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Computational Surface Flattening:
A Voxel-Based Approach

Ruth Grossmann, Nahum Kiryati, Senior Member, IEEE, and Ron Kimmel

Abstract—A voxel-based method for flattening a surface in 3D space into 2D while best preserving distances is presented.
Triangulation or polyhedral approximation of the voxel data are not required. The problem is divided into two main parts: Voxel-based
calculation of the minimal geodesic distances between points on the surface and finding a configuration of points in 2D that has
Euclidean distances as close as possible to these distances. The method suggested combines an efficient voxel-based hybrid distance
estimation method, that takes the continuity of the underlying surface into account, with classical multidimensional scaling (MDS) for
finding the 2D point configuration. The proposed algorithm is efficient, simple, and can be applied to surfaces that are not functions.

Experimental results are shown.

Index Terms—Surface flattening, geodesic distance estimation, multidimensional scaling, voxel representation, texture mapping.

1 INTRODUCTION

URFACE flattening is the problem of mapping a surface in

3D space into 2D. Given a digital representation of a
surface in 3D, we wish to map each surface point into the
plane, such that the distance between each pair of points in
the plane is as close as possible to the corresponding
geodesic distance between the points on the 3D surface.

It is known that flattening a surface in 3D space into a
2D plane introduces metric distortions unless the surface
has zero Gaussian curvature [7], [26]. Gaussian curvature is
the product of the maximum and minimum values of the
normal curvatures of the surface at a given point. Gaussian
curvature is an isometric invariant, so two surfaces are
isometric (i.e., preserve interpoint distances) only if they
have the same Gaussian curvature. For example, a plane
and a cylinder both have zero Gaussian curvature since, for
the plane, both principal curvatures vanish and, for the
cylinder, one principal curvature vanishes. Therefore, a
plane bent into a cylindrical shape can obviously be
flattened with no distortion. On the other hand, there is
no isometry of the sphere onto the plane, since their
Gaussian curvatures are different. This is the dilemma of
the map maker: The intrinsic geometry of the earth’s surface
is misrepresented by any flat map [30]. Since general
surfaces are likely to have nonzero Gaussian curvatures,
their flattening necessarily introduces some distortion.

The need for surface flattening arises in many scientific
areas, notably in medical imaging and in computer
graphics. For example, the cortical surface is highly
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convoluted, complicating visualization and registration of
MRI or fMRI data. However, after defining appropriate
cutting locations, the cortical surface can be unfolded with
relatively small distortion. One of the first flattening
algorithms was proposed in [28]. More efficient methods
were later developed: In [8], local metric properties were
preserved in the flattening process but large global
distortions sometimes occurred. In [5], [6], a global energy
functional was minimized. In [1], [15], [11], angle preser-
ving mappings (instead of distance preserving mappings)
were used for flattening. Surface unfolding using level-set
methods was presented in [16]. In computer graphics, there
is a need for area preserving texture mapping (e.g., [3] and
[24]). Surface flattening can be used to map a 2D flat texture
image onto a 3D surface, by first flattening the 3D surface
(see [33] for the case of triangulated surfaces). The mapping
of the 2D texture image onto the flattened surface is then
immediate and followed by mapping back the textured
flattened surface onto the surface in 3D space.

Following the progress in shape-from-X techniques,
high-quality acquisition of 3D shape with its texture is
nowadays easy to accomplish. One successful application of
this technology is the 3D photography of artifacts and
natural objects for virtual museums and exhibitions. Surface
flattening can serve as a useful tool for the analysis and
comparison of combined shape and texture models. In
particular, flattening can bring into a standard form
patterns that appear on differently shaped surfaces.

This paper combines a voxel-based geodesic distance
estimator with an efficient dimensionality reduction algo-
rithm to obtain a fast, practical method for surface
flattening. The flattening process is thus divided into two
steps. First, the minimal geodesic distances between points
on the surface are estimated. Then, a planar configuration of
points that has Euclidean interpoint distances that are
globally as close as possible to the corresponding minimal
geodesic distances is determined. The method presented
can be applied to surfaces that are not functions. A unique
feature of our approach is that the algorithm operates
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directly on voxel data, which is the natural representation
provided by many imaging devices, thus avoiding the need
for an intermediate triangulated representation of the
surface. This may simplify system design, eliminate some
representation errors, and lead to computational savings.
Preliminary results were presented in [14].

