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We present an efficient O(n) numerical algorithm for first-order approximation of geodesic distances
on geometry images, where n is the number of points on the surface. The structure of our
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SIMD processor and on a GPU are discussed. Numerical results demonstrate up to four orders of
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1. INTRODUCTION

Approximation of geodesic distances on curved surfaces is an important computational geometric problem, appearing
in many computer graphics applications. For example, several surface segmentation and editing methods are based
on cutting the surface along geodesic paths [Katz and Tal 2004; Funkhouser et al. 2004]. Function interpolation on
meshes requires the knowledge of geodesic distances, and has numerous uses such as skinning [Sloan et al. 2001] and
mesh watermarking [Praun et al. 1999]. Isometry-invariant shape classification [Elad and Kimmel 2001; Hilaga et al.
2001; Mémoli and Sapiro 2005; Bronstein et al. 2006b], minimum-distortion parametrization [Zigelman et al. 2002;
Zhou et al. 2004; Peyré and Cohen 2003], and non-rigid correspondence techniques [Bronstein et al. 2006a] require
the matrix of all pair-wise geodesic distances on the surface. Other fields where the need to compute geodesic distance
maps arises are medical imaging, geophysics[Sethian and Popovici 2006], and robot motion planning [Hershberger
and Suri 1999] and navigation to mention a few.

The problem of distance map computation can be formulated as the viscosity solution of theeikonal equation,

‖∇t‖ = 1, t(S) = 0, (1)

whereS is a set of source points on the surface. In optics and acoustics, the eikonal equation governs the propagation
of waves through a medium. The solution of the eikonal equation demonstrates that light or acoustic waves traverse
the path between two points, which takes the least time, a physics law known asFermat’s principle.

In [1996], Sethian proposed anO(nlogn) algorithm for first-order approximation of weighted distance maps on do-
mains with weighted Euclidean metric, known asfast marching. A similar algorithm based on a different discretization
of the eikonal equation was developed independently by Tsitsiklis [1995]. The main idea of fast marching is to simu-
late a wave front advancing from a set of source pointsS. The propagating front can be thought of as a “prairie fire”
evolution towards directions where the grid has not yet been “burnt out”. At timet = 0, the fire starts at the source
points, and the algorithm computes the time valuest for each vertex at which the advancing fire front reaches it.

Algorithm 1 outlines the fast marching method. Solution of the eikonal equation starts by setting initial (usually zero)
distance to the set of source pointsSand updating the neighboring points by simulating an advancing wavefront. The
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2 · Parallel algorithms for approximation of distance maps on parametric surfaces

algorithm is constructed similar to Dijkstra’s algorithn for finding shortest paths in graphs. It maintains a set of fixed
verticesS, for which the time of arrival has already been computed, and a priority queueQ of all other vertices sorted
by their times of arrival. The basic operation of the fast marching algorithm is theupdatestep, which computes the
time of arrival of the wavefront to a grid point based on the times of arrival to its neighbor points.

By construction, the updated value cannot be smaller than the values of the supporting vertices. This monotonicity
property ensures that the solution always propagates outwards by fixing the vertex with the smallestt. The latter
implies that the values of grid points inSvertices are never recomputed. Since theupdate stephas constant complexity,
the overall complexity of the fast marching algorithm is determined by the procedure that finds the smallestt in the
priority queueQ. Heap sorting-based priority queue allows to implement this task inO(logn), wheren is the number
of grid vertices. Since each vertex is removed fromQ and inserted toSonly once, the overall complexity isO(nlogn).

Over the last decade, the fast marching algorithm was generalized to arbitrary triangulated surfaces [Kimmel and
Sethian 1998], unstructured meshes [Sethian and Vladimirsky 2000], implicit unorganized surfaces [Mémoli and
Sapiro 2001], and parametric surfaces [Spira and Kimmel 2004]. Higher-order versions of fast marching were also
proposed [Sethian and Vladimirsky 2000]. Besides fast marching, there exist other families of numerical algorithms for
approximate and exact computation of geodesic distances on surfaces, among which the most notable one is the Mount-
Mitchel-Papadimitriou (MMP) algorithm [1987], whose most recent approximate implementation by Surazhskyet al.
[2005] appears to be the fastest distance computation code available in public domain. Another recent algorithm is
presented in [Jeong and Whitaker 2007].

In this paper, we explore the problem of geodesic distance map approximation on regularly sampled parametric sur-
faces (often referred to as geometry images), a representation becoming growingly popular as an alternative to un-
ordered triangular meshes [Gu et al. 2002]. The paper is organized as follows. In Section 2, we formulate the eikonal
equation on parametric surfaces. Section 3 is dedicated to the update step. We show a compact expression in matrix-
vector form for a first-order update step on geometry images based on the planar wavefront model. We show that the
scheme is numerically stable, which allows its use with low-precision arithmetics. We also study the update step based
on the spherical wavefront model proposed by Novotni and Klein [2002] and indicate its numerical difficulties. Sec-
tion 4 presents a raster scan algorithm for approximate distance map computation on geometry images. The proposed
algorithm can be thought of as a generalization of Danielsson’s raster scan method [1980] to geometry images, or as a
raster-scan version of the parametric fast marching algorithm [Spira and Kimmel 2004]. We show that the raster scan
algorithm converges with a bounded number of iterations, which enables its use for geodesic distance map computa-
tion. In Section 5, we discuss two parallel implementations of the raster scan algorithm on a SIMD processor and a
GPU, which we refer to as theparallel marching methodor PMM for short. Graphics hardware has been previously
used for computation of distance maps and Voronoi diagrams on the plane or in the three-dimensional Euclidean space
[Sigg et al. 2003; Hoff et al. 1999; Fischer and Gotsman 2005; Sud et al. 2006]. However, the use of vector processors
for computation of geodesic distance maps is a different and significantly more complex problem, which to the best of
our knowledge, has not been yet addressed in the literature, perhaps, with the exception of [Carr et al. ]. We also dis-
cuss the extension of the proposed algorithm to geometry images represented using multiple charts, which is of critical
importance in many practical applications. In Section 7, we present numerical tests and performance benchmarks for
our algorithms. Parallel marching methods outperform the state-of-the-art distance computation algorithms by up to
four orders of magnitude on commodity hardware, making feasible real-time implementation of many applications,
where the complexity of geodesic distance computation has been so far prohibitively high. Section 8 concludes the
paper.
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Algorithm 1 : Fast marching method.

Input : Numerical gridU, set of source pointsS⊂ U with the corresponding initial valuest(s)
Output : The distance mapt : U 7→ R+.

Initialization
Q←− /01

foreach pointu ∈ U\Sdo t(u)←− ∞2

foreachpointu ∈ Sdo3

Q←−Q∪N (u)4

end5

Iteration
while Q 6= /0 do6

u←− ExtractMin(Q)7

S←− S∪{u}8

foreachpointv∈N (u) do Update (v)9

end10

Fig. 1. A system of coordinates in the parametrization domain (left) and the corresponding local system of coordinates on the surface (right).

