
Image Processing via the Beltrami Operator ?R. Kimmel,1 R. Malladi,1 and N. Sochen21 Lawrence Berkeley National Laboratory University of California, Berkeley,CA 94720.2 Electrical Engineering Dept. Technion, Haifa 32000, Israel.Abstract. We present a framework for enhancing images while pre-serving either the edge or the orientation-dependent texture informa-tion present in them. We do this by treating images as manifolds in afeature-space. This geometrical interpretation leads to a natural way forgrey level, color, movies, volumetric medical data, and color-texture im-age enhancement. Following this, we invoke the Polyakov action fromhigh-energy physics, and develop a minimization procedure through ageometric ow. This ow, based on manifold volume minimization yieldsa natural enhancement procedure. We apply this framework to edge-preserving denoising of grey value and color images, for volumetric med-ical data, and orientation-preserving ows for grey level and color textureimages.1 IntroductionIn this paper, we present a general framework for processing images of varioustypes like grey scale, color, and those that have orientation-dependent informa-tion such as textures. We do this by treating images as embedded maps thatow towards minimal surfaces. In other words, our view on images is that theyare 2D or 3D manifolds embedded in higher dimensional space; for example agrey-scale image is a surface in (x; y; I) space and a color image is a surfaceembedded in a 5D space, i.e. the (x; y; Ir ; Ig; Ib). We then use the Polyakov ac-tion, that is a general way of measuring area for a manifold embedded in a givenspace. The edge-preserving enhancement procedure is a result of minimizing this\action" and is expressed via a geometric ow. Our framework has the followingproperties: (1) It is the most general way of writing the geometrical scale-spaceand enhancement algorithms for grey-scale, color, volumetric, time-varying, andtexture images, (2) it uni�es many existing partial di�erential equation basedschemes for image processing, and (3) the schemes are edge-preserving and hencesuitable for segmentation tasks.Texture plays an important role in the understanding process of many images,specially those that involve natural scenes. Preserving the orientation informa-tion while di�using a given texture image is important in certain cases, say indenoising a �ngerprint image. We imagine a procedure that preserves domains? This work is supported in part by the Applied Mathematics Subprogram of the O�ceof Energy Research under DE-AC03-76SFOOO98, ONR grant under NOOO14-96-1-0381, and in part by the National Science Foundation under grant PHY-90-21139.



of constant/homogeneous texture, enhances the texture in each domain, andthereby enhances the boundaries between neighboring domains with di�erenttextures. Weickert in [23, 24] presents a coherence enhancing ow based on astructure tensor idea. In Section 4 we �rst link the coherence enhancing owto the Beltrami geometric framework. Then we extend the method by invertingthe di�usion direction across the edge for better enhancement and sharpeningresults.2 Images as Embedded Maps that ow toward HarmonicMapsOur geometric framework �nds a seamless link between the L1 ([19, 3] TV and itsvariants) and the L2 norms (used in [13] and its variants) based on the geometryof the image and its interpretation as a surface2. The aspect ratio between thegray level and the xy plane, used as a parameter, enables us to switch betweenthe two commonly used norms; see [22] for details.In this work, we also propose a ow in a rich feature space which is di�erentfrom the image space. Other ows in similar feature spaces were recently pro-posed in [20, 18, 5, 21, 25]; see also [23, 24] for orientation preserving ows. Allthese approaches begin with a at metric [7] that does not yield a meaningfulminimization process when going to more than one channel3. The main di�erencebetween these schemes and the one we propose is the geometric interpretation ofthe information as a manifold owing so as to minimize its volume. Our geomet-ric perspective of a color image as a surface embedded in a higher dimensionalspace enabled us to de�ne a simple and natural coupling in the multi-channelcolor space. Other schemes have also considered image as a surface [2, 8, 26, 12],some even used the image information to build a Riemannian metric for segmen-tation [4]. However, these methods were not generalized to feature space or anyco-dimension higher than one. We now describe the details of our framework.2.1 The MetricThe basic concept of Riemannian di�erential geometry is distance. Let us startwith the mapX : � ! IR3, where � is a 2D manifold.We denote the local coor-dinates on the two dimensional manifold � by (�1; �2). The map X is explicitlygiven by (X1(�1; �2); X2(�1; �2); X3(�1; �2)). Since the local coordinates �i arecurvilinear, and not orthogonal in general, the distance square between two closepoints on �, p = (�1; �2) and p+ (d�1; d�2) is not ds2 = d�21 + d�22. In fact, thesquared distance is given by a positive de�nite symmetric bilinear form calledthe metric, whose components we denote by g��(�1; �2), i.e.ds2 = g��d��d�� = g11(d�1)2 + 2g12d�1d�2 + g22(d�2)2; (1)2 TV (Total Variation) schemes are based on minimizing the L1 norm, namely R jrIj,the L2 norm minimizes R jrIj2, while the area of the gray level image surface isgiven by R p1 + jrIj2.3 This at metric is called `structure tensor' in [23, 24].