2 Voxel-Based Geodesic
Distance Estimation’

Finding minimal geodesic distances between points on a
continuous surface is a classical problem in differential
geometry. However, given digital 3D data, purely contin-
uous differential methods are impractical due to the
inherent need for interpolation, the vast computational
cost, and the risk of convergence to a local minimum in the
solution space.

The common practice is to transform the digital (voxel-
based) surface representation into a triangulated surface
representation (see [23] for an efficient triangulation
method) prior to distance calculation. In [25], the distances
between a given source vertex on the surface and all other
surface vertices are computed in O(N?log N) time, where N
is the number of edges on the triangulated surface. In [32],
an algorithm that is simpler to implement is given, but the
algorithm runs in exponential time. In [21] and [20], the fast
marching method on triangulated domains is introduced.
The method computes the minimal distances between a
given source vertex on the surface and all other surface
vertices in O(Nlog N) time, where N is the number of
triangles that represent the surface.

An algorithm for geodesic distance estimation on
surfaces in 3D, that uses the voxel representation without
a need to first triangulate or interpolate the surface, was
presented in [22]. The method is based on a high precision
length estimator for continuous 3D curves that have been
digitized and are given as a 3D chain code [19], and on the
representation of the digital surface as a sparse graph. The
vertices and edges of the graph, respectively, correspond to
voxels and to 3D digital neighborhood relations between
voxels. The shortest path between two points on the surface
is associated with the path that has the shortest length
estimate and that length estimate corresponds to the
geodesic distance between the two points. The computa-
tional complexity of the method is the same as that of
finding shortest paths on sparse graphs, i.e.,, O(NlogN),
where N is the number of surface voxels. Section 2.1 is a
brief overview of 3D length estimation. The application of
3D length estimation to the estimation of minimal distances
on surfaces is outlined in Section 2.2.

2.1 3D Length Estimation

The 3D length estimation problem is to estimate the length
of an underlying continuous 3D curve given its chain code.
The estimator described in [19] is based on link classifica-
tion in the 26-directional chain code representation of the
curve. It is of the general form

1. Parts of this section, including Figs. 1, 2, and 3, are reprinted from
Pattern Recognition 26: N. Kiryati and G. Székely, “Estimating Shortest Paths
and Minimal Distances on Digitized Three-Dimensional Surfaces,” pp. 1623-
1637, ©1993, with permission from Elsevier Science.
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Fig. 1. Link types in a 26-directional 3D chain code: a direct link (parallel
to one of the main axes), a minor diagonal link, and a major diagonal
link.

L = U,N; + UyN, + U3 N3, (1)

where N; is the number of direct links in the chain code, i.e.,
links that are parallel to one of the three main axes and N
and Nj are, respectively, the number of minor and major
diagonal links in the chain code (see Fig. 1). ¥, W5, and V3
are weights, and L is the estimated length.

Assuming that the digitization is sufficiently dense so
that the curve is reasonably straight within one or two
voxels, the naive selection of weights ¥; =1, ¥; = V2, and
Uy =+/3 would lead to consistent overestimation of the
length. Extending planar perimeter estimation theory to 3D,
in [19], the frequencies of appearance of direct, minor, and
major diagonal links in the 3D chain code of an infinite
straight line at any given orientation were determined.
Assuming uniform distribution of orientations, the weights
were then set to obtain an unbiased estimator that achieves
the least RM .S error possible. That estimator is

L = 0.9016N; 4+ 1.289N3 + 1.615N3. (2)

For infinite straight lines, the estimation error is lower
bounded by -9.84 percent and upper bounded by 4.59 per-
cent, and the RMS error is 2.88 percent. The unbiasedness
of the estimator implies that, if the direction of the tangent
varies along the curve, local estimation errors cancel out
and much lower total estimation errors are obtained. Fig. 2
shows the average, maximum, and minimum errors as a
function of radius in perimeter estimation of 100 randomly
oriented and translated circles in 3D space [19]. As
expected, the average error is very small and approaches
zero as the radius increases.

