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Abstract

Isometric surfaces share the same geometric structure also
known as the ‘first fundamental form’. For example, all pos-
sible bending of a given surface, that include all length pre-
serving deformations without tearing or stretching the sur-
face, are considered to be isometric. We present a method
to construct abending invariantcanonical form for such
surfaces. This invariant representation is an embedding
of the intrinsic geodesic structure of the surface in a fi-
nite dimensional Euclidean space, in which geodesic dis-
tances are approximated by Euclidean ones. The canonical
representation is constructed by first measuring the inter
geodesic distances between points on the surfaces. Next,
multi-dimensional scaling (MDS) techniques are applied to
extract a finite dimensional flat space in which geodesic dis-
tances are represented as Euclidean ones. The geodesic
distances are measured by the efficient ‘fast marching on
triangulated domains’ numerical algorithm. Applying this
transform to various objects with similar geodesic struc-
tures (similar first fundamental form) maps isometric ob-
jects into similar canonical forms. We show a simple sur-
face classification method based on the bending invariant
canonical form.

1. Introduction
The problem of finding a full or partial match between sur-
faces attracted the attention of computer vision and pattern
recognition researchers during the past decade. Most of the
existing techniques, like Potmeisl [1], address rigid object
matching by heuristic algorithms that search for the trans-
formation that maximizes shape similarities while registrat-
ing the two objects. Besl [2, 3] proposes metrics for mea-
suring matches between curves and surfaces. Faugeras [4],
and Faugeras and Hebert [5] usedquaternionsto trans-
form the 3D rotation problem into a four-dimensional min-
imum eigenvalue problem, while the translation is com-
puted using a standard least-squares technique. Lavallee
and Szeliski [6] solve the 2D/3D matching problem by a
least-squares minimization of the ‘energy’ required to align

the projection lines of the camera contours tangent to the
object. Barequet and Sharir [7] associate afootprint for
each surface point in order to extract separately the rota-
tion and translation components of the desired rigid trans-
formation. A survey of these techniques can be found in [7]
and [8].

In this paper we propose a different solution to a dif-
ferent surface matching problem. While previous methods
dealt mostly with rigid transformations or rely on key points
and local or semi-differential invariant measures, here we
address the bending invariant problem by a transformation
that takes isometric surfaces to similar manifolds in a finite
dimensional flat Euclidean space. In the Euclidean space,
these manifolds can be compared using existing match-
ing techniques. Our method is based on two numerical
procedures. The first, is thefast marching on triangu-
lated domains[9], that efficiently calculates geodesic dis-
tances on triangulated curved surfaces. The second, is the
Multi-Dimensional Scaling (MDS) [10, 11, 12], that un-
covers the geometric structure of a set of data items from
a (dis)similarity information among them. The outline of
this paper is as follows: Section 2 is brief review of the
fast marching on triangulated domains algorithm. Section
3 presents the basic concepts of MDS and reviews various
MDS methods like theClassical, Least-Squares, and the
Fast MDS, that were tested and compared. Section 4 ex-
plains how these methods can be used to solve the matching
problem for isometric objects. Experimental results are pre-
sented in Section 5.

2. Fast Marching on Triangulated Do-
mains

The proposed technique matches between isometric sur-
faces, or in other words, surfaces for which the geodesic dis-
tances between corresponding surface points are the same.
Therefore, we base our method on the intrinsic geodesic
distances between surface points. We first compute the
geodesic distances between pairs of points on the surface.
The fast marching method, introduced by Sethian [13] is a



numerically consistent distance computation approach that
works on rectangular grids, see also Tsitsiklis [14] Eikonal
solver on rectangular grids for a related approach.It was
extended to triangulated domains by Kimmel and Sethian
in [9]. The basic idea is an efficient numerical approach that
solves the Eikonal equationjruj = 1, where at the source
points the distance is zero, namelyu(s) = 0. The solution
u is a distance function and its numerical approximation
is computed by a monotone update scheme that is proven
to converge to the ‘viscosity’ smooth solution. The idea
is to iteratively construct the distance function by patching
together small plans supported by neighboring grid points
with gradient magnitude that equals one. The distance func-
tion is constructed by starting from the sources point,s, and
propagating outwards. Applying the method to triangulated
domains requires a careful analysis of the update of one ver-
tex in a triangle, while theu values at the other vertices are
given. For further details we refer to [9].