2. EIKONAL EQUATION ON GEOMETRY IMAGES

For the largest part of the discussion in this paper, we focus our attention on parametric two-dimensional manifolds,
i.e. surfaces that can be represented by a single smooth mappingx : U → R3, whereU ⊂ R2 is a parametrization
domain. The topology ofU depends on the topology of the surface. The derivatives

ξ i =
∂x
∂ui (2)

with respect to the parametrization coordinates constitute a local system of coordinates on the surface (Figure 1).
Distances on the surface are measured according to the differential arclength element,

ds2 = duTGdu, (3)

wheredu = (du1,du2) andG is a 2×2 metric matrix, whose elements are given bygi j = ξ T
i ξ j . The local system

of coordinates isorthogonal if and only if G is diagonal (note that orthogonality of the coordinate system in the
parametrization domain does not imply orthogonality of the coordinate system on the surface).
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4 · Parallel algorithms for approximation of distance maps on parametric surfaces

A distance map on the surface is computed by solving the eikonal equation, expressed in our notation as

‖∇Gt‖2 = ∇T
ut G(u)−1∇ut = 1 (4)

on a discrete grid obtained by sampling the parametrization domainU. A special case, usually referred to as ageometry
image, is obtained by discretizing the parametrization domain on a regular Cartesian grid with equal steps, which for
convenience are henceforth assumed to be1 in each direction. The origin of the term stems from the fact that the
surface can be represented as tree matrices holding the coordinates of the sampled surfacex(U).

In a geometry image, a grid pointu0 can be connected to its neighborsu0 +m according some grid connectivity. The
simplest grid connectivity is based on four neigbors:m = (±1,0)T,(0,±1)T. Another possible grid connectivity is the
eight-neigbor connectivity, wherem = (±1,0)T,(0,±1)T,(±1,±1)T,(±1,∓1)T. The former two grid connectivity
patterns create four and eight triangles, respectively, supporting the grid pointu0. Let us examine a triangle created by
x0 = x(u0), x1 = x(u0 +m1), andx2 = x(u0 +m2); without loss of generality we will henceforth assume thatx0 = 0.
In local coordinates, we can write

xi = x0 +m1
i ξ 1 +m2

i ξ 2, (5)

or X = TM , whereX = (x1,x2), T = (ξ 1,ξ 2), andM = (m1,m2). The matrixE = MTGM describes the geometry of
the triangle. Ife12 > 0 is positive, the anglê x1x0x2 on the surface is acute.

3. UPDATE STEP

The fast marching algorithm can be formulated for parametric surfaces as shown in [Spira and Kimmel 2004]. All
computations are performed on the grid in the parametrization domain, though the distances are computed with respect
to the surface metricG. In the numerical core of this algorithm lies the update step, which given a grid pointu0 and
the times of arrival of its neighbors, computes the time of arrivalt(u0). Sinceu0 is shared by several triangles (the
exact number of triangles depends on the grid connectivity),t(u0) is computed in each triangle and the smallest value
is selected to update the time of arrival atu0.

Let u0 be updated from its two neighborsu1 = u+m1 andu2 = u0 +m2, whose times of arrival aret1 = t(u0 +m1)
andt2 = t(u0 +m2). We denotexi = x(ui) and assume without loss of generality thatx0 = 0. Our goal is to compute
t0 = t(u0) based ont1, t2 and the geometry of the trianglex1x0x2. The update ofx0 has to obey the following properties:

(1) Consistency: t0 > max{t1, t2}.
(2) Monotonicity: an increase oft1 or t2 increasest0.

(3) Upwinding: the update has to be accepted only from a triangle containing the characteristic direction (character-
istics of the eikonal equation coincide with minimum geodesics on the surface).

(4) Numerical stability: a small perturbation int1 or t2 results in a bounded perturbation int0.

3.1 Planar wavefront approximation

In the original fast marching algorithm, a vertex is updated by simulating a planar wavefront propagating inside the
triangle [Kimmel and Sethian 1998]; the values of the two supporting vertices allow to compute the front direction.
The same update scheme was used in [Spira and Kimmel 2004]. Here, we develop a similar scheme, expressing it
more compactly and without the use of trigonometric functions, which allow more efficient computation. We model
the wavefront as a planar wave propagating from a virtual planar source described by the equationnTx+ p= 0, where
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Fig. 2. Update schemes based on the planar (left) and spherical (right) wavefront propagation models.

n is the propagation direction (Figure 2). Demanding that the supporting verticesx1, x2 of the triangle lie at distances
t1 andt2, respectively, from the source, we obtain

XTn+ p·1 = t, (6)

whereX is a matrix whose columns arex1 andx2, 1 = (1,1)T, andt = (t1, t2)T. The wavefront time of arrival to the
updated vertexx0 is given by its distance from the planar source,

t0 = nTx0 + p = p. (7)

Assuming that the mesh is non-degenerate,x1 andx2 are linearly independent, and we can solve (6) forn, obtaining

n = X(XTX)−1(t− p ·1). (8)

Invoking the condition‖n‖= 1 yields

1 = nTn

= (t− p ·1)T(XTX)−TXTX(XTX)−1(t− p·1)
= (t− p ·1)T(XTX)−1(t− p·1)
= p2 ·1TQ1−2p·1TQt + tTQt, (9)

whereQ = (XTX)−1 = E−1. Hence,t0 can be found as the largest solution of the quadratic equation

t2
0 ·1TQ1−2t0 ·1TQt + tTQt−1 = 0 (10)

(the smallest solution corresponds to the opposite propagation direction, where the wavefront arrives tox0 beforeit
arrives tox1 andx2 and therefore has to be discarded). To speed the solution up, the terms1TQ1 and1TQ depending
on the grid geometry only are pre-computed.

The consistency condition can be written asp · 1 > XTn + p · 1 or simply XTn < 0, which can be interpreted geo-
metrically as a demand that the direction−n must form acute angles with the triangle edges. In order to impose
monotonicity, we demand that

∇t t0 =
(

∂ t0
∂ t1

,
∂ t0
∂ t2

)T

> 0. (11)
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Differentiating (10) with respect tot, we obtain

t0 ·∇t t0 ·1TQ1−∇t t0 ·1TQt− t0 ·Q1+Qt = 0, (12)

from where

∇t t0 =
Q(t− p·1)

1TQ(t− p·1)
. (13)

Substituting (8), we can write

Q(t− p·1) = (XTX)−1XTn = QXTn. (14)

Observe that the monotonicity condition∇t t0 > 0 is satisfied when eitherQXTn > 0, or QXTn < 0, that is, both
coordinates ofQXTn have the same sign. However, since the consistency of the solution requiresXTn to be negative,
andQ is positive semi-definite,QXTn cannot have both coordinates positive. We therefore conclude that the solution
has to satisfyQXTn = Q(t− p·1) < 0. This yields1TQ(t− p ·1) < 0. The latter condition can be rewritten as

0 > Q(t− p ·1) = (XTX)−1XTn, (15)

where the inequality is interpreted coordinate-wise. Observe that the rows of the matrix(XTX)−1XT are orthogonal
to x1, x2, or in other words, are normal to the triangle edges. This gives the following geometric interpretation of the
monotonicity condition: the direction−n must come from within the triangle. Since the update direction also obeys
the consistency condition, any direction coming from within the triangle must form acute angles with the triangle
edges, leading to the demand that the angle^x1x0x2 is acute (or, equivalently,e12 > 0).

