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Abstract— Addressed here is the problem of constructing and for the face recognition application, where real- or near-
analyzing expression-invariant representations of human faces. real time performance is required. Moreover, it is practically

We demonstrate and justify experimentally a simple geometric ,,qggiple to capture the subtle individual differences of
model that allows to describe facial expressions as isometric - o .
expressions in different subjects.

deformations of the facial surface. The main step in the con-

struction of expression-invariant representation of a face involves The present paper focuses on a simple geometric model
embedding of the facial intrinsic geometric structure into some

convenient low-dimensional space. We study the influence of the of faC|aI. expres§|ons, referred tc,’ as tisemetric modeknd )
embedding space geometry and dimensionality choice on the EXpression-invariant representation of the face based on this
representation accuracy and argue that compared to its Euclidean model. Our thesis is that facial expressions can be modelled
counterpart, spherical embedding leads to notably smaller metric as isometries of the facial surface. A simplified setting of
distortions. We experimentally support our claim showing that  pis model assuming all expressions to be with closed mouth
a smaller embedding error leads to better recognition. . - . L .

was used in our three-dimensional expression-invariant face
Keyword: Isometry-invariant representation, multidimensionakcognition system [2], [15], [16], [17]. Here, we extend this
scaling, isometric embedding, face recognition, spherical hanodel to handle both open and closed mouth.

monics. . . . L .
Using the isometric model, expression-invariant representa-

tion of the face is essentially equivalent to isometry-invariant
representation of a surface. We apply the isometric embedding
Expression-invariant features of the human face play approach, introduced by Elad and Kimmel [18]. The key idea
important role in various applications. Such are face recog-to represent the intrinsic metric structure of the facial surface
nition in computer vision [1], [2], texture mapping for facialby embedding the surface into a low-dimensional Euclidean
animation in computer graphics [3], [4], [5], [6], [7], emotionspace and replacing the geodesic distances by Euclidean ones.
interpretation in psychology [8], and measurement of geomethe resulting representation, known eanonical form can
ric parameters of the face in cosmetic surgery. The variabilitien be treated by conventional methods for rigid surface
of the face appearance due to its non-rigid structure mak@atching.

these tasks non-trivial and challenges for a convenient model| he ad  thi h ious| d
to analyze the nature of facial expressions. The advantage of this approach over previously propose

In face recognition, the problem of expression-invarialrlilf_'ethodS is that we do not attemgeneratingfacial expres-

representation is of particular importance as most of todax?‘gms'I bu.t rat_her cre?te.al represer)tatlon wh|cr:j||s (approx-
face recognition systems are sensitive to facial expressightely) invariant to facial expressions. Secondly, we use
variations. The development of robust face recognition alg 1€ whqle faua! surface without removing part; sen§|t|ve to
rithm insensitive to facial expression is one of the greateg}(pressmns. Thirdly, the gallery contains only a single instance

challenges of current research in this field [9], [10], [11]? a subject, e.g. the neutral expression. Finally, our algorithm

[12]. Several approaches have been proposed for this purpd§§.omputationally efficient and can be performed in near real-

One possibility is to use only regions of the face the lealfne-
susceptible to variations due to facial expression [13]. Forwe start with a description of the isometric model and
example, one can remove the mouth region as it varies greatly experimental validation in Section II. In Section IIl, we
with expression. Yet, practice shows that there is no largeesent the Elad-Kimmel isometry-invariant surface matching
subset of the face that is perfectly rigid across a broad ranggproach in a broader perspective, for both Euclidean and non-
of expressions [14] Euclidean embedding spaces. We address some criteria for the
Another possibility is to add different expressions of eacthoice of the embedding space, and present the computational
subject into the gallery. The main limitation is the largeore of the approach, based on multidimensional scaling.
number of instances of each subject due to the richnessS¥ction IV deals with facial geometry representation in three-
all the possible expression. Even though, the probe expressidensional spaces with Euclidean and spherical geometry.
may still be substantially different from those sampled. ~ Embedding into a three-dimensional sphe§g) (introduces
A third approach is a model of facial expression used &maller distance distortion, and consequently, yields better
generate synthetic facial expressions for any 3D surface. SweBognition. We provide an experimental evidence of this fact.
models are usually very complicated and therefore, not suitalglection V deals with incorporating the texture information
Manuscript revised March 7, 2006 u_sing e_mbedding inFo a t\_/vo-dimensiongl space, s_pecifically
A. M. Bronstein, M. M. Brons’tein aﬁd R. Kimmel are with the Departmeng|SCUSS|ng the two-dimensional Sph@:)e Finally, Section VI
of Computer Science, Technion — Israel Institute of Technology. concludes the paper.