where we used Einstein summation convention in the second equality.2.2 Polyakov ActionLet us briey review our framework for non-linear di�usion in computer vision.The equations are derived by a minimization problem from an action functional.The functional in question depends on both the image manifold and the embed-ding space. Denote by (�; g) the image manifold and its metric and by (M;h)the space-feature manifold and its metric, then the map X : � ! M has thefollowing weightS[Xi; g��; hij] = Z dm�pgg��@�Xi@�Xjhij(X); (2)where m is the dimension of �, g is the determinant of the image metric, (g��)is the inverse of the image metric, the range of indices is �; � = 1; : : : ; dim�,and i; j = 1; : : : ; dimM , and (hij) is the metric of the embedding space. Thisfunctional, for m = 2, was �rst proposed by Polyakov [16] in the context of highenergy physics.Given the above functional, we have to choose the minimization. We maychoose for example to minimize with respect to the embedding alone. In thiscase the metric (g��) is treated as a parameter and may be �xed by hand.Another choice is to vary only with respect to the feature coordinates of theembedding space, or we may choose to vary the image metric as well. In [22]we show how di�erent choices yield di�erent ows. Some ows are recognized asexisting methods, other choices are new and will be described below.Using standard methods in variational calculus (see [22]), the Euler-Lagrangeequations with respect to the embedding are:Xit = � 12pghil �S�Xl = 1pg@�(pgg��@�Xi): (3)The operator that is acting on Xi is the natural generalization of the Lapla-cian from at spaces to manifolds and is called the second order di�erentialparameter of Beltrami [10], or for short Beltrami operator, and is denoted by�g. For the grey scale image case,the ow It = �gI, is edge-preserving. Thegeneralization to any manifold embedded with arbitrary co-dimension is givenby using Eq. 3 for all the embedding coordinates and the induced metric; see[22] for more details. In what follows we apply this operator to construct anorientation-preserving ow on texture images. But �rst let us look at the colorimage case more closely.3 ColorWe apply the Beltrami ow to the 5 dimensional space-feature needed in colorimages. The embedding space-feature space is taken to be Euclidean with Carte-sian coordinate system. The image, thus, is the map f : � ! IR5 where � is a



two dimensional manifold. Explicitly the map isf = �X1(�1; �2); X2(�1; �2); Ir(�1; �2); Ig(�1; �2); Ib(�1; �2)� :Note that there are obvious better selections to color space de�nition rather thanthe RGB at space.We minimize our action (2) with respect to (Ir ; Ig; Ib). For convenience wedenote below (r; g; b) by (1; 2; 3), or in general notation i. The induced metric isgiven in this case as follows:g11 = 1 + (I1x)2 + (I2x)2 + (I3x)2;g12 = I1xI1y + I2xI2y + I3xI3y ;g22 = 1 + (I1y )2 + (I2y )2 + (I3y )2: (4)The action functional under this choice of the metric is the Euler functionalS = R d2�pg. It is simply the area of the image surface. Minimization withrespect to Ii gives the Beltrami owIit = 1pg@�(pgg��@�Ii); (5)which is a ow towards a minimal surface that preserves edges. As an example,we show the result of color denoising in Fig. 1.4 The Metric as a Structure TensorIn [9, 11], Gabor considered an image enhancement procedure based on a singlesmall time step along a directional ow. It is based on the anisotropic ow viathe inverse second directional derivative in the `edge' direction (rI direction)and the geometric heat equation (second derivative in the direction parallel tothe edge). The same idea of steering the di�usion direction motivated manyrecent works4. Cottet and Germain [6] used a smoothed version of the imageto direct the di�usion, while Weickert [23] smoothed also the structure tensorrIrIT and then manipulated its eigenvalues to steer the smoothing direction.Eliminating one eigenvalue from a structure tensor PirIirIiT , was used in in[21], in which the tensors are not necessarily positive de�nite. However, in [24],the eigenvalues are manipulated to result in a positive de�nite tensor.Motivated by all of these results we will �rst link the anisotropic orientationdi�usion (coherence enhancement) to the geometric framework, and then invertthe di�usion direction across the edge. Let us �rst show that the di�usion direc-tions can be deduced from the smoothed metric coe�cients g�� and may thusbe included within the Beltrami framework under the right choice of directionaldi�usion coe�cients.The induced metric (g��) is a symmetric uniformly positive de�nite matrixthat captures the geometry of the image surface. Let �1 and �2 be the largest and4 See [17] for many interesting extensions and applications of the locally isotropic ow.