Consistency and monotonicity conditions should guarantee that the update is performed only from a triangle that con-
tains the characteristic direction, which makes the update scheme upwind [Sethian and Vladimirsky 2000]. However,
sincen is only an approximation of the characteristic direction, it may happen that the conditions are not satisfied
although the true characteristic lies inside the triangle. For a sufficiently small triangle, this can happen only if any of
the two inner productsnTx1, nTx2 is sufficiently close to zero. This corresponds to the situation in whicht0 can be
updated from one of the triangle edges (one-dimensional simplices)x0x1, x0x2. In this case, the simple Dijkstra-type
update,

t0 = min{t1 +‖x1‖, t2 +‖x2‖}, (16)

is performed.

In order to ensure that the update formula is numerically stable, we assume thatti is affected by a small errorε, which,
in turn, influences the computed time of arrivalt0. Using first-order Taylor expansion, we have

t̃0 ≈ t0 + ε · ∂ t0
∂ ti

≤ t0 + ε ·
(∣∣∣∣

∂ t0
∂ t1

∣∣∣∣+
∣∣∣∣
∂ t0
∂ t2

∣∣∣∣
)

. (17)

Under the monotonicity condition∇t t0 > 0, we can write

t̃0 ≈ t0 + ε ·1T∇t t0 = t0 + ε · 1TQ(t− p·1)
1TQ(t− p·1)

= t0 + ε. (18)

The error int0 is also bounded in the one-dimensional Dijkstra-type update, which makes the update formula stable.

The planar wavefront update scheme is summarized in Algorithm 2. Note that it is valid only for acute triangulations;
when some triangles have obtuse angles (e12 < 0), they have to be split by adding connections to additional neighbor
grid points, as proposed by Spira and Kimmel in [2004].
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Algorithm 2 : Planar update scheme for acute triangulation.

Settnew
0 ←− t0.1

foreach triangleX = (x1,x2)T do2

Solve the quadratic equation (10) fort0.3

if Q(t− t0 ·1) > 0 or t0 < max{t(x1), t(x2)} then computet0 according to (16).4

Settnew
0 ←−min{tnew

0 , t0}.5

end6

3.2 Spherical wavefront approximation

A different update scheme was proposed by Novotni and Klein [Novotni and Klein 2002]. They update a vertex with
its Euclidean distance from a virtual point source, whose coordinates are estimated from the times of arrival to the
two supporting vertices. This approach is similar in its spirit to the Mitchel-Mount-Papadimitriou algorithm [Mitchell
et al. 1987; Surazhsky et al. 2005], and should apparently be more accurate that its planar counterpart for computing
distance maps from point sources. Here, we show that this scheme can be inconsistent and numerically unstable.

According to Novotni and Klein, the wavefront is modeled as a spherical (circular) wave propagating from a virtual
point sourcex (Figure 2, right). Demanding that the supporting verticesx1, x2 of the triangle lie at distancest1 andt2,
respectively, from the source, we obtain fori = 1,2

t2
i = (xi −x)T(xi −x) = xT

i xi −2xT
i x+xTx. (19)

The time of arrival of the wavefront to the updated vertexx0 is given by its distance from the point source,

t2
0 = (x0−x)T(x0−x) = xTx. (20)

Denotingsi = t2
i , andq = (s1−xT

1x1,s2−xT
2x2)T, we obtain

s0 ·1−2XTx = q. (21)

Assuming the mesh to be non-degenerate,

x =
1
2

X(XTX)−1(s0 ·1−q) =
1
2

XQ(s0 ·1−q). (22)

Plugging the later result into (20), we have

s0 = xTx =
1
4
(s0 ·1−q)TQ(s0 ·1−q)

=
1
4

(
s2
0 ·1TQ1−2s0 ·1TQq+qTQq

)
. (23)

Consequently,t0 is given as the largest positive solution of the following bi-quadratic equation

t4
0 ·1TQ1−2t2

0 · (1TQq+2)+qTQq = 0. (24)

In order to enforce consistency, we require

s0 > si = (xi −x)T(xi −x) = xT
i xi −2xT

i x+xTx

= xT
i (xi −2x)+s0, (25)
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Fig. 3. Consistency and monotonicity conditions of the spherical update scheme require that the virtual source lie inside the region shaded in red.
Some update directions coming from within the triangle are outside that region.

or, alternatively,

xT
i

(
x− 1

2
xi

)
> 0. (26)

The geometric interpretation of the former condition is that the source pointx lies at the “positive” sides of the two
perpendicular bisectors to the edgesx0x1 andx0x2.

To enforce monotonicity, we differentiate (24) with respect tos= (s1,s2)T,

2s0 ·∇s s0 ·1TQ1−2∇s s0 · (1TQq+2)−2s0 ·Q1+2Qq = 0, (27)

from where

∇s s0 =
Q(s0 ·1−q)

1TQ(s0 ·1−q)−2
. (28)

Requiring∇s s0 > 0 in conjunction with the consistency condition yieldsQ(s0 ·1−q) > 0, or

QXTx > 0, (29)

which can be interpreted geometrically as a demand thatx lies inside the anglê x1x0x2.

Figure 3 shows that some characteristic directions lying inside the triangle violate consistency or monotonicity. There-
fore, the spherical wavefront update scheme is likely to introduce errors that will propagate with the computed front.
Also note that unlike its planar counterpart, the spherical wavefront propagation model is not numerically stable. Ob-
serve that‖∇s s0‖> 1 for anyx, and forx lying on the edgex1x2, the gradient is infinite, meaning that roundoff errors
can potentially explode, invalidating the numerical solution.

These disadvantages of the spherical wavefront scheme become less pronounced fort À `, where` is the largest
triangle edge length. However, for large values of the arrival times, the spherical and the planar models converge and
produce nearly identical solutions. Due to these difficulties, in this paper we use the planar wavefront update scheme.
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4. RASTER SCAN ALGORITHM

One of the disadvantages of the fast marching algorithm is that it is inherently sequential, thus allowing no paralleliza-
tion. In addition, the order of visiting the grid points depend on the shape of the propagating wavefront and is therefore
data-dependent. This results in irregular memory access that is unlikely to utilize the caching system efficiently. These
drawbacks call for searching for alternative grid traversal orders.