I. INTRODUCTION



Il. | SOMETRIC MODEL OF FACIAL EXPRESSIONS

We describe a facial surface as a smooth compact connected
two-dimensional Riemannian manifold (surface), denoted by
S. The geodesic distances (shortest path lengthsy are in-
duced by the Riemannian metric and are denoteddf{:, &-)
for £1,& € S. A transformationy : S — S’ is called an
isometryif

ds(&1,&2) = ds(¥(&1),9(&2)), 1)

for all £&1,& € S. In other words, an isometry preserves the
intrinsic metric structure of the surface.

The isometric model, assuming facial expressions to be
isometries of some “neutral facial expression”, is based on the
intuitive observation that the facial skin stretches only slightly.
All expressions of a face are assumed to be (approximately)
intrinsically equivalent (i.e. have the same metric structure).
Broadly speaking, the intrinsic geometry of the facial surfaggy. 1. Illustration of the open mouth problem. First row: Geodesics
can be attributed to the subject’s identity, while the extrinsim the facial surface with three facial expressions. An open mouth
geometry is attributed to the facial expression. changes the topology of the surface, which leads to loosing the

However, the isometric model also requires togology consistency o_f the geoo_lesms. Seco_nd row: The_same fac_e, in which
of the surface to be preserved. This assumption is valid f%ﬂre topology is constrained by cutting out the lips. Consistency of

e geodesics is better preserved.
most regions of the face except the mouth. Opening the mouth
changes the topology of the surface by virtually creating a
“hole.” Fig. 1 demonstrates this particular property by showin
a minimal geodesic between two points on the upper and t
lower lips. In [2], [15], we ignored this possibility, assuming
all the expressions to be with closed mouth. Even in such
limited setting, the isometric model appeared to be able
gracefully represent strong facial expressions. In order to
able to handle expressions with open and closed mouth, we
propose fixing the topology of the surface. We could enforggy 2. |sometric model validation experiment. Left: facial image
the mouth to be always closed by “gluing” the lips when theith the markers. Right: example of one moderate and two strong
mouth is open; alternatively, we can constrain the mouth tercial expressions with marked reference points.
be open and disconnecting the lips by means of a cut in the

surface when the mouth is closed. Here, the later option is o S
adopted. and absolute error distributions are plotted in Fig. 3. The

standard deviation of the absolute and the relative errors were
5.89 mm and15.85%, respectively, for geodesic distances, and
12.03 mm and 39.62%, respectively, for the Euclidean ones.

In order to validate the isometric model, we tracked a sgfe conclude that the changes of the geodesic distances due
of feature points on the facial surface and measured hey facial expressions are insignificant even for extreme ex-
distances between them change due to expressions, Wpjlgssions, which justifies our model. Moreover, the Euclidean
preserving the topology of the surface. In this experimeésg, distances were demonstrated to be much more sensitive to
white round markers (approximatelymm in diameter) were changes due to facial expressions compared to the geodesic
placed on the face of a subject as invariant fiducial poingnes. This observation will be reinforced in Section IV-A,
(Fig. 2, left). The subject was asked to demonstrate differaghere we compare our approach based on geodesic distances

facial expressions of varying strength with open and closegq straightforward rigid matching of facial surfaces.
mouth (total of16 expressions; see some examples in Fig. 2,

right). The faces in this and all the following experiments
were acquired using a coded-light scanner with acquisition
time of about150 msec and depth resolution df.5 mm [19]. Under the assumption of the isometric model, in order to
As the reference surface, we used a “neutral expressioabitain an expression-invariant representation of the face
The lips were manually cropped in all the surfaces. Fast would like to keep only thetrinsic metric structure ofS.
Marching Method (FMM) [20] was used to measure th&quivalently, we would like to somehow ignore tkgtrinsic
geodesic distances. geometry that is, the way the surfacg is immersed into the
The changes of the distances due to facial expressi@rmabient space. An obvious invariant to isometries is the set of
were quantified using two measures: the absolute and #ikbgeodesic distances on the surfa@tdn practice,S is given
relative error with respect to the reference distances. Relatafea finite set of point$¢y, ..., {x }, and the geodesic distances

With topological constraint

A. Validation of the isometric model

IIl. | SOMETRY-INVARIANT REPRESENTATION



criterion (see Section I1I-B).

