that the zero
set evolution is the dominant one, and the rest are only swept by its influence. For this
purpose some numerical methods were developed like the narrow strip introduced in [1, 15],
re-initialization of the function every iteration [39], expansion of the zero set velocity to the
whole image domain [25], etc.

In the appendix we introduce formulas expressing &, k,, and &,, as a function of the = and
y derivatives of ¢ (up to the fourth order for £,,). Then to achieve practical formulas, we
assume that the implicit representation along the boundary is given by polynomial patches of
up to second order. This assumption holds only after affine geometric smoothing is performed

14



so that sharp edges are smoothed and the approximation is valid. The affine curvature as
given in Equation (12) is approximated by (see Appendix A)

~ = ¢xx¢yy_ iy
T (600 — 20060y 0y + 626,

An important observation is that i is an affine invariant quantity when considering the
affine transformation of the gray level image (i.e. under the projection invariance assump-
tion). It is actually the ratio of the Hessian H = ¢,p0yy — ¢2, and (G(0) o $)? that was
defined in Equation (8). Defining J = (G(0) o 45)3, it is claimed in [29] that H and J are
the two basic independent affine invariant descriptors, and that all second order differential
invariants are functions of H and .J, see [28§]

From above observation it follows that:

(13)

Corollary 1 i = H/J*? is affine invariant under the projection invariance assumption of
the gray levels, namely ¢(x,y) = ¢plax+by+c,de+ey+f), and a second order approximation
of the affine curvature of the level sets of ¢(x,y).

7.1 Relation to Conics

In the Fuclidean case, we know that the curvature of a point along a curve is equivalent to
that of the osculating circle at that point. Where the curvature of a circle is obviously a
constant. In a very recent paper [12], it was noted that the affine curvature at a given point
along a curve is equivalent to the affine curvature of the osculating conic to the curve at that
point. Where the affine curvature of a conic is constant. The authors of [12] also presented
the following theorem:

Theorem 1 The affine curvature of a nondegenerate conic defined implicitly by
az? + 2bxy + cy2 + 2dx 4+ 2ey 4+ f =0,

is given as a function of two equi-affine invariants of the conic S and T, by

S
N:ma
where
b a b d
S =ac—b =det| 41 T=det| b ¢ e
¢ d e f

The above result may be obtained directly from Corollary 1 above. While in Corollary 1
the gray level image is assumed to locally have conic level sets, Theorem 1 considers a single
conic curve. [.e. considering the level sets ¢(x,y) =constant, with the additional assumption
d(x,y) = ax® 4 2bxy + cy® 4+ 2dx + 2ey + [, the affine curvature of the level sets curves is
given by Fquation 13 which may be easily checked to be equivalent to the result of the above
theorem.
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8 Examples

The first example, Figure 4, presents the evolution of a shape according to the affine ge-
ometric heat equation C; = Cg,, or in its implicit form (after eliminating the tangential
component) ¢; = (Gpz®y — 20200y by + ¢2 )2, Next, Figure 5 demonstrates the power of
the proposed framework in tracking the convex hull of objects by using the ‘weighted affine’
heat equation.

Affine invariant signatures fi(s), and G(AT)o I(x,y) along the (smoothed) boundary

G(s) = G(AT) 0 ¢(0)|saty=0  where  &(0) = I(z,y),

as a function of the affine arclength, are computed by the proposed methods. It is shown in
Figure 6 that the signatures of the same object under different affine transformations remain
almost the same. The gradient magnitude G(s) along the boundary of the smoothed object,
(the zero level set of ¢(AT')) is a robust signature, yet requires the projection invariance of the
gray levels. While fi(s), approximating the affine curvature, is free of any assumptions on the
the gray levels in the interior and exterior of the object in the image. The signature functions
are presented without any smoothing or filtering. For closed curves, Fourier descriptors of the
periodic signature function may be the right choice for classification, while for recognition and
classification of objects under partial occlusion, local matching methods should be applied.
Another possibility is to construct a ‘signature image’ similar to the one introduced in [9].
The idea is to ‘collect’ the signatures along the scale parameter ¢ into a family of ji(s,?) or
G(s,t). This results in robust signatures, however, more consuming from the matching point
of view, since now the matching problem is performed in a higher dimension. Observe that
the signatures of the two images are very similar, while obviously x(v) is different. The affine
arclength was computed by using the implicit representation of the boundary in the gray
level image (see Appendix A). The Euclidean curvature at each pixel grid is interpolated at
the grid intersection points with the boundary of the object. Then ds is approximated by
As = &3 Av, where Av is the length of the line connecting the zero crossings of the object
boundary with a given pixel cell (a square defined by {(¢,7), (¢,7+1), (¢ 4+1,5+1),(¢+1,5)}.)
The Euclidean curvature is computed using its implicit representation £ =div(V¢/|V¢|), and
interpolated at the intersection points of the boundary and the pixel grid lines.