In his classical paper, Danielsson [1980] observed that since the geodesics on the Euclidean plane are straight lines,
all possible characteristic directions of the eikonal equation fall into one of the four quadrants of a Cartesian grid and
can be therefore covered by traversing the grid in four directed raster scans. Danielsson’s raster scan spirit (commonly
referred to asfast sweeping) was adopted in [Zhao 2004] for solving the eikonal equation on weighted Euclidean
domains, and in Bornemann and Rasch [Bornemann and Rasch 2006]; similar ideas date back to Dupuis and Oliensis’
studies on shape from shading [Dupuis and Oliensis 1994].

Raster scan traversal has linear complexity in the grid size, and is characterized by regular access to memory, which
increases the efficiency of caching. Since the order of visiting of the grid points is independent of the data and is
known in advance, one can use the pre-caching mechanism, supported in many modern processors. In addition, unlike
its priority queue-based counterpart, raster scan can be efficiently parallelized as will be shown in Section 5.

Here, we use the raster scan order to traverse the Cartesian grid in the surface parametrization domain, as summarized
in Algorithm 3. As in the priority queue-based traversal order, all computations are done in the parametrization domain,
taking into account the metric on the surface. Since each directed raster scan covers only90◦ of possible characteristic
directions, the update of a point on the grid can be done only from the triangles containing that direction. For example,
if the eight-neighbor grid connectivity is used, only two triangles formed by three neighbors are absolutely required in
the update (Figure 4, first row).

Observe that unlike the Euclidean case where the characteristics are straight lines, on a general geometry image, the
characteristics in the parametrization domain are usually curved. This implies that the four raster scans may cover
only a part of a characteristic, and have to be repeated more times in order to produce a consistent distance map. As
a consequence, the complexity of the raster algorithm for geometry images isO(N iter ·n), wheren is the grid size,
andN iter is the data-dependent number of iterations. In what follows, we present a bound on the maximum number of
iterations required before the algorithm stops.

PROPOSITION 1. Algorithm 3 applied to a geometry imagex(U) will stop after at most

N iter ≤
⌈

2D λ G
max

πλ G
min

√
(λ H1

min)2 +(λ H2

min)2 +(λ H3

min)2

⌉
+1

iterations, whereD is the surface diameter,λ H i

min is the smallest eigenvalue of the Hessian matrixH i = ∇2
uuxi of xi with

respect to the parametrization coordinatesu, andλ G
max/λ G

min is the condition number of the metricG.

For proof, see Appendix A. When the surface is given as a graph of a functionz(x,y), the bound can be simplified as

N iter ≤
⌈

2D λ G
max

πλ G
min

λ H
min

⌉
+1, (30)

whereH = ∇2z.

The main significance of this bound is that the maximum number of iterations does not depend on the discretization
of U and is a constant regardless of the grid size. Note, however, that the bound depends both on the properties of the
surface expressed in terms of the metricG and the diameterD, and those of the parametrization expressed in terms
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Fig. 4. Update of a point on a grid with eight-neighbor connectivity using the raster scan algorithm. First row: four directed raster scans; second
row: the same raster scans rotated by45◦.

of the HessianH i . This means that some parametrizations of the same surface may be less favorable for the raster
scan algorithm. For example, in the parametrizationx = (u1cosu2,u1sinu2,0)T of a flat disc, the characteristics in the
parametrization domain are curved and require multiple iterations to be covered.

Note that the bound is a worst case bound; in practice the number of iterations required for convergence may be
smaller. Adding another triangle to the grid update such that every grid point is updated from four “causal” (in the
raster scan order) neighbors rather than from three causal neighbors as shown in Figure 4 may reduce the number of
iterations. It is important to emphasize that in the worst caseN iter will remain unchanged.

The main disadvantage of the raster scan algorithm is the lack of flexibility in controlling the tradeoff between the
algorithm complexity and accuracy, unlike some other distance approximation algorithms, like the phase flow [Ying
and Cand̀es 2006] and the approximate MMP algorithm [Surazhsky et al. 2005].

5. PARALLELIZATION

The structure of the raster scan algorithm gives much opportunity for exploiting data independence to compute some
of the grid updates concurrently on a set of parallel computation units. To demonstrate the parallelism, let us consider
for example the right-down raster scan, starting from the top leftmost grid pointt11. After t11 has been updated, the
pointst12 andt21 can be updated concurrently, since their updates do not depend on each other. Next, the pointst31,
t22 andt13 are updated concurrently, and so on (Figure 5, left). Assuming the number of available computation units
is P≥ min{M,N}, the right-down raster scan can be performed inM + N−1 steps, where at each stepk the points
along the linei + j = k+1 are updated. If the number of processors is smaller, every step is serialized intod(k+1)/Pe
sub-steps. The other three directed raster scans are parallelized in the same manner.
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Algorithm 3 : Raster scan algorithm on a single-chart geometry image.

Input : NumericalM×N grid U, set of source pointsS⊂ U with the corresponding initial valuest(s)
Output : The distance mapt : U 7→ R+.

Initialization
Pre-compute the update equation coefficients for each triangle.1

foreach pointu ∈ U\Sdo t(u)←− ∞2

Iteration
for iter = 1,2,... do3

for i = 1,2, ...,M do4

Right-up scan
for j = 1,2, ...,N do Update (ui j )5

Right-down scan
for j = N,N−1, ...,1 do Update (ui j )6

end7

for i = M,M−1, ...,1 do8

Left-up scan
for j = 1,2, ...,N do Update (ui j )9

Left-down scan
for j = N,N−1, ...,1 do Update (ui j )10

end11

if ‖t(n)− t(n−1)‖= 0 then stop12

end13

An obvious disadvantage of such a parallelization is the lack of data coherence in the memory, which may deteriorate
performance on many architectures such as GPUs. Another disadvantage is the fact that the number of operations
in each step is not constant and the benefit from the parallelization is obtained only on sufficiently long diagonals.
A way to overcome these two difficulties is to rotate the direction of all raster scans by45◦ (Figure 4, second row).
Using the rotated raster scans, rows or columns of the grid can be updated concurrently (Figure 5, right). This allows
coherent access to memory and provides better parallelization with a speedup factor ofP. Since the same operations
are performed to update all the grid points, the algorithm is suitable for implementation on a SIMD processor. We
refer to this parallelized scheme as toparallel marching.

5.1 Extensions to multi-chart geometry images

The approach presented so far is limited to geometry images represented as a single chart, though the latter can be of
arbitrarily complex topology (such a topology usually introduces “holes” in the parametrization domain, which can
be handled efficiently by “masking” the update in those regions). This may be a major limitation in many practical
application, where due to the varying level of detail on the surface, the representation as a single-chart geometry image
is either inaccurate or inefficient.

Here, we discuss a generalization of the raster scan algorithm tomulti-chart geometry images, i.e. surfaces represented
as an atlas of overlapping charts. Formally, we are given a collection ofK mapsxk : Uk→R3, k = 1, ...,K, where each
Uk is sampled on a regular Cartesian grid, usually, with different sampling density, according to the detail level of the
underlying surface. For simplicity, we assume that the charts overlap only at the boundaries, i.e. for two neighboring
chartsi and j, xi(Ui)∩x j(U j)⊆ xi(∂Ui),x j(∂U j). We denote byPi j an operator projecting the values of the distance
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Fig. 5. Dependency graph in the right-down (left) and the rotated up-left-down (right) raster scan updates. Grid point updates that can be computed
concurrently are numbered and shaded with different colors.

mapt i from ∂Ui onto the shared portion of∂U j .