Originally, Elad and Kimmel transformed the isometry-
invariant deformable surface matching problem into a problem
of rigid surface matching inR3. However, for non-trivial
surfaces there is usually an unavoidable representation error
resulting from the theoretical impossibility to embed a curved
surface into a Euclidean space [21]. The canonical represen-
tation of a face is therefore degraded by two types of error:
one stemming from the deviation from the isometric model
| of facial expressions, and the other caused by embedding

40 60 distortion. While the first error is a limitation of our model, the

second one can be reduced by choosing a better embedding
space. An important question is whether such a choice will
also lead to better recognition.

There are two important aspects to be addressed. First,
the geometryof the embedding space is important. Certain
geometries appear to be more suitable for certain types of
surfaces, and thus allow smaller embedding errors [22], [6],
[23], [24]. For practical reasons, the geodesic distances in the
embedding space should be efficiently computatgecondly,
thecodimensiorof the embedding is important. In case of non-

‘ zero codimensionr¢ > 3), embedding produces a canonical
100 150 form that can be plotted as a surface in the corresponding
Relative error (%) embedding space. Yet, in this way we take into consideration

Fig. 3. Normalized histograms of the absolute and the relative errgnly the geometry of the face and do not make explicit use

of the geodesic (solid) and the Euclidean (dotted) distances. O% the pho_tometric_ informationtgxture), WhiCh_ may contain
important information that can help to discriminate between

faces.

A way to incorporate the texture, described as a scalar field
ds(&:,§;) are computed approximately from the samplesiof , . s —, R, is to perform a zero-codimension embedding
using FMM and represented as ahx N matrix A. of S into some two-dimensional space:(= 2). Such an

Yet, comparing explicitly the geodesic distances is diffiempedding can be thought of aanonical parameterization
cult since the correspondence between the samples of ¥(Othe facial surface. Alternatively, one can think of the
surfaces is unknown. As a solution, Elad and Kimmel mﬂmbedding as a warping of the texture image, producing a
proposed to represedi as a subset of some convenient ~znonical imagez = () [2]. Since the embedding approx-
dimensional spac@™, such that the original intrinsic geom-imately preserves the intrinsic geometry of the facial surface,
etry is approximately preserved. Such a procedure is caligh canonical image is expression-invariant. The difference
an (almost) isometric embeddingnd allows to get rid of petween these two cases is exemplified in Section IV where

the extrinsic geometry. As the result of isometric embeddinge show embedding int&3 andS? and in Section V, where
the representations of all the isometriesSofre identical, up embedding intds? is shown.

to the isometry group @™, which is usually easy to deal
with (for example, all possible isometries R? are rotations,
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translations and reflections.) A. Preprocessing
In the discrete setting, isometric embedding is a mappingThe face canonization procedure consists of three stages:
between two finite metric spaces preprocessing, embedding and matching. The aim of the first

) m stage is to crop a region of interest out of the facial surface,
({8 Ent €8, A) = ({an, o an} € Q7 D), which will be later used for the canonical form computation.
such thatds(&;,&;) ~ dom(x;,z;) for all 4,5 = 1,...,N. First, the surface undergoes standard processing for scanning

The matricesA = (§;) = (ds(&,€;)) and D = artifact removal (spike removal, hole filling, smoothing, etc).
(dij) = (dgm(z,z;)) denote the pair-wise geodesic disThen, the facial contour is cropped using t@odesic mask
tances between the points in the original and the embeddid®]. The main idea is to compute a geodesically-equidistant
space, respectively. Elad and Kimmel [18] called the imag®ntour of a fixed radius from some set of anchor points (e.g.
{z1,..,on} = p({&1,...,En}) the canonical formof S. We  nose tip and the sellion point) and cut all the points outside this
emphasize that in general, such an isometric embedding doestour. If a topological constraint is employed to allow for
not exist since embedding inevitable introduces metric distor-
tion. As the result, the canonical form is just approximate 1A simple analytic expression for geodesic distances is available for spaces
. ' . . . .with Euclidean, spherical and hyperbolic geometry. In [25], [26] we show an
rep.resentanon. of the d|screte- S_urfa_ce' Yet, itis po§3|ble to fi cient interpolation procedure for geodesic distances, thereby, the geodesic
optimal canonical forms by minimizing soneenbedding error distances need not necessarily to be expressed analytically.



for example S? is represented as a unit sphereRit), we will
use theN x m’ matrix X to denote the coordinates ™
corresponding t@®.