Sophisticated and more accurate voxel-based 3D length
estimators have recently been presented in [18]. They rely
on the cube-quantization method and are thus inherently
better behaved in the mathematical sense [17]. These
advanced 3D length estimators have not been used in this
research, since their incorporation in a scheme for geodesic
distance estimation is not straightforward.
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Fig. 2. Perimeter estimation of circles in 3D using the unbiased,
minimum RMS error 26-directional link classification estimator. The
solid curve shows the average error (of 100 experiments) as a function
of radius. The dashed curves show the minimum and maximum errors
encountered.

2.2 Finding Minimal Distances on a Surface
Suppose that the surface of an object is given in digitized
form as a set of voxels in a three dimensional array. Assume
that a voxel belongs to the digitized surface if it is traversed
by the underlying continuous surface and if at least one of
its direct (i.e., 6-directional) neighbors is a “background”
voxel.

A path that runs on the surface and connects two surface
points can be represented in digital form by the set of
surface voxels that the path traverses. This set of voxels, the
“digital path,” can be represented by a 6-directional chain
code. By allowing full diagonal connectivity, a 26-direc-
tional chain code representation is obtained.

If it is assumed that the digitization grid is fine with
respect to the curvature of a path, such that the path is
roughly linear within most of the voxels, its length can be
estimated from the digital representation using a three-
dimensional length estimator. This is the basis for estimat-
ing minimal distances and shortest paths on digitized three-
dimensional surfaces: The shortest path between two points
is assumed to be associated with the digital path whose
length estimate is the shortest, and that estimate is taken as
an estimate of the minimal distance. In this hybrid discrete-
continuous technique, interpolation of the digitized surface
data is implicit in the design of the length estimator (hence,
computationally costless) rather than an explicit algorithmic
stage.

The digital surface is viewed as a three-dimensional
graph, in which each vertex corresponds to a surface voxel.
Given any specific definition of surface connectivity, pairs
of vertices that correspond to pairs of neighboring surface
voxels are connected by arcs in the graph. Twenty-six-
directional connectivity is defined, hence every surface
voxel is connected by an arc to every surface voxel in its (26)
neighborhood.” If each arc is assigned a cost according to
the weight of its link type (direct, minor diagonal or major

2. In the digitization of surfaces that fold onto themselves, as in MRI
brain data, it might happen that two neighboring surface voxels correspond
to parts of the underlying continuous surface that are actually distant from
each other. In the sequel, we assume that the digital surface data used as
input to the flattening algorithm is topologically correct, implying that this
exception has been eliminated by preprocessing. This is a common practice
in the analysis of MRI data.
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diagonal) in the 3D length estimator, then estimating
minimal distances and shortest paths on a continuous
surface given in digitized form reduces to finding the
shortest path in a graph.

Algorithms for finding minimal distances and shortest
paths in graphs are well-known; for an overview, see [13].
Here, all arcs have positive weights so, in principle, the
algorithm of Moore and Dijkstra can be applied. Let N
denote the number of vertices in the graph, i.e., the number
of surface voxels; then, the shortest paths between a source
vertex to all other vertices can be found in O(N?) time. It is,
however, clear that surface graphs are sparse: The number
of arcs emanating from any vertex is upper bounded by 26.
(In practice, since it is assumed that the digitization is fine, a
surface is roughly planar within most small neighborhoods,
so the number of arcs emanating from a vertex is about 8).
The computational complexity can thus be reduced, and the
minimal distance from a vertex to all others can be estimated
in O(N log M) time, where M is the total number of arcs in
the graph and is proportional to N [13]. This means that the
minimal distances can be found in O(N log N) time. The key
to computational efficiency in the implementation is the use
of a priority queue (heap) data structure [29]. The minimal
distances between every pair of vertices can obviously be
determined in O(N?log N) time by N applications of the
algorithm. Observe however, that the shortest paths and
minimal distances in the graph are just an approximation to
the shortest paths and minimal distances on the continuous
surface. The quality of the approximation reflects the quality
of the 3D length estimator [19].

The operation of the algorithm is demonstrated in Fig. 3.
The surface resembles a hilly terrain, with a river-like
obstacle that divides it into two regions connected by a
narrow “bridge.” The black path is the estimated shortest
path from the source voxel to the destination voxel; the gray
contours represent equal estimated distance from the
source. Observe the diffraction pattern beyond the narrow
bridge.