Denoising algorithm results are presented in Figure 7. The ‘dynamic weighted affine’
heat equation, is an affine selective smoothing operator. It is used to efficiently remove
noise perturbations from the image, while preserving the edges. It is possible to predict the
geometric deformation caused by this invariant selective smoothing operation, by applying
the same procedure to a reference image which is an affine transformation of the data image,
see Figure 8.

9 Concluding Remarks

In this paper the affine invariant gradient magnitude along the affine scale space was in-
troduced and used to construct image denoising algorithms and shape invariant signature
functions. The geometric heat equation of the ‘affine weighted arclength’ that integrates the
affine edges and the affine arclength from ‘Affine Differential Geometry’ [11] was shown to
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be an invariant selective smoothing procedure, resulting in the image denoising algorithm
when the ‘dynamic affine weighted arclength’ is used.

The forth order derivatives and the non-linear nature of the calculations of the geometrical
properties, make the computation of the affine curvature signature a complicated task. We
have shown that it is possible to reduce this complexity by locally approximating the implicit
representation of the boundary contour as a second order polynomial function. Although
such an approximation is valid only at smooth regions of the image, it is possible to treat
object boundaries as such, after affine smoothing is applied to the image. Moreover, that
approximation is invariant under the projection invariance assumption.

A simple differential signature was obtained directly from the affine scale space, under
the projection invariance assumption. It was shown to result a robust invariant non trivial
differential signatures. In most cases, the fact that the object includes non-homogeneous
regions helps in making these signatures ‘more interesting’.

We conclude by a table presenting the arclength and the geometric heat equations for
some of the transformation groups we dealt with. The geometric heat equations may be used
for generating the invariant signatures in the same manner we did for the equi-affine group.

| Group Arclength L(p) | Geom. Heat Eq. ||

Fuclidean <Cp,Cp>1/2 =1-|C,| C, = kN
Weighted Euclidean 9(C)(C,,C, >1/2 C, = g%./\?
Equi-Affine (€, = TIC, =
Weighted Affine g(C)(Cp, Cop) |2 = g(O)|&|'PIC,| | C; = yel KN
Similarity ! =1kl Ci = %/V
Linear-Equi-Affine 1(C.C,)| = (C, T)|C,| C = (C})2./\7
Weighted Linear-Equi-Affine  ¢(C)|(C,C,)| = ¢(C )|(C,71)||Cp| C, = g2(CH,/f)2A7
Linear Affine I((CC;TCCS;;)l = Tll 1C, | Ci = %FM

fedst = g7 o = e
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Appendix A

Here the curvature s of the planar curve C = ¢~ !(¢), and its first and second derivatives
(ky and k,,) are computed as a function of ¢. We use the fact that along the level sets C
of ¢, the function does not change its values, i.e. 9"¢/dv™ = 0, for any n. Particularly, for
n = 2,3,4. From this, and the knowledge of the geometrical properties of C,,C,,,C,,, and
Covuw, We compute (using Mathematica algebraic calculations):

2¢x¢xy ¢y - ¢l’l’¢:[2/ - ¢i¢yy
(62 + 3)°/2
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Although impressive in length, the above expressions are too long for practical imple-
mentation. Moreover, dealing with pixel based images, the large support required for the

(66507, 0y — 3010wy by + 30, Gury®y — 907 brobuy®y + 36207, 0,
— 02 u0a s — 6002, O — BOL by DS + Bbubray )

305000y by — Growdy — 3G2uybyy + 365 bundydyy + 902 PuyO2dyy
—3¢2ua by byy — 3030y by, + Gotyyy + ey byy)/ (87 + 0, )°

(249507, 0y — 240Dy by by + 40, Suyyy Py — 685 brayy Py + 3667 Graybuy )
— 1204 Gra @iy Or + 1800 uooyy @2 + 407 Sroay by