The functions is an embedding error criterion, measuring
the discrepancies between the original (geodesic) distances and
the embedding space distances. Most common choices of
include theraw stress

Traw(@; A) = > (di(®) = 5i)°, 3)
>

and thenormalized stress
Yis; (i (©) = 6;5)?

2is; 43(©)
Here d,;;(®) and ¢;; are a short notation fotigm (6;,6;)
and ds(&;,€;), respectively. For additional embedding error
criteria, see [27].

Fig. 4. First row, left to right: geodesic mask computation stages Note that in fact we compute directly the image

in case of the topologically-constrained isometric model assumptio .
(open and closed mouth): geodesic circles around the nose and Sﬂqéfl’ -, &n}) rather thany itself. Also note that the op-

sellion; geodesic circles around the lips; the merged geodesic mdémizgtion prOt_)'em i$ non-convex and using convex opti-
Second row: examples of the geodesic mask insensitivity to faciization algorithms is liable to converge to a local rather

expressions. than global minimum. Nevertheless, convex optimization are
commonly used in the MDS literature [27]. Having a good
initialization or using multiscale or multigrid optimization

expressions with both open and closed mouth, two geodeEi8] reduces the risk of local convergence. Usually, first-order

masks are computed: one around the nose tip and the selli@fadient-descent) optimization algorithms are employed for

and another around the lips (Fig. 4, first row). The lips regidarge scale MDS problems. The computational complexity of

can be found using standard methods, e.g. according to &gh methods grows ag(N?).

texture information. A radius 030 mm is typically used for

the lip mask. The two masks are then merged together. This

way, we crop the facial surface in a geometrically consisteet

manner, which is insensitive to facial expressions (Fig. 4,

(4)

Unorm((a; A) =

Canonical form matching

second row). The final stage is matching of canonical forms. In case
of geometry-only representation (non-zero codimension), we
B. Multidimensional scaling assume to be given two canonical fornis,,...,zy} =

The second stage is the embedding. We assume &1 - &n}) and {2y, ...y} = ¢'({&, .. &y }), cor-

smoothed and cropped surface to be sampledvapoints responding to twp surfaceS and_S’. The_ canonical forms
(€1, ...&x) (typically, N ranges betweeri000 and 3000), are represented in the parametric coordinate®Q6f by the

and assume to be given as input the matrix of geodeéﬂgtrices@ and®’. The goal of matching is to compute some

{ , .
distancesA between the surface samples. Every paiin the d|st§1nced(@, o) between the canonical forms.

embedding spac@™ is assumed to be corresponding to some First of all, the matching should account for the fact that the
m-dimensional parametric coordinaté@s= (¢, ...,¢™). The canonical forms have some unresolved degrees of freedom and

geodesic distances are given by some explicit or efficienffe defined up to an isometry @™. The most straightforward

approximated functiondgm (z1,22) = dgm(61,03). The approach is to use aiterative closest poin{ICP) algorithm
canonical form is computed by the following optimizatiol29]. [30]. These algorithms minimize a distance between two
problem point clouds over all isometries i@™, i.e. find an optimal
© = argmino(©; A), (2) rigid alignment betwee® and®’. The ICP problem is well-
© studied inR3, and practically untouched for non-Euclidean
known asmultidimensional scalindMDS) [27]. Here® = spaces. Moreover, ICP algorithms are usually computationally

(01,...,0N) is an N x m matrix of parametric coordinatesintensive and thus comparison between a large number of
in Q™ corresponding to the pointszy, ..., zx}. In case of canonical forms, which is typical, for example, in one-to-many
Euclidean embedding, the parametric coordinate®"incoin- face recognition applications with large databases, becomes
cide with the Cartesian coordinatesi¥*. Therefore, we can prohibitive.