Having obtained estimates of the minimal geodesic
distances between points of the surface in 3D space, we
proceed to finding a corresponding configuration of points
in 2D with interpoint Euclidean distances that are as close
as possible to the respective geodesic distances.

3 FLATTENING BY MULTIDIMENSIONAL SCALING

A dissimilarity matrix is a matrix that stores measurements of
dissimilarity among pairs of objects. Multidimensional
scaling (MDS) is a common name for a collection of data
analytic techniques [2] for finding a configuration of points
in a low-dimensional Euclidean space that will represent
the given dissimilarity information by the interpoint
Euclidean distances. Since usually no configuration of
points can precisely preserve the information, an objective
function is defined and the task is formulated as a
minimization problem. So, given a set of items {x;} with
dissimilarities 6(k,[) between items X, and X, the goal is to
find p-dimensional data vectors {x;}, X; € %" that have
Euclidean distances {d(k,[)} that approximate {6(k, )} well.

Many variants of MDS exist, differing in the objective
function and optimization algorithms. These can be divided
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Fig. 3. Finding the shortest path between two voxels using the algorithm of [22]. The surface is a hilly terrain, cut into two regions connected by a
narrow “bridge” through which the path from the source (bottom-right) to the destination (top-left) must pass. The black path is the estimated shortest
path from the source voxel to the destination voxel; the gray contours represent equal estimated distance from the source. Observe the diffraction-

like pattern of the equal estimated distance contours beyond the bridge.

into two basic classes: metric and nonmetric MDS. In metric
MDS, the original distance (or dissimilarity) matrix is
approximated. Nonmetric MDS deals with ordinal data or
data in which only the order of the distances (dissimila-
rities) needs to be preserved. There is increasing interest in
the development and use of statistical dimensionality
reduction techniques for image analysis [27], [31].

MDS is the second step in our surface flattening
approach. Once the minimal geodesic distances between
points on the surface have been estimated, they are
represented as a dissimilarity matrix. The flattened
2D point configuration that best preserves these distances
is then obtained via a direct and simple metric MDS method,
known as Classical Scaling. It provides an analytic solution
and is fast to compute. Classical scaling minimizes an
objective function known as Strain.

Fig. 4. A synthetic surface in 3D space obtained by curling a planar
rectangular sheet. Note that this surface is not a function.

Let x denote the element by element product of two
matrices, i.e., if A = (a;;) and B = (b;;), then A « B = (a;;b;;).
Given a dissimilarity matrix A (a symmetric matrix with
nonnegative elements and zeroes on the diagonal) that, here,
contains the estimated geodesic distances between the sur-
face points, the Strain minimization problem is in this case

min || D(X) * D(X) - Ax A I

where X is the n x 2 matrix of point coordinates in R2,
D(X) is a n x n matrix of Euclidean distances between the
points in %% and || - |z denotes the Frobenius norm, i.e.,
| A %= trace(A’A).

The double centering operator [4] is defined as:

T(A) = — S JAJ.
2

Here, A is a square n x n matrix and J =1 — %éé/ , where
e=(1,...,1) is an n-vector of ones and I is the n xn
identity matrix. The double centering operator is a linear

Fig. 5. The flattened surface obtained using the method presented in this
paper.
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Fig. 6. Euclidean distances on the flattened surface versus the
corresponding estimated geodesic distances on the 3D surface.

operator on square matrices. Note that T(A) is symmetric if
A is symmetric.

The classical scaling algorithm consists of the following
steps:

e Apply double centeringto Ax A: B =T(AxA).
e Compute the first two eigenvalues (A, \2) and
eigenvectors [v1|v2] of B. Create A = diag(\, A2)
and Q = [v1]v2].
e The output (flattened) coordinate matrix is given by
X = QA2
In this method, partial eigendecomposition of an n xn
symmetric matrix is required. Had complete eigendecom-
position been necessary, the symmetric QR algorithm could
have been used, requiring O(n?) time. Since only the two
largest eigenvalues and their corresponding eigenvectors
are required, much faster algorithms can be applied, such as
bisection, the power method and Rayleigh quotient iteration
and orthogonalization with Ritz acceleration (see [12] for
details).