The charts are organized as an undirected adjacency graph withK vertices, and edges(i, j) corresponding to each
pair of adjacent chartsi and j. We denote byNi the collection of all the neighboring charts of the charti. The
problem of distance computation on a multi-chart geometry image can be thought of as distance computation in such
an adjacency graph, in which each vertex represents a chart, and can be therefore solved using a generalization of the
Dijkstra’s algorithm (Algorithm 4).

Each chart is associated with a quadruplet(k, t,S0, t0), wherek = 1, ...,K is a chart index, andt is a scalar distance
value, whose assignment is discussed in the sequel.t0 denotes a set of fixed values onS0⊆Uk serving as the boundary
conditions. Additionally, a distance maptk : Uk→R+ is maintained for each chart. The algorithm maintains a priority
queueQ holding as its entries the quadruplets(k, t,S0, t0). Similarly to the standard Dijkstra’s algorithm, the queue
is sorted according tot. Initially, the queue is filled with the source values given as the input. For example, when
computing the distance map from a single pointu∈ Uk, Q is set to{(k,0,u,0)} (note, however, that the source is not
necessarily limited to a single point, and may span across multiple charts). The algorithm proceeds by removing the
quadruplet(k, t,S0, t0) with the minimumt from the queue, and running the single-chart raster scan algorithm onUk

with S0 andt0(S0) serving as the source. This produces the distance maptk : Uk → R+. Next, the values oftk on
the chart boundary are projected onto the neighbor chartsUi , i ∈Nk, using the operatorsPki. In order to guarantee
monotonicity, the minimum between the extrapolated valuePkitk and the current value oft i is used. We denote by
δ i the maximum difference between the previous and the new value oft i on the shared portion of boundary∂Ui . A
non-trivial δ i implies that the distance mapt i is not up-to-date. In such a case, points on the boundary∂Ui where the
distance map value has decreased are added to the initial set of source points, and the chart is added to the priority
queue with the distance valuet set to be the minimum value of the updated points. The algorithm terminates when the
queue becomes empty, implying by construction that all distance maps are up-to-date.

Unlike the standard Dijkstra’s algorithm, the described procedure is no more a single-pass algorithm. In fact, a
geodesic can pass back and forth from one chart to another, resulting in multiple updates of both. However, the
number of such repetitions is bounded under conditions similar to those stated in Proposition 1.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Parallel algorithms for approximation of distance maps on parametric surfaces · 13

Algorithm 4 : Raster scan algorithm on a multi-chart geometry image.

Input : K gridsU1, ...,UK ; projection operatorsPi j ; sources with corresponding initial values
{(S1

init , t
1
init), ...,(S

K
init , t

K
init)} on one or more charts.

Output : The distance mapstk : Uk 7→ R+ for k = 1, ...,K.
Initialize the priority queue toQ = /0.1

for k = 1, ...,K do2

if Sk
init 6= /0 then settmin = min{tk

init(u) : u∈ Sk
init}, and add(k, tmin,Sk

init , t
k
init) to the queue.3

end4

while Q 6= /0 do5

Set(k, tmin,S0, t0) = argmin{tmin : (k, tmin,S0, t0) ∈Q}, and remove it from the queue.6

Run the single-chart raster scan algorithm to compute the distance maptk onUk usingt0(S0) as the source.7

forall i ∈Nk do8

Sett i = Pki tk.9

forall u∈ ∂Ui ∩∂Uk do10

Sett i(u) = min{t i(u), ti(u)} for all u∈ ∂Ui , and11

end12

SetSi
upd = {u∈ ∂Ui ∩∂Uk : ti(u)− t i(u) > ε}, and updatet i(u) = t i(u) onu∈ Si

upd.13

if Si
upd 6= /0 then computet i

min = min{t i(u) : u∈ Si
upd};elsesett i

min = ∞.14

end15

Find i = argmin{t i
min : i ∈Nk}.16

if t i
min < ∞ then setS0 = Si

init ∪∂Ui , t0 = t i
init(S

i
init)∪ t i(∂Ui), and add(i, t i

min,S0, t0) to the queue.17

end18

6. DISTANCE MAP COMPUTATION ON A GPU

Modern GPUs are extremely powerful processors, capable of performing near trillions of operations (teraflop) per sec-
ond. The reason for such high performance originates from the computation-hungry computer graphics applications,
such as rendering and texture mapping. Though the first GPUs were designed exclusively for these applications, the
availability of so powerful architectures led to numerous attempts to employ graphics hardware for computationally-
demanding applications besides computer graphics, e.g. scientific computing. This has evolved into a trend of general-
purpose computing on GPUs [GPG ], to which the manufacturers of graphics processors responded with developing a
new generation of programmable GPUs. NVIDIA [CUD ] and AMD [CTM ], the two major GPU vendors, released
their first GPGPU environments in early 2007. The new platforms completely hide the low level graphics functionality
of the GPU and exposes the GPU as a general massively parallel machine capable of running thousands of threads
concurrently. With the new environment, the developers do not need to have prior computer graphics knowledge and
the programming is done by using high-level languages such as C.

6.1 CUDA

In this paper, we used the Compute Unified Device Architecture (CUDA) platform developed by NVIDIA for the
implementation of the PMM algorithm. Similar results could be obtained by using the AMD platform [CTM ]. For the
sake of completeness, we briefly overview the most important features of CUDA; for a comprehensive review, refer to
the CUDA programming guide [CUD ].

The G8X series GPUs supporting CUDA have multiple independent processing units. When programmed using
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CUDA, the GPU is viewed as a processing unit capable of executing thousands of threads in parallel. Both the CPU
(referred to ashost) and the GPU (referred to asdevice) maintain their own memory. Data can be transferred from one
memory to another over the PCIe bus, yet the bandwidth of this bus (4 GB/sec) is significantly smaller compared to
the bandwidth of internal buses on the GPU (100GB/sec for the latest NVIDIA GPUs).

CUDA provide access to device DRAM memory either through global memory or texture memory. In addition,
CUDA features on-chip shared memory with extremely fast general read/write access, used to share data between
threads. Texture memory is a read-only memory with a cache optimized for 2D spatial locality. The global memory
is a read/write non-cached memory space. Access to device memory is relatively slow compared to the speed of
arithmetic calculations, making GPUs especially suitable for programs with higharithmetic intensity(ratio between
ALU and memory access operations) and potentially inefficient for those with a low one. For example, the NVIDIA
8800GTX GPU can theoretically perform345G floating points operations/sec, while having the memory bandwidth
of only 86 GB/sec =22G floats/sec (when latency is completely hidden). In order to get better utilization of the
computational power of the GPU and avoid the memory bandwidth bottleneck, memory access to device memory
should be minimized. One way of doing so is by fetching a large portion of data from the global memory into
shared memory (access to shared memory can be as fast as reading from a register) followed by as much as possible
computations, and finally writing back the result to the global memory. The shared memory in this case can be thought
of as user-managed cache.