The fast marching on triangulated domains method can
compute the geodesic distance between one vertex and the
rest of then surface vertices inO(n) operations. Re-
peating this computation for each vertex, we compute a
geodesic distance matrixD in O(n2) operations. Each
ij entry of D represents the square geodesic distance
between the vertexi and the vertexj, that is Æij =
GeodesicDistance(Vertexi;Vertexj), where[D]ij = Æ2ij .
Practically, in order to reduce the computational effort, we
select a sub-set of the surface vertices using a variation of
the technique proposed in [15]. Thereby, given a triangu-
lated surface, we apply the fast marching procedure for each
vertex in a subset of the vertices as a source point, and ob-
tain the geodesic distance matrix,D.

3. MDS
Multi-Dimensional Scaling (MDS) is a family of meth-
ods that maps measurements of similarity or dissimilarity
among pairs of feature items, into distances between fea-
ture points with given coordinates in a small-dimensional
Euclidean space. The graphical display of the (di)similarity
measurements provided by MDS enables the analyst to lit-
erally ‘look’ at the data and explore its geometric structure
visually. Most metrical MDS methods expect a set ofn

items and their pairwise (dis)similarities, and the desirable
dimensionality -m of the Euclidean embedding space.

The algorithm maps each item to a pointxi in anm di-
mensional Euclidean space IRm by minimization of, for ex-
ample, the stress function

Stress =

P
i<j wij(Æij � dij)

2

P
i<j Æ

2
ij

; (1)

whereÆij is the input dissimilarity measure between item
i andj, dij is the Euclidean distance between these items
in them-dimensional Euclidean space, andwij are some

weighting coefficients. Here, we use MDS in the follow-
ing way. As proximity values we use the squared geodesic
distance calculated by thefast marching on triangulated do-
mains.

Let us start with a simple example in which we set a-
priori m = 3. Given the dissimilarities matrix, an MDS
method yields coordinates,X , in IR3, for which the Eu-
clidean distances between the points in IR3 would be similar
to the geodesic distances between the corresponding sur-
face vertices. The Euclidean distance between each pair of
points inX would be as close as possible to the geodesic
distance between the corresponding points extracted from
the data, that in our case represent the geodesic distance on
the surface. Given the connectivity of the vertices as trian-
gles that represent the curved surface, we can connect the
corresponding points after the MDS flattening and obtain
a manifold that we refer to asbending invariant canonical
formof the surface.

The selection of IR3 was arbitrary in this example. In or-
der to select a ‘proper’ dimension,m, we define the ‘effec-
tive’ dimensionality of the problem to bem, if for a higher
dimension,m+1 the norm of the error is improved by less
thanp%. Where for example we usep � 5% in our exper-
iments. If we want to graphically view an invariant ‘canon-
ical form,’ the number of dimensions should be less than
four.

3.1. Classical MDS
Classical scaling was originated in the 1930’s when Young
et al. showed that given a matrix of distances between
points in an Euclidean space, one can extract coordinates
such that distances are preserved, see e.g. [11]. Let the
coordinates ofn points in a k dimensional Euclidean
space IRk be given byxr , (r = 1; ::::; n), wherexr =
[xr1; xr2; :::; xrk]

T . The Euclidean distance between ther-
th and thes-th points is given byd2rs = [xr�xs]

T [xr�xs].
Let the inner product matrix beB, where thers element
is given by [B]rs = brs = xTr xs. Given the squared
distances matrixD, the inner product matrix is given by
(see [10])B = � 1

2
JDJ , whereJ = I � 1

n
11T and

11�n = [1; 1; ::::; 1]: We also have thatB = XXT , where
X = [x1; :::xn]

T is then � k matrix of the coordinates.
The inner product matrixB is symmetric, positive semi-
definite and of rankk. Therefore,B hask non-negative
eigenvalues andn � k zero eigenvalues. The matrixB
can be expressed in terms of its spectral decomposition,
B = V �V T where�n�n = diag(�1; �2; :::; �k; 0::::; 0).
For convenience, the eigenvalues ofB are ordered such that
�1 � �2 � ::::�k � 0. Hence, the required coordinates are
given by using the non-zeros sub-matrix�k�k,