4 INTERPOLATION

Surfaces in 3D space are often represented by tens of
thousands of voxels. Although the interpoint geodesic
distances between the surface voxels can be computed
quite efficiently, applying the MDS algorithm to such a
large amount of data may be inconvenient. Therefore, we

Fig. 7. The same surface as in Fig. 4, but at a different spatial
orientation. Since the world coordinate system is fixed, the voxel-
representation of the surface is totally changed.
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Fig. 8. The flattened surface obtained is slightly different than the one
shown in Fig. 5.

first select a sample of surface voxels (say 1,000) and apply
the flattening procedure to this subset. Note that the
minimal distance between each pair of points in this sample
is still calculated using the complete surface model. After
flattening the sample, the flattened position of the remain-
ing surface voxels is obtained by interpolation. Many
different interpolation algorithms can be employed; radial
function interpolation was used in this research.
Formally, given the flattened representation

(&) i=1,...

of a subset of the n surface points {(z;,vi,2z) |1 =1,...,m},
we would like to map the remaining surface points from 3D to
2D. In particular, we would like to find functions f; : RI—R
and fy : R3—R that, for k = 1,2, satisfy fi(x;, v, 2:) = & and
interpolate the data well.

Radial functions are a convenient and simple tool for
global interpolation of scattered multivariate data [9].
Generally, given scattered data of the form {(x;,F}): X; €
R F, €R, i=1,...,n}, the radial function interpolation
problem is to find an interpolant of the form:

’m}

m

S®) = big(| X =% |*) +ps, X € R (3)
=1
s.t. ps € Il (4)
ZbiQ(ii) =0, gell (5)
=1
S()_(i):FL', i=1,...,n, (6)
100
90
80
o 70
é 60
g 50
% 40t
w 301
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O0 26 éﬂ 100
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Fig. 9. Euclidean distances on the flattened surface versus the
corresponding estimated geodesic distances on the reoriented
3D surface. Compare with Fig. 6.
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Fig. 10. (a) A depth image of a human face. (b) Euclidean distance on flattened surface versus estimated geodesic distance on 3D surface of the

face.

Fig. 11. (a) A brick-wall texture. (b) The brick texture mapped onto the face.

where g is a univariate function defined on R, II, is the
space of all algebraic polynomials of degree less than s on

R4, and || - || is the Euclidean norm on R
Condition (5), that the coefficient be orthogonal to the

polynomial space, guarantees uniqueness of solution for
appropriate ¢(-) and s. Condition (6) is the requirement that

the solution be clamped to the data points (x;, F;).
Various classes of functions ¢(-) have been considered

[9], [10]. The function g(t) = v/t with s = 2 is known to have
a unique solution for any set of distinct X;,...,%,, € R3. For
this choice of g and s, the problem is reduced to finding

radial functions f; (k= 1,2) of the form

fla.d) = S by e ) + )+ (e )

—I—alg +a]fw+a§y+ algz

(7)
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st > bf1=0, > b =0,
dobfyi=0, > bzm=0,
i=1 i=1
fi(@i, i, z) = €. 9)

The coefficients can be found by solving the following

linear system (for k = 1,2)

A E -Bk B gk
E ol||la| |0
where
o 2 2 2
o A= \m—1) + - u) + (- 5)
i E(Z71):1a E(Z72):x27 E(Zag):yu E(Z74):er
o b =(F... ),
o a'=(aj....a}),
o ¢ :(llcv '7ffn)l-
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Fig. 12. (a) An Escher butterfly texture mapped onto the face. (b) A cloth texture mapped onto the face.

The solution of this linear system defines a radial function
interpolant of the form (7), that satisfies (8) and (9).

The radial function interpolant fy(z,y,2) (for k= 1,2) is
optimal in the sense that it minimizes the roughness
measure

o°f of o°f ., Pf *f Pf e
\/5 H7+87y2+@+ a$8y+28$82+2 II¥ dedydz

Oy0z

while passing through the observed data points.

The quality of the interpolation depends on the
curvature of the surface and on the sampling method.
Sampling adapted to the curvature of the surface, or
uniform sampling of the surface, will produce the best
results but are not always easy to obtain. However, if the
curvature of the surface is not too high, other sampling
methods may still lead to good results. For example, when
dealing with depth images z(z,y) of smooth surfaces,
uniform sampling in the (z,y) plane is usually adequate.