refer to {z1,...,zy} directly by their Cartesian coordinates, As an alternative, thenethod of momentsan be used [31].
which we denote bX = ©. In the non-Euclidean case, if theln case of Euclidean embedding, the distance between two
embedding spac@™ can be realized as a geometric place inanonical forms represented by the Cartesian coordindtes
some higher-dimensional Euclidean sp& (with m’ > m; and X’ is computed as the difference of thef-th order



moments geodesic mask is used (see Section IlI-A). In order to test
, x % 2 the topologically-constrained canonical form, we used a data
du(X, X') = Z (“plp - /lpl,...,pm) () set containingl02 instances with different facial expressions
pit4pm <P of 7 subjects, including both oper(( instances) and closed
where (32 instances) mouth. This is an extended version of the ex-
N m periment presented in [15], which contained only expressions
M;(l,...,pm = Z folg’ (6) with closed mouth. In all our experiments, lip contour was

i=1 k=1 segmented manually. The matching of canonical forms was
is the m-dimensional moment dK for any i, ..., pm > 0. A based on 3D moments. For reference, we also show rigid

somewhat better approach is to consider the canonical form™&tching of the original surfaces.
a two-dimensional triangulated mesh rather than just a cloudFig. 6 depicts a low-dimensional representation of the

of points, and compute the moments according to dissimilarities between faces in sense &f. Each symbol
T m on the plot represents a face; colors denote different subjects;
/’L[))(lp _ Z s H P @) the symbol’s shape represents the facial expression and its size

represents the expression strength. Ideally, clusters correspond-
ing to a specific subject should be as tight as possible (meaning
that the representation is insensitive to facial expressions) and
as distant as possible from other subjects, which means that
Eﬁ% representation allows us to discriminate between different
subjects. It can be seen that for rigid surface matching (Fig. 6,
?e'ft) the clusters overlap, implying that variability due to
facial expressions is larger than that stemming from subject’s
identity. On the other hand, using canonical forms, we obtain
fight and distinguishable clusters (Fig. 6, right). This is a
ctical confirmation of our isometric model, implying that
e intrinsic geometry (captured by the geodesic distances) is
uch better for discriminating the subject’s identity than the
Bxtrinsic geometry (Euclidean distances).

=1 k=1

whereT' denotes the number of triangular faces, aidand
s; stand for the centroid and the area of th#h triangle,
respectively. It is assumed that the canonical forms are fi
aligned [18]. In the non-Euclidean case,df" is a subset of
someR™ ', we can apply the method of moments to the Cart
sianm’-dimensional coordinateX andX’. Alternatively, one
can define the moments directly @, and compute them in
the parameterization domain. The exact way of defining su
moments depends on the specific choice of the embedd
space and is usually non-trivial. t

In case of geometry and texture representation (zero cogﬂ
mension), we assume in addition to be given two textu
imagesa, o’ : S — R. The embeddingg and ¢’ map N
points of @ and N’ points of o/ to Q™; the other points
are interpolated. As the result, we have two canonical images
a,a’ : Q> — R. The matching in this case is performed
between the canonical images rather than canonical forrBs. Spherical canonical forms i3
One can compare the imagesand o’ directly, e.g. using

correlation, or, as an alternative, apply some transfarm In [34], we argued thafR3 is not necessarily the best

a — a and comparei and a’. For example, in [15], we candidate embedding space for face representation. Despite

proposed to project the Euclidean canonical images onto g&ing the most convenient to work with, the Euclidean space

eigenspace created in a manner similar to eigenfaces [3gluitively seems to introduce large distortion, as facial sur-

[33]. In Section V we show the use of the spherical harmonjgces are curved while the Euclidean space is flat. As an

transform for comparison of 2D spherical canonical imagegiternative, a three-dimensional sph8fewith variable radius

An estimate of the albedo (reflection coefficient) can be useglis suggested. The choice @t changes the curvature of

to make the canonical image insensitive to illumination [16}he embedding space, thus inﬂuencing the embedding error.

Embedding intdR? can be considered as the asymptotic case

IV. EUCLIDEAN AND SPHERICAL CANONICAL FORMS with R — oo. Therefore, embedding int8? can potentially

The face recognition method introduced in [15] was basdgfd to smaller embedding error.

on embedding facial surfaces ink¥, under a tacit assumption A three-dimensional sphere of radifiscan be represented

of closed mouth. In this section, we show Euclidean canonices the geometric location of all vectors of lengthin R*

forms in R? incorporating a topological constraint, which

allows handling both open and closed mouth. Then, we show 8% = {x e R": x|, = R} ®)

that embedding into a three-dimensional sph&® €an be For convenience, we discuss a unit sphere; the raflican be

considered as a generalization of the Euclidean embeddiagen into account by scaling the geodesic distances. For every

and allows more accurate representation of faces. point on S?, there exists a correspondence between a vector
of parametric coordinate8 = (9!, ...,03) and a unit vector