—2462 PuwGary By + 600262, boy 0y — 1662 Dun0duy sy — 961G, 6
120 Guy Guyy Py + 8D, Payyy by — 150500, 0y + 1003 Gr0brraty — Gybravad)
1202 gy 6L+ 1263010y Guy O + 1320261002, 61 + 662D Gy b1

802 Prway @) — 1802 Pupbray®y — 486,02, Guy by

1202 e Gy @3 + 246562, + 3602 by Guyy 5 + 465 Dryyy 8

+30%,05 + 100000000000y — 205 Gra0a®y — 602 Paryy Ol

~240 3 Gy Gy — 1205002, 05 — 12000000uyy 85 + 405 Gunay by + 6GusGuny )
40w buy by — Grava®y — 126502, Gyy + 6L buyybyy — 1205 Gunydydyy
3605 G Gy Gy Gy — 1802202y, + 65Punad2byy + 1320202, 020y,

— 1865 Guyy 02y + 662 Gray @by — 1446500000y 620y,

+3302 02,0y byy + 205 braebybyy — T20505,0ybyy — 2465 Puyy Gy Duy
1862 Pray O byy + 3600 bua byl dyy — 302, 850yy — 400Puna®ydyy

—3¢8 002, — 4803 duy by 02, + 33610, 020%, + 60626,y 6002,

— 1802 huedydry, + 30500, — 15650200, + 401 duybyyy — 405 Gredydyyy
—12¢i¢xy¢@2,¢yyy + 2¢i¢mq§§¢yyy - 16¢i¢m¢3¢yyy + 6¢925¢m¢;5/¢yyy
+10¢2¢y¢yy¢yyy + 10¢i¢3¢yy ¢yyy - Cbi(byyyy - 2¢§¢§¢yyyy - (bi(b;(byyyy)/
(62 + ¢2)°/2

computation of the high order derivatives leads to inaccurate and noise sensitive operations
around the edges.

Assuming that the implicit function ¢ is smooth (can be achieved by affine smoothing)
and therefore can be locally approximated by ax? + bxy + cy? + dz + ey + f. The third and
fourth order derivatives of ¢ may thus be neglected. Using this approximation considerably
simplify the scheme, and reduces the local support to a 3 x 3 pixel mask, with truncation
error of O(Ax?) (where Az is the distance between neighboring pixels).

Thereby, taking all third and forth partial derivatives of ¢ (with respect to @ and y) to
be zero, the affine curvature p is simplified into

S A Busbus = &2

0653 3558 N T (60002 — 20,00y By + $20yy) 2P
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Figure 4: Affine curve evolution C; = KBN (zero sets), and b steps of the implicit evolution
b1 = (91 0ra — 2000y Guy + $2d,, )%, starting at the upper middle and ending at the lower

right frame.

44 @

Figure 5: Affine invariant procedure for locating the convex hull o/f a shape: Evolution
Hl 3

2 N, and four steps of
the implicit implementation evolution, ¢(t) at ¢t = 0,¢;, s, 00. The edge enhancer g(x,y) =
|G(AT) o I(x,y)], is affine invariant, so that the final result as well as every step along the
evolution is invariant (under the equi-affine transformation)

according to the weighted equi-affine geometric heat equation: C; =
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Figure 6: Invariant signatures under affine transformation: On the second and forth rows,
from left to right are x(v), u(s) and G(AT) o I(x,y) samples along the zero level set (as a
function of the affine arclength): G(s). On the first and third rows, from left to right are the

shapes I(x,y), ¢(AT), and G(AT) o I(x,y) respectively.
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Figure 7: Image denoising algorithm results based on the weighted affine heat equation:
From left to right: The original image I, the noisy image I = I + n, and the image after
denoising I. The noise was selected to be a Gaussian white noise, with SNR = 9 for the
face and SNR = 15 for the tiger image. The results for the tiger are obtained after 12
iterations with dt = 0.005, and 4 smoothing iterations (performed every two iterations) for
the computation of the edge enhancer with AT = 0.05. For the face we have chosen 120
main iterations and 6 iterations for the enhancer (every two main iterations).

21



0.

@

T
UU G(s)

E]EJ

Na e f\ NN ]
NEAY v Uy Y

G(s) G(s)

Figure 8: The smoothing invariant effect on the signature G(s). The two upper raws present
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the signatures obtained after smoothing with the Rudin-Osher-Fatemi algorithm. The lower
raws present the signature after smoothing with the affine invariant selective smoothing
procedures. Observe that the invariant smoothing better preserves the relation between the
signatures.
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