X = V �
1

2

k�k :

The classical scaling is considered to be an efficient al-



Obj/Dim m = 1 m = 2 m = 3 m = 4 m = 5

Torus 73.5 88.7 95.1 100 100
Human 53.45 87.3 100 100 100
Rabbit 81.1 92.9 98 100 100

Elephant 57.54 74.51 91.1 96.5 100

Table 1: Classical MDS - energy percentage of the firstm

eigenvalues.

gebraic approach to solve the MDS problems. It can be cal-
culated inO(n2), wheren is the number of feature points in
the given model. This is due to the fact that there is a need
to find only the firstm eigenvalues and the corresponding
eigenvectors, which can be computed by variations of the
‘power method’, see for example [12]. Instead of the stress
function (1), classical MDS approach minimizes the mea-
sure given by

E = kV � (�� e�) � V T k; (2)

where
e� = diag(�1; �2; :::; �m; 0:::0):
� = diag(�1; �2; :::; �m; ::; �k ; 0:::0);

andm � k:

An empirical analysis of the ‘effective’ dimensionality
of the problem is given in Table 1. It shows that selecting
three to five dimensions capture95% � 100% of the error
norm for typical surfaces in IR3. As can be easily extracted
form (2), the norm of the error is the sum of the last(k�m)
eigenvalues divided by the total sum of the eigenvalues. As
mentioned, limiting the dimensions tom � 3, enables us to
graphically view the ‘canonical’ manifold. Usually, when
analyzing smooth surfaces, most of the geometric structure
is captured by the first three eigenvalues.

3.2. Least Squares MDS
The Least Squares technique is a standard optimization ap-
proach to solve the minimization problem of the cost de-
fined by the stress function (1). The problem is that there
is no simple way to form a close expression for the first
derivative of this non-linear functional. An simple yet pow-
erful minimization strategy is the principle of minimizing
a function by iterative majorization. This method is ap-
plied in the SAMCOF (Scaling by Maximizing a Convex
Function) algorithm for minimizing stress [11]. The idea
is to bound the stress functionS(X) iteratively by a sim-
ple functionŜ(X;Z), whereZ is a possible solution, and
Ŝ(X;Z) � S(X) for X 6= Z, andŜ(Z;Z) = S(Z). Let
us briefly review this idea. For further details see [11].

Minimizing the stress (1) is equal to minimizing the
following functional S(x) =

P
i<j wij(Æij � dij)

2, or
S(x) = �2Æ + �(X)2 � 2�(X). ApplyingCauchy-Schwartz
inequality and basic algebraic operations, we have that the

Obj/Dim m = 1 m = 2 m = 3 m = 4 m = 5

Torus 12.96 0.0714 0.0098 0.0098 0.0098
Human 3.695 0.0341 0.0051 0.0051 0.0051
Rabbit 1.99 0.044 0.0029 0.0021 0.0021

Elephant 3.42 0.113 0.0043 0.0036 0.0036

Table 2: LS MDS: The stress (1) as a function of the num-
ber of dimensionsm.

stress function can be bounded by the following quadratic
function inX ,

S � �2Æ + trXTV X � 2trXTB(Z)Z = �(X;Z):

Where the matricesV; Z, andB(Z) depend onfÆijg, the
weight matrixW and the currentXi solution. The mini-
mum of �(X;Z) can be achieved by setting the derivative
of �(X;Z) to zero, and the required solution is given by

Xi = V +B(Z)Z: (3)

Where the matrixV + is the Moore-Penrose inverse ofV . It
can be shown that if all weightswij = 1, then the update
simplifies to

Xi = n�1B(Z)Z: (4)

The SAMCOF algorithm for MDS can be summarized
by the following steps,

1. SetZ = X0 andi = 0, whereX0 is a (non)random
initial configuration.

2. Compute the stress functionS(X0).
3. Seti = i+ 1.
4. Compute the next solutionXi by (3) or (4).
5. If S(Xi)� S(Xi�1) < " then stop.
6. SetZ = Xi and go to step 3.