A. Topologically-constrained Euclidean canonical forms i R*. Given two pointsfy, > on the sphere (corresponding

to unit vectorsx;,x, € R*), the geodesic distance between

The main difference between Euclidean canonical forrqﬁc?m is the great circle arc length, given by
se ’

used in [15] and the topologically-constrained ones propo
here is the preprocessing stage, in which a more complicated dss(01,05) = cos™*((x1,%2)). (9)
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Fig. 5. Examples of canonical forms obtained by embedding Rtowith topology constraint. Bold line denotes the lip contour.
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Fig. 6. Low-dimensional visualization of dissimilarities between faces obtained using rigid surface matching (left) and embeddifg into
with topology constraint (right). Colors represent different subjects. Symbols represent different facial expression with open (empty) and
closed mouth (filled).

S? can be parameterized as fork=1,...,N andl =1,...,3, where
1 1 2 3
2 (0) = cos cosf”cosb”, (10) ilA _ 2Z(dij _5ij)ildik§ (14)
z2(0) = cos@'sinb?cos 6>, 003 i 00}
23(0) = sinf'cosh?, 8%8 — 2Zdika%dika
z4(0) = sin6®. k z %
where@ € [0,7] x [0,27] x [0,n]. The geodesic distance jsand
- ) _12 0
explicitly expressed as awd““ = (1-0C%) 1/287 - (15)
dg3(01,02) = : 1 s 3 2 _ g2
- L 1 3 o o Ci, = cosb; cost; cos by cos b, cos(0; — 05)
cos [cos 0; cos 67 cos 05 cos 05 cos(07 — 05)+ 3 3 el e
3 3 e 1 1 1. 3 + cos 0 cos 0, sin 8; sin 8}, 4 sin 0; sin 0.
cos 05 cos 03 sin 0] sin 03 + sin 6] sin 63] . (11)

The matching of spherical canonical forms is still an open
research question. In [34], we treated the spherical canonical
forms as point clouds inR*, and used four-dimensional
moments to compare them. However, it appears that moments
computed according to (7), where the canonical form is

The normalized stress considered as a two-dimensional triangulated mesiRin
Zi<j(dij(®) 52 A yield notably better recognition results.

Yic; 43;(©) B _ .

) ) .. . C. Embedding and recognition error
appears advantageous from the point of view of optimization _ _
in case of embedding int§® and has been adopted as the Numerical experiments were performed on a database of

embedding error criterion [34]. Her@ is a3 x N matrix of [oU subjects, each appearing wilé facial expressions of
. The gradient of variable strength. The first two subjects in the data set were

identical twins. We emphasize that the main purpose of these
experiments is not to demonstrate the performance of the
ia (©;A) = B2 (BaA— AaB> isometry-invariant face recognition approach, which has been
o9, T 0!, o0t )7 already demonstrated on larger data sets [15], [35]. Our
(13) primary goal is to establish the important connection between

12)

Unorm(@; A) =

parametric coordinates amll; = dss(0;,6;)
V(-Danorm(@;D) is given by
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Fig. 8. Face embedded in® with different radii, from left to right:
R = 80mm, 100mm and 150mm.

400

500 600 700

50 60 70 80 90100 200 300
Embedding sphere radius R (mm)

20
18
16
14
12
10

simplest case is embedding inf&?, producing a warped
texture, which we called theanonical imagg?2].
In this section we propose to embed the facial image into
a two-dimensional sphereS{) rather than a plane, which
will be shown to produce lower embedding distortions. Sec-
ondly, we present another experimental evidence supporting
our conjecture that lower embedding error directly implies
- higher recognition accuracy. Finally, we take advantage of
‘ L ———— the fact that the new canonical image is definedS3nand
50 60 70 80 90100 200 300 400 500 600 700 . . . - .
Embedding sphere radius R (mm) use spherical harmonics to measure dissimilarity between
two images. Rotation and reflection invariance of spherical