Fig. 1. Color results: The top row shows noisy image on the left and the denoisedone on the right. To better depict the edge-preserving property of our method, in thebottom row we render as surfaces the three color channels of both the noisy and thereconstructed image.the smallest eigenvalues of (g��), respectively. Since (g��) is a symmetric positivematrix its corresponding eigenvectors u1 and u2 can be chosen orthonormal. LetU � (u1ju2), and � � ��1 00 �2�, then we readily have the equality (g��) =U�UT . Note also that(g��) � (g��)�1 = U��1UT = U �1=�1 00 1=�2�UT ; (6)and that g � det(g��) = �1�2.We will use the image metric in its natural geometric interpretation, i.e.as a structure tensor. The coherence enhancement Beltrami ow It = �ĝI forcolor-texture images is then given as follows:1. Compute the metric coe�cients g��. For the N channel case (for colorN = 3)we have (see Eq. (4)) g�� = ��� +PNk=1 Ik�Ik� .



2. Di�use the g�� coe�cients by convolving with a Gaussian of variance �,thereby ~g�� = G� � g�� . For 2D images G� = e�(x2+y2)=�2 .3. Change the eigenvalues, �1; �2, �1 > �2, of (~g��) so that �1 = ��1 and�2 = �, for some given positive scalar �� 1. This yields a new metric ĝ��that is given by: (ĝ��) = ~U ���1 00 �� ~UT = ~U�� ~UT .4. Evolve the k-th channel via Beltrami ow, that by the selection ĝ � det(ĝ��) =�1�2 = ��1� = 1 now readsIkt = �ĝIk � 1pĝ @�pĝĝ��@�Ik = @�ĝ��@�Ik= div� ~U �� 00 ��1� ~UTrIk� = div� ~U�� ~UTrIk� : (7)Note again that both for gray level and color images the above ow is simi-lar to the coherence-enhancing anisotropic di�usion with the important prop-erty of a uniformly positive de�nite di�usion tensor. For color images, (g��) =I +PirIirIiT , where I is the identity matrix, and Ii are the color channels((Ir ; Ig; Ib) � (I1; I2; I3)). In this case all that is done is the identity addedto the structure tensors rIrIT for gray and PirIirIiT for color. This ad-dition does not change the eigenvectors and thus the above ow is equivalentto Weickert schemes [23, 24]. Next, we introduce a new inverse/direct di�usionmodel.4.1 Beyond a Metric: Inverse Di�usion Across the EdgeLet us take one step further, and exit our `metric' framework by de�ning (g��)to be a non-singular symmetric matrix with one positive and one negative eigen-values. That is, instead of a small di�usion we introduce a controlled inversedi�usion across the edge. Here we extend Gabor's idea [9, 11] of inverting thedi�usion along the gradient direction.Inverting the heat equation is an inherently unstable process. However, ifwe keep smoothing the metric coe�cients, and apply the heat operator in theperpendicular direction we get a coherence-enhancing ow with sharper edgesthat is stable for a short duration of time. The idea is simply to change the signof one of the modi�ed eigenvalues in the algorithm described in the previoussubsection. In other words, in step 3 of the previous scheme we change theeigenvalues of (~g��) such that the largest eigenvalue �1 is now �1 = ���1 and�2 = �, for some given positive scalar � < 1.For the gray level case with � = 0 it simpli�es to highly unstable inverseheat equation. However, as � increases the smoothing along the edges becomesfundamental and the scheme is similar in its spirit to that of [9]; also see [14, 1].4.2 Color Orientation-Enhancing ResultsIn [23] the coherence enhancement ow was applied on several color masterpiecesby van Gogh, which resulted in a `coherence enhancement of expressionism'. In



the next example we attempt to `enhance and sharpen impressionism'.We apply�rst the anisotropic oriented di�usion ow and then the new oriented di�usionalong/inverse di�usion across the edge on a color painting by Claude Monet, seeFig. 2.
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