Access to global memory should be coherent in a way that subsequent threads should access subsequent addresses
in linear memory. There is no obligation to use such an access pattern. However, incoherent accesses will lead to
extremely slow memory bandwidth. Texture memory is more flexible in the sense that coherence is two-dimensional.
However, this is a read-only memory and there is no manual control over the caching scheme.

The architecture of the computational units in the GPU issingle-program-multiple-data(SPMD), allowing to execute
the same function independently on different data. Functions executed in this way are calledkernels; the execution of
a kernel is organized as a grid ofthread blocks. A thread block is a batch ofthreadsthat can cooperate together by
efficiently sharing data through fast shared memory and synchronizing their execution to coordinate memory accesses.
The maximum number of threads in a single thread block is limited, however, many thread blocks can be batched
together into a grid of blocks that can be processed by the device in parallel. It is important to note that communication
and synchronization between threads of different thread blocks on the same grid is impossible. The only way to impose
a global synchronization point on all threads is to divide the work into separate kernel invocations.

A serious limitations of the device memory is the memory latency (400−600 cycles). Much of this latency can be
hidden by the GPU thread scheduler if there are sufficient independent arithmetic instructions that can be issued while
waiting for memory accesses to complete. This means that while some threads are stalled by memory latency, others
can progress with ALU computations. This is only possible if there are enough threads waiting for execution which
implies that a grid of thread blocks should contain as many as possible threads.

6.2 Algorithm

Although CUDA is a significant step towards general purpose computing on GPUs, mapping a sequential algorithm
from CPU to GPU is not trivial. Besides requiring a parallel version of the algorithm, certain restrictions should be
fulfilled in order for the implementation to be efficient. In this section, we describe how to efficiently map PMM to
GPU architecture.

As we mentioned in Section 5, the update of an entireM×N grid can be done in 4 subsequent scans (up, down, left
and right). Each scan is further serialized into smaller parallel steps. For example, theup scan is composed ofM
serialized steps. In each each step,N vertices in a row are updated in parallel. The distance map is allocated in the
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global memory space as a read/write linear array of 32-bit floating point values. The geometrical properties of the
underlying surface are stored in the read-only texture memory space. We can pre-compute the coefficients used by
the numerical update scheme at the pre-processing stage and store them into the texture memory instead of the actual
locations of the vertices.

Straightforward implementation is done by mapping each row or column of the grid to a single kernel call. Each thread
in each thread block updates the distance at a single vertex according to the previous distance at that vertex and three
distances of the vertices at the previous row/column (Figure 6). Kernel invocations serve as global synchronization
point so we can be sure that the next row/column will be processed only after the previous row/column is fully updated.
The memory access for theupanddownscans are coherent, yet, theleft/right scans use an incoherent memory access
pattern, since the addresses of elements in a single column are far from each other in linear memory.

In order to overcome this limitation, we propose to organize the data in the following way. We allocate2 different
arrays to hold the distance maps. The first map is used solely for theup anddownscans, while the second map is
used solely for theleft andright scans. Theleft/right map is stored in a transposed manner so we access bothup/down
and left/right distance maps on a row-by-row basis. Since each scan depends on the result of the previous scan, we
must copy the results obtained by theup anddownscans from theup/downmap to theleft/right map. The task of
copying the map in a transposed manner can be done efficiently with a single kernel invocation and without violating
the coherence.6 The basic idea is to first decompose the matrix into smaller blocks that can fully reside in the shared
memory. Each block is transposed separately and is written in a coherent manner back to the global memory.

The proposed memory organization results in a better performance, but suffers from a different bottleneck. Invoking
a single kernel for each row/column in the grid leads to2M +2N kernel invocations. A kernel invocation consumes a
fixed overhead regardless of how many computations are done in that kernel (up to20µsec per kernel). To demonstrate
the severity of the problem, consider a grid with3000×3000points. The total time for the kernel invocations alone
will be approximately(2×3000+ 2×3000)×20 µsec= 240 msec. This time alone exceeds the total time of our
optimized kernel computation by nearly an order of magnitude (see Table I).

A possible remedy is using a kernel that processes a batch of rows rather than a single row at a time. Each batch is
composed of a strip ofΩ consecutive rows, such that the total number of kernel invocations is reduced by a factor of
Ω, to 2M+2N

Ω . For each row in the strip, each thread fetches the former distance at that vertex from the distance map
into the shared memory. The thread then calculates the updated distance at that vertex and writes the result back to
the distance map. All threads are then synchronized. Once all the threads reach the synchronization point, each thread
can start working on the calculation of the next row in the strip. Besides having the advantage of reduced number of
kernel invocations, this access pattern also leads to higher arithmetic intensity, since for a large enoughΩ, a single
fetch from the distance map per vertex is required (instead of four), since we can keep the computed distances of the
previous row in the shared memory and do not need to read them again from global memory as we advance to the next
row.

On the other hand, a new problem arises. While communication through shared memory and synchronization between
threads of the same thread block is possible, there is no synchronization mechanism between threads of different
thread blocks. Since the maximum number of threads in a thread block is limited (512on latest NVIDIA GPU), we
are limited to small grids only. Moreover, modern GPUs have several independent multiprocessors, working in parallel
(16 on latest NVIDIA GPU) and since each thread block can be processed by a single multiprocessor, the utilization
of the hardware will be poor.

Figure 6 shows a small portion of the distance map that is handled by a single thread block with32 threads andΩ = 8
rows. Note that thread0 is guaranteed to produce valid result only at row0 since at any other row, the update depends

6Refer to the “matrix transpose” example in [CUD ] for further details.
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Fig. 6. Top: vertex(i, j) is updated based on two neighboring triangles. Bottom: a small portion of the distance map that is handled by a single
thread block with32 threads andΩ = 8 rows. The light gray area is safe, while the dark gray one might contains errors.
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Fig. 7. Top: three overlapping blocks with corresponding “safe zones”. Vertices in the overlapping region are computed twice by two threads
belongs to adjacent thread blocks. Bottom: write access pattern. Each thread belongs to exactly one parallelogram, hence writes a single value to
the distance map.

on vertices which are located left to row0. Values that comes from the left cannot be trusted since they belongs to a
different thread block. The potential errors on the first column may lead to errors on the second column as well (rows
2 to 7). In general, only the area shown in light gray in Figure 6 is a “safe zone”.