Fig. 7. First row: embedding error versus the embedding spheh@armonics removes the embedding ambiguity and does not
radius for four different subjects (colors denote different subjectgequire alignment of the canonical images.
dashed lines indicate5% confidence intervals). Second row: EER We parameteriz§2 using two angles: the elevatiat ¢

and rank-1 error rate versus the embedding sphere radius. The ™~ *- . :

asymptoteR — oo corresponds to embedding inko’. — 5 +5] measured from the azimuthal plane in the northern
direction, and the azimuthal angié € [0, 27). The geodesic
distance between two points = (01,6%) and 8, = (01, 63)

o o ] is given by
metric distortion introduced by the embedding procedure and

recognition accuracy. Our toy set o4 faces with controlled ds2 (01,02) = (16)
rich facial expressions seems to be sufficient for this purpose. R cos™" (cos 6; cos 6 cos(67 — 63) + sin 0] sin 63) ,

Fig. 7 (first row) shows the average embedding error as , ) ) ,
a function of the sphere radiug. The minimum error is where R is the sphere radius. As before, we consider a unit

obtained aroundR ~ 75 + 90mm slightly depending on sphere; different values @t are achieved by scaling the input

the subject, and then increases asymptoticallyzagrows to distance matrixA. o

infinity. The asymptoteR — oo corresponds to embedding As the embedding error criterion, we use _the raw stress

into R3. We conclude that 3D spherical embedding allows {5) Whereds;(©) = ds: (8;,6,). One of the points, sag,

obtain more than twice lower embedding error compared b @nchored to the north pole of the sphef¢ ¢ 7). This

3D Euclidean embedding. point is chosen to be the nose tip and is determined as a local
Fig. 7 (second row) presents the equal error rate (EER) afgximum of.the Gaussuag curvature on .the facial surface.

rank-1 recognition error as a function of the embedding sphere! "€ mappingy : S — §* from the original surface to the

radius. The minimum EER 0of.09% is achieved fork — SPhere can be regarded as a warping transformation, which

70+80 mm; the lowest rank-1 error of aboGit48% is obtained Maps the original facial image : & — R onto a section

for R = 75mm. Both measures grow more than twice a8f the sphere. The resulting image,: ¢(S) C §° — R,

the embedding sphere radius is decreased=( 50 mm) or €an bg computed for ang by means of linear mterpol_atlon

increased R — oc). We conclude that both EER and rank{Se€ Figures 8, 9). The imagereferred to as thepherical

1 error achieve the minimum at embedding sphere radii tHz@nonical image2] is invariant to isometric deformations of

yield minimum embedding error. This experimental evidend8® face and, hence, insensitive to facial expressions. Yet, the

supports our conjecture that smaller embedding error resultSperical canonical image is not a fully invariant signature of

better recognition, and motivates the search for low-distortid€ face, since fixing a single fiducial point on the pole still
representation of surfaces. allows one degree of freedom of rotation and reflection about

that point.

EER

RANK 1 ERROR

Recognition error (%)

N A O
T

V. SPHERICAL CANONICAL IMAGES IN S2

In case of zero-codimension embedding (i.e. embedding tﬁe Spherical harmonic signatures

facial surface into a two-dimensional space), the embeddingln order to obtain a truly invariant signature of the face,
produces a canonical parameterization of the surface, whiek use thespherical harmonic transfornfSHT). A function
allows comparing texture in an expression-invariant way. Thec 1.2 (SQ) can be expanded in the spherical harmonic basis



with coefficients

am = (a,Y") (17)
T 2
/ / a(0',6%) Y™ (01, 62)d6> cos(6")db",
0 0

for i e NU {0} and|m| < [, where

m 1 pn2\ _ (2l+1)(l_m)' m (. 1\ _am6>
Y, (0,9)— —47r(l+m)! P (sm@)e (18)

is the (I, m)-spherical harmonic, and’™ is the associate
Legendre function of degrdeand ordem. A discrete version

of the SHT 4 ,,, can be carried out efficiently using the FFT_ ) o o )
[36]. Fig. 9. First row: original facial images; second row: spherical canon-

. L. ical images shown in parametric coordinates; third row: spherical
A handy property of spherical harmonics is that for everysrmonics transform coefficients

AG?, a (6*,6%) anda (6',6% = AH?) are transformed to two
sets of coefficients, which differ only in the complex phase.