Considering more than three dimensions, as illustrated
in Table 2, decrease the stress (1) by less than1% in our
examples. In our examples the LS MDS required less than
a hundred iterations to converge. Hence, the complexity is
of O(n2 � NumOfIterations).
In our case where the distances matrix consists of the
geodesic distances, the Least Square method that minimizes
the stress function, better captures the structure of the geo-
metric data in some cases compared to the classical scaling
results.

3.3. Fast MDS
The Fast MDS is a recent heuristic technique proposed by
Lin and Faloutsos [16]. This method is computationally ef-
ficient,O(nm) wherem is the target dimensions, that can
be considered to beO(n) in our case. Yet, it does not mini-
mize any global measure, but only attempts to approximate
it. This technique works recursively by generating a new



dimension at each step, providingm-dimensional coordi-
nates after applying the recursionm times. The basic idea
is to project the vertices on a selected ‘line’. First, the algo-
rithm selects two verticesOa andOb, that should be as far
as possible from one other. Next, all other vertices are pro-

jected on that line using thecosine lawxi =
d2
ai
+d2

ab
�d2

bi

2dab
,

see Figure 1.
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Figure 1: Projection on the hyper-plane H.

The next step is to project all items to an(n� 1) hyper-
planeH that is perpendicular to the line (Oa; Ob) and re-
generate a new distance matrix according tod2i0j0 = d2ij �

(xi � xj)
2. This step should be repeatedm times, where

at each step the calculatedxi, i = (1; 2::::; n) are the new
added dimension coordinates.

The m-dimensional coordinates can be calculated in
O(mn), provided that at each step we use a linear heuristic
algorithm to choose the pivot feature items.

We tested the three techniques, Classical, LS and Fast
MDS, and obtained the results in Figures 2, 3, 4 and 5,
for m = 3. As expected, the heuristic fast method yields
the least accurate results yet was the fastest, while the LS
is the most accurate technique yet the slowest. Table 3
summarizes the stress (1) for increasing dimensions of the
three MDS techniques. The LS method reaches the mini-
mal stress, which is not surprising since the classical MDS
minimizes another measure as described above. However,
we can see that the stress decreases for all three methods as
the number of dimensionsm gets larger.

4. Matching Surfaces
Equipped with the fast marching on triangulated domains,
and the MDS, we can solve the isometric surface matching
problem. For example, given objects in 3D, some of which
are isometric, we would like to measure their isometric-
(dis)similarity and thereby classify them.

In the first step we compute the geodesic distance matrix
for each object using the fast marching on triangulated do-
mains. As stated above, given an object withn vertices we

Figure 2: Rabbit. Top left: Original surface. Top right: Fast
MDS result. Bottom left: LS MDS result. Bottom right:
Classical MDS result.

Figure 3: Torus. Top left: Original surface. Top right: Fast
MDS result. Bottom left: LS MDS result. Bottom right:
Classical MDS result.



Figure 4: Human body. Top left: Original surface. Top
right: Fast MDS result. Bottom left: LS MDS result. Bot-
tom right: Classical MDS MDS result.

Figure 5: Bending invariant canonical representation for an
elephant. Top left: Original surface. Top right: Fast MDS
result. Bottom left: LS MDS result. Bottom right: Classical
MDS result.

Obj/Dim m = 1 m = 2 m = 3 m = 4 m = 5

Torus
Classical 68.59 0.0801 0.0122 0.0122 0.0122

LS 12.96 0.0714 0.0098 0.0098 0.0098
Fast 39.8 0.1151 0.0136 0.0104 0.0104

Human
Classical 12.70 0.0643 0.0176 0.0176 0.0176

LS 3.695 0.0341 0.0051 0.0051 0.0051
Fast 9.626 0.04392 0.0201 0.0161 0.0161

Rabbit
Classical 15.26 0.2621 0.0097 0.0077 0.0077

LS 1.356 0.081 0.0033 0.0031 0.0031
Fast 5.475 0.206 0.0205 0.0119 0.0081

Elephant
Classical 10.68 0.2954 0.0114 0.0073 0.0076

LS 3.42 0.113 0.0043 0.0036 0.0036
Fast 13.28 0.3051 0.0381 0.0122 0.0077

Table 3: The stress (1) for LS, Classical, and Fast MDS as
a function ofm, the embedding Euclidean dimension.

select a subset ofen � n vertices, and calculate the geodesic
distances between each pair in this set using the original
surface. The sub-sampling technique is an iterative process
where in each iteration the farthest (in the geodesic sense)
vertex from the already selected vertices is selected. The
process starts by selecting the first vertex randomly, and
terminates when the sub-set of selected vertices reached a
pre-defined number.