An important observation is that we can still maintain consistent updates if we allow some partial overlap between
subsequent thread blocks, such that each thread block updates vertices only in the “safe zone”. The blocks should
overlap in such a way that each vertex of the grid belongs to at least one “safe zone”. Figure 7 shows a small portion
of the distance map covered by three overlapping blocks. Note that some vertices belong to two “safe zones”. In order
to avoid write conflicts, we demand that in such a case, only the block on the right will write the updated distance to
the global memory. This write access pattern is illustrated in Figure 7, where each vertex is updated by exactly one
thread belonging to one of the parallelograms.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Parallel algorithms for approximation of distance maps on parametric surfaces · 17

The amount of redundancy that is introduced due to repetitions depends on the ratio between the number of threads
in a single block andΩ. In order to reduce the redundancy, we would like to keepΩ small for a fixed block size. On
the other hand, larger value ofΩ decrease the number of kernel invocations and improve the arithmetic intensity. We
conclude that a correct balance between the block size andΩ is a key to achieving good hardware utilization.

Another way to reduce the number of kernel invocations and increase the parallelism is to combine the four grid
scans into a single scan. Performing several scans in parallel does not change the correctness of the algorithm since
in the worse case, it will have to perform four times more iterations in order to converge. When a geodesic in the
parametrization domain changes its direction smoothly from a zone affected by theup scan to a zone affected by the
downscan, it must cross theleft or right zones first. For non-smooth geodesics with abrupt angles at some points, this
will not hold and additional iterations might be needed. Since this case is rare, we can safely combine theupanddown
scans into a single scan followed by another scan combining theleft andright scans.

7. NUMERICAL RESULTS

In order to demonstrate the efficiency of the proposed algorithms, we consider its two particular implementations. In
the first implementation, the PMM algorithm was implemented in C on an Intel Pentium platform, with the update
step written in inline assembly and taking advantage of the SSE2 extensions (Intel SIMD architecture).7

The second implementation was developed on an NVIDIA 8800GTX GPU with768MB memory using the CUDA
environment.8 This GPU has16 independent multiprocessors, each containing8 processors. During fine-tuning of
our code, we ran it on variable grid sizes{64k× 64k : k ∈ 1. . .47}. For each grid, we measured performance on
several block sizes and different values ofΩ and recorded the configurations which minimized the running time. In
most runs,Ω = 16 produced the best results. For relatively small grids (up to768×768), a block size of64 produced
the best results. The reason is that the use of large blocks leads to a small number of active blocks at any given
time, hence, resulting in not all the GPU multiprocessors being active. On large grids, a block size of256 resulted
in the best performance, reducing the amount of waisted computations to approximately20%(note that even though
the maximum block size is512, configurations with too large blocks may lead to slower performance due to internal
synchronization between threads in the same block or may even result in a non valid configuration for the hardware
due to elimination of all hardware resources (registers, shared memory, etc.).

32-bit (single precision) floating point representation was used in both implementations. Pre-computation of geometry
coefficients were excluded from time measurements (pre-computation on the GPU took around9msof preprocessing
time on the largest grid with3008×3008vertices).

7.1 Performance benchmarks

Table I presents the execution times of the SSE2 and GPU implementations of the parallel marching algorithm on the
sphere surface, with the number of vertices ranging from four thousand to nine million. In all cases, PMM converges
in one iteration. Grid construction time (taking less than10% of a single iteration time) was not measured. For
comparison, execution time of the exact and approximate MMP algorithms implemented in [Surazhsky et al. 2005]
are presented.

As appears from the table, the GPU outperforms its rivals on all grid sizes but the gap becomes more pronounced
on large grids, where it outperforms the SSE2 implementation by nearly two orders of magnitude, achieving up to

7A packaged library is available fromhttp://www.cs.technion.ac.il/∼weber/Shared/PMM/PMM SSE2.rar.
8A packaged library is available fromhttp://www.cs.technion.ac.il/∼weber/Shared/PMM/PMM.rar.
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MMP MMP PMM PMM
Vertices (Exact) (Approx.) SSE2 GPU
4.1×103 0.4406 0.0982 0.0011 0.0006
16.4×103 4.4566 0.3898 0.0042 0.0009
65.5×103 54.886 1.6503 0.0172 0.0015
0.49×106 — 13.647 0.1308 0.0045
0.86×106 — 25.639 0.2306 0.0059
2.56×106 — — 0.6791 0.0133
4.19×106 — — 1.1301 0.0287
9.04×106 — — — 0.0389

Table I. Execution time (in seconds) of different geodesic distance computation algorithms on the sphere surface. For the exact and approximate
MMP algorithms, the code by Surazhskyet al. was used. Execution time of PMM is given for one iterations required for algorithm convergence.

MMP Approx. PMM
Grid step Mean abs err Mean rel err Max abs err Mean abs err Mean rel err Max abs err

1.56×10−2 2.47×10−3 1.79×10−3 9.99×10−3 7.11×10−3 6.49×10−3 1.26×10−2

7.81×10−3 1.17×10−3 8.52×10−4 4.88×10−3 4.67×10−3 4.34×10−3 8.15×10−3

3.91×10−3 5.73×10−4 4.16×10−4 2.41×10−3 2.91×10−3 2.74×10−3 5.05×10−3

1.42×10−3 2.05×10−4 1.49×10−4 8.71×10−4 1.38×10−3 1.31×10−3 2.37×10−3

1.08×10−3 1.55×10−4 1.13×10−4 6.60×10−4 1.08×10−3 1.03×10−3 1.86×10−3

6.25×10−4 — — — 7.23×10−4 6.92×10−4 1.24×10−3

4.88×10−4 — — — 5.92×10−4 5.68×10−4 1.01×10−3

3.22×10−4 — — — 4.36×10−4 4.16×10−4 7.38×10−4

Table II. Accuracy of the approximate MMP and PMM on the sphere surface, measured in terms of the mean absolute (L1) error, maximum absolute
(L∞) error, and mean relative error as a function of the grid sampling step. In both cases, the error depends approximately linearly on the sampling
step, in accordance with the theoretical first-order accuracy.

240million distance computations per second. For the same grid size, the SSE2 and the GPU PMM outperform the
state-of-the-art approximate MMP algorithm by three and four orders of magnitude, respectively.

The data transfer rates between the CPU and the GPU are limited by the bus bandwidth (theoretical4 GB/sec, observed
2.6 GB/sec). For example, for the largest grid with nine million vertices, the download time was53ms (4 floats
per vertex) and the upload time was17ms (one float per vertex). In most typical scenarios, the geometry image is
transferred to the GPU only once and several distance maps are computed, making this preprocessing time negligible.
Moreover, modern GPUs are capable of performing kernels in asynchronous manner leading to better hiding of data
transfer overheads.

Table II presents the accuracy of different geodesic distance computation algorithms, quantified in terms of the mean
absolute (L1) error, maximum absolute (L∞) error, and mean relative error for different grid sampling steps. This
comparison gives a fairly conservative bound on the accuracy of PMM, as the latter depends on the specific surface
parametrization. In Figure 8, the complexity is presented as a function of the algorithm accuracy and the grid size. The
SSE2 PMM achieves the accuracy of the approximate MMP algorithm at less than10%of its complexity, whereas the
GPU implementation requires about0.3%complexity.

Figure 9 presents the number of distances per second computed by the GPU. Best utilization of the computational units
is achieved for meshes exceeding five million vertices, where the rate reaches about240million distances per second.
For the largest grid containing9.04million vertices, the peak GPU memory consumption is around364megabytes.
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Fig. 8. Left: execution time vs. accuracy of different geodesic distance computation algorithms: GPU and SSE2 implementations of PMM (solid
blue and dashed green lines, respectively), and approximate MMP algorithm (dash-dotted red). Right: execution time vs. grid size; same legend
with the addition of the approximate MMP (dash-dotted red), and exact MMP (dotted cyan) algorithms.

7.2 Convergence

The dependence of the distance map accuracy on the number of iterationsN iter is visualized in Figure 10, which shows
the distance map computed from a single point source on the “maze” surface with complicated spiral characteristics.
As it appears from the figure, the algorithm converges in six iterations, achieving the mean absolute error of0.0024of
the shape diameter, and the mean relative error of0.0058.

While multiple iterations are required to compute a faithful distance map on the “maze” surface, it is important to
stress that in general our practice shows that very few iterations are sufficient to obtain accurate distance map on most
surfaces.

7.3 Geodesic paths, offset curves, and Voronoi diagrams

Figure 11 shows several computational geometric operations requiring the knowledge of a distance map on a surface.
For this visualization, a face surface from the Notre Dame University database was used [Chang et al. 2003]. The
surface contained21,775vertices and42,957faces. In the first two examples, a distance map was computed from a
point source located at the tip of the nose. Equi-distant contours were computed using the marching triangle technique
in the parametrization domain and then projected back onto the surface. Minimum geodesic paths were computed
by backtracking the curve from some starting point along the gradient of the distance mapt in the parametrization
domain. Formally, geodesic computation can be thought of as solution of the ordinary differential equation

.
γ = −G−1∇ut, (31)

whereγ(s) is the geodesic path in the parametrization domain andΓ(s) = x(γ(s)) is the geodesic on the surface. A
first-order integration technique was used to computeγ(s).
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Fig. 9. Number of distance computations per second for the GPU implementation of PMM. Best utilization is achieved for grids exceeding five
million vertices.

In the third example, a distance map from20 random points on the surface was computed and a geodesic Voronoi
diagram was found using marching triangles. In the fourth example, the distance map was computed from two discon-
nected curves and marching triangles were used to trace the geodesic offset curves.

7.4 Multi-chart geometry image

We demonstrate the distance computation algorithm for multi-chart on a “bumped torus” surface (Figure 12), repre-
sented using four100×100, 150×150, 250×250, and500×500charts, each spanning a fourth of the surface and
having the sampling density adjusted to the level of detail. Bilinear interpolation was used as the projection operators
Pi j . Figure 13 depicts the progress of Algorithm 4, in this example terminating after a single pass.

8. CONCLUSION

We presented a raster scan-based version of the fast marching algorithm for computation of geodesic distances on
geometry images. The structure of the algorithm allowed its efficient parallelization on SIMD processors and GPUs,
which have been considered in this paper. Numerical experiments showed that the proposed method outperforms
state-of-the-art methods for first-order distance map approximation by one or two orders of magnitude, thus allowing
real-time implementation of applications involving intensive geodesic distance computations. In our sequel works, we
are going to demonstrate some of such applications. We also showed a generalization of the presented approach to
multi-chart geometry images, which is important in many practical applications.
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Fig. 10. Left-to-right, top-down: progress of PMM on the “maze” surface, initialized with the source point in the middle. Equidistant contours in
the parametrization domain are shown. White regions stand for infinite distance. The algorithm converges after six iterations.
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A. PROOF OF PROPOSITION 1

The algorithm will stop afterN iterations, if the distance map remains unchanged between iterationN−1 andN. This,
in turn, happens whenN−1 iterations are sufficient to cover any characteristic in the parametrization domain. The
number of iterations can therefore be bounded by bounding the total variation of the tangential angle of a characteristic.
Our proof generalizes [Qian et al. 2006], where a similar result was shown for the Euclidean case.

Let Γ(s) be the characteristic curve with on the surface,s its arclength, andγ(s) = (u1(s),u2(s))T its parametrization
in U. SinceΓ(s) = x(γ(s)), using the chain rule we obtain

.
Γ = T

.
γ

..
Γ = T

..
γ + r , (32)
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Fig. 11. Computation of distance maps on a geometry image (21,775 vertices,42,957 faces). Left-to-right: equi-distant contours; minimum
geodesic paths; geodesic Voronoi diagram; offset curves.

Fig. 12. A four-chart geometry image of a torus with bumps. Chart boundaries are plotted as bold black lines. Note that each chart has a different
level of details and, consequently, a different sampling density.

wherer = (
.

γT
H1 .

γ,
.

γT
H2 .

γ,
.

γT
H3 .

γ)T andH i = ∇2
uuxi are the Hessian matrices ofxi with respect to the parametrization

coordinatesu. SinceΓ is a geodesic,
..
Γ is normal to the surface and hence

0 = PT
..
Γ = T

..
γ + PTr , (33)

wherePT denotes the projection on the tangent space.

Hence,

‖T ..
γ ‖ = ‖PTr‖ ≤ ‖r‖

≤
√

(λ H1

min)
2 +(λ H2

min)
2 +(λ H3

min)
2 · ‖ .

γ‖, (34)
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Fig. 13. Left-to-right bottom-down: the progress of the multi-chart fast marching algorithm on the bumped torus geometry image from Figure 12.
First, the distance map from the source point is computed on the upper left chart. The distance values on the boundaries are extrapolated onto the
neighboring charts, in which the distance maps are computed subsequently in the order of the minimum distance value on the boundary. Color map
depicts the level sets of the distance map. In this example, a single pass of the algorithm gives an accurate distance map.

whereλ H i

min is the smallest eigenvalue of the HessianH i .

SinceΓ is a geodesic,‖
.
Γ‖= 1. From (32) we have

1 = ‖
.
Γ‖2 =

.
γT

TTT
.

γ =
.

γT
G

.
γ ≥ λ G

min · ‖
.

γ‖2. (35)

Hence,1/λ G
max≤ ‖

.
γ‖2 ≤ 1/λ G

min. In a similar manner,

‖T ..
γ ‖2 =

..
γ T

TTT
..
γ =

..
γ T

G
..
γ ≥ λ G

min · ‖
..
γ ‖2 (36)

Combining the above results, yields a bound on the curvature ofγ

κ =
‖ ..

γ × .
γ‖

‖ .
γ‖3

≤ ‖ ..
γ ‖

‖ .
γ‖2

≤ λ G
max

λ G
min

√
(λ H1

min)
2 +(λ H2

min)
2 +(λ H3

min)
2. (37)
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Therefore, the total variation of the tangential angle ofγ is bounded by

TV(φ) =
∫

γ
κds ≤ maxκ ·

∫

Γ
ds ≤ maxκ ·D. (38)

In the worst case, an iteration is required for everyπ/2 in TV(φ) to consistently cover the characteristicγ, which
completes the proof.
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