Hence, the set of coefficients ,,, = |a; .| removes the signature of the form
rotation and reflection ambiguities from the canonical image
and defines an invariant signature of the face. a = |all = (a,-1,- a1l (23)

As a dissimilarity measure between two such signatures, e
use the Euclidean norm

2
dsu (Cloms ) = Z (ctm —Cm) - (19)
1>0,|m|<0 B. Embedding and recognition error

Using basic properties of spherical harmonics, it is straight- The spherical canonical images method was applied to the
forward to show that such a measure is characterized by @ga set from Section IV-C. Fig. 10 (first row) depicts the

invariant under general rotations and reflections. Dissimi-
larity between such signatures can be measured as in (19).

similarity property, i.e. average embedding error for each subject plotted as a function
, . 2 , of R. It appears that embedding sphere radius yielding the
dsn (Cl,mv Cl:m) = Z ‘ahm — Ay | = lla—dl, (20) minimum embedding error ranges fréi to 100 mm, slightly
120,|m|<0 depending on the subject.

Fig. 10 (second row) presents the equal error rate (EER)
) i and rank-1 recognition error as a function of the embedding
rotations and reflections about thg nere radius. The minimum EER ©2.39% is achieved at
R = 90mm. At this embedding sphere radius, rank-1 error
dsu (cLms¢),n) < minlla—Rd'||. (21) of 1.96% is achieved, which remains nearly constant for
’ REG 90125 mm. Both recognition error measures appear to be in
In other words, similar anda’ (up someR < G) will result  close correspondence with the embedding error. This provides
in small dissimilarities in sense efy, whereas dissimilar  an additional experimental evidence to support our conjecture
anda’ will result in large values oflgy. In practice, different that smaller embedding error results in better recognition.
“frequencies” in the spherical harmonics domain typically
carry different amounts of information useful for discriminat- VI. DISCUSSION AND CONCLUSION

ing between different subjects. Therefore, a more sophisticatedye started with the assumption that facial expressions can
dissimilarity measure could be based on a weighted Euclidega considered as isometries of the facial surface and showed
norm. Optimal weights can be found from a training set e.gn empirical justification for this model. We demonstrated
by using PCA. how this model can be applied to constructing expression-
A disadvantage of the proposed representation is that itifariant representations of faces using the isometric em-
invariant only to azimuthal roto-reflection, while being sensbedding approach. The resulting representation is useful, for
tive to general roto-reflections d#¢. This, in turn, requires example, in 3D face recognition. We studied the impact of
the use of constrained embedding, which fixes the locatigife embedding space choice on the metric distortion intro-
of the nose tip, and thus relies on its location. The use ofddced by the embedding and concluded that spaces with
non-constrained embedding is feasible in combination Withs@herical geometry are more favorable for representation of
signature invariant under a general roto-reflection grouf®n facial surfaces. We also provided an experimental evidence
Construction of such a signature is based on the fact that thet spherical embedding leads to better recognition rates
subspace compared to Euclidean ones. Furthermore, the use of spherical
m . canonical images i§? allows us to perform matching in the
Vi = span{¥y™ s |m| < 0} (22) spherical ham?onic transform domari)n, which does ngot require
is closed under a roto-reflection group 8A [37]. Hence, a preliminary alignment of the images. The results oérkbli

and sincedsy clm,c;’m) is invariant under anyR € G,
where G is the group o
north pole onS?,
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Fig. 10. First row: embedding error versus the embedding sph

radius for four different subjects (colors denote different subjects,

(2]
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(6]
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(8]
El

(10]

(11]

)

dashed lines indicate5% confidence intervals). Second row: EER
and rank-1 error rate versus the embedding sphere radius. Thg

asymptoteR — oo corresponds to embedding ink?.

and Sapiro [38] and our follow-up results [25], [26], [35] show
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“Evaluation of 3D face recognition in the presence of facial expressions:
an annotated deformable model approach,lBEE Workshop on Face
Recognition Grand Challenge Experimen2€05.

X. Lu and A. K. Jain, “Deformation analysis for 3D face matching,” in
Workshop on Applications of Computer Visi@905, pp. 99-104.

K. Bowyer, K. Chang, and P. Flynn, “A survey of approaches and
challenges in 3D and multi-modal 3D+2D face recognitiocB@mputer
Vision and Image Understandingol. 101, no. 1, pp. 1-15, 2006.

C. Chua, F. Han, and Y. Ho, “3D human face recognition using point
signature,” ininternational Conference on Automatic Face and Gesture
Recognition 2000, pp. 233-238.

K. Chang, K. Bowyer, and P. Flynn, “Multiple nose region matching
for 3D face recognition under varying facial expression,” preprint.

A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Three-dimensional
face recognition,”lJCV, vol. 64, no. 1, pp. 5-30, August 2005.

that the idea of non-Euclidean embeddings can be generaligid A