5 EXPERIMENTAL RESULTS

Fig. 4 shows a synthetically created surface in 3D space. The
surface can be regarded as a curled rectangular planar sheet
of paper, with a uniform chessboard pattern. Note that, due
to the curling, this surface is not a function.

Since the surface is a curled plane, it can, ideally, be
flattened without any distortion. Applying the algorithm
suggested in this paper to the surface yielded the flattened
result shown in Fig. 5. The slight distortion is due to the
small errors in the estimation of geodesic distances that are
used as input to the MDS procedure. Note that, as the voxel
resolution increases, the distortion, albeit small, will not
reach zero. This follows from the local way we measure
length (and distance) as an (optimally) weighted sum of
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chain-code links, and from the fact that the structure of a
digital straight line does not change as resolution increases.

Fig. 6 shows Euclidean distances on the flattened surface
{d(k,0)} as a function of the corresponding estimated
geodesic distances {6(k,)} on the curled surface in
3D space. Since the original surface can ideally be flattened
without distortion, had error-free geodesic distance esti-
mates been available, d(k, ) would have been equal to 6(k, )
for all pairs (k,1), and all points in the graph would have
been on the diagonal line. However, due to the slight errors
in geodesic distance estimation, distances on the flattened
surface cannot be identical to the geodesic distance
estimates, leading to the small spread of points near the
line. In quantitative terms, let €(k,!) denote the absolute
value of the discrepancy between d(k,[) and 6(k, ),

e(k,l) = |d(k, 1) — 6(k,1)]

and let €,(k, 1) denote the absolute value of the relative error,

(kD) = ‘d(k,l) - ’

5(k, 1)

In this example, the average € of the absolute discrepancy
le(k,1)|] over all surface point pairs is 0.423 (voxel size
units), less than half a voxel. For comparison, 5, the
average geodesic distance between points on this surface,
is 35.4. €, the average absolute value of the relative error,
is 2.13 percent.

Since spatial quantization of a continuous surface is not a
space invariant operation, changing the orientation of the
curled plane in space, as shown in Fig. 7, generally results
in a different voxel-representation of the surface. Thus, the
geodesic distance between any two points on the contin-
uous surface, which is obviously independent of orienta-
tion, will be estimated slightly differently following
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Fig. 13. Chessboard texture mapped onto the face.

digitization and voxel-representation of the surface. This, in
turn, leads to a slightly different flattening, as shown in
Fig. 8. See also Fig. 9. In this case, the average absolute
discrepancy is € = 0.428 and the average absolute value of
the relative error is & = 2.06%.

One application of the suggested surface flattening
algorithm is texture mapping. Fig. 10a is a depth image of
a human face, in which depth is represented as brightness.
Following flattening, Fig. 10b shows Euclidean distances on
the flattened surface as a function of the corresponding
estimated geodesic distances on the surface of the 3D model.
The larger scattering in this case around the diagonal line is
due to the fact that this surface cannot be flattened without
some distortion. Here, the average absolute discrepancy is
€=19.04, and should be compared with the average
geodesic interpoint distance § = 141.9. The average absolute
value of the relative error is €. = 7.66%.

Fig. 11a shows a brick wall texture. Overlaying this
texture onto the flattened face surface and mapping the
surface back to 3D with its texture (using the known
transformation) yields the texture-mapped face shown in
Fig. 11b. Additional texture mapping examples are shown
in Figs. 12 and 13.

6 CONCLUSIONS

We presented and demonstrated an efficient and practical
surface flattening method. Beyond its computational effi-
ciency and ease of implementation, the suggested approach
has the following unique characteristics:

e The algorithm operates directly on voxel data. An
intermediate triangulated representation of the sur-
face is not necessary. Note that voxel data is the
natural output format of common medical imaging
systems.

e The solution is optimal in a mathematically well-
defined sense (the strain metric, applied to global
preservation of the estimated geodesic distances).
This means that global distances are preserved
almost perfectly on developable surfaces, and are
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approximated as well as possible on nondevelopable
surfaces.

e The approach is essentially analytic; it does not call
for iterative search in a solution space, hence there is
no risk of convergence to local minima.

We believe that this unique combination of features makes
the proposed algorithm attractive for the analysis and
visualization of medical imaging data and remote sensing
data.
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