An allowable mapping of the surfaceS1 onto the surface
S2 is said to beisometricor length preservingif the length
of any arc onS2 is the same as that of its inverse image
on S1, [17]. In order to extract a practical algorithm from
the above definition we take the following approximation
steps. First, we sample the surface and consider its trian-
gulated version as an approximate geometric representation
of the continuous one. Next, for computational efficiency
of the MDS-flattening step we consider only a subset of the
given vertices. Both these approximation steps were veri-
fied empirically to introduce acceptable deformations in the
results.

The flattening step involves setting the required dimen-
sion, m, and application of the MDS techniques on the
geodesic distances matrices. It extracts the coordinates of
the objects in an invariant ‘canonical’ form. We can also
handle similarity (scaling) transformations by normalizing
the canonical manifold: After the flattening, the canonical
manifolds are uniformly scaled to the same bounding box,
and centralized (done automatically in the classical MDS)
and oriented using the second (the eigenvalues in the classi-
cal MDS) and the third order moments.

Next, we have to compare between the ‘canonical’ man-



ifolds that are given by their coordinates inm dimensions.
Again, we can construct a distance matrix between the given
manifolds based on some unique measure, like the Haus-
dorff distance. A simple matching measure was proposed
by Elad and Tal in [18]. They consider only the firstm
(m < 15) moments of each surface (the invariant manifold
in our case) and calculate the Euclidean distances between
each pair. This operation yields a moments-distance matrix,
D, where[D]ij = distance(Objecti;Objectj).

Applying MDS process on this new matrix yields points
in a Euclidean space, where each point represents one sur-
face. This way, isometric surfaces are clustered together
while non-isometric surface are well separated in this Eu-
clidean space, as will be graphically illustrated in the next
section.

5. Experimental Results

We applied the proposed algorithm to the objects shown in
Figure 6. The input surfaces include six shapes of a hu-
man body, a hand, a hat, a paper, a dog, spider, and bending
versions of these shapes. For the flattening results shown
in Figure 8, we used the Least Squares MDS. For pre-
sentation purposes, justified by the error norm, we selected
the Euclidean embedding space to be of three dimensions.
One can see that isometric surfaces are mapped to similar
‘canonical’ manifolds. The results of applying the moments
based clustering step described in the previous section, is
shown in Figure 9. As a reference, Figure 7 illustrates the
results of applying the moment based MDS clustering pro-
cedure to the original surfaces.

Isometric objects are closer to one another compared to
the flattening result of the moment distances of the origi-
nal surfaces. The MDS based clustering and classification
steps are only an example application for using the bending
invariant canonical representations of the surfaces. Other
matching techniques that work on the flattened invariant
canonical form are possible.

6. Conclusions

An efficient method for computing bending invariant canon-
ical representations of surfaces was presented. The method
is based on the fast marching on triangulated domains algo-
rithm followed by a multi-dimensional scaling (MDS) flat-
tening technique. The ‘canonical’ form is computed by ap-
plying an MDS procedure on the geodesic distances ma-
trix computed by the fast marching algorithm. Three dif-
ferent MDS techniques were tested, the Classical, the Least
Squares and the Fast MDS, with the LS being the most ac-
curate yet the slowest method. Our approach followed by a
simple clustering algorithm was shown to be useful for 3D
non-rigid isometric objects matching and classification.
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Figure 6: Six input surfaces of a human body, a hand, a hat,
a paper, a dinosaur and a spider, and a few bending versions
of these surfaces.
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Figure 7: Applying the moments based clustering to the
original manifolds.

Figure 8: Output - The invariant canonical forms based on
LS MDS.
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Figure 9: Applying the moments based clustering to all
canonical manifolds form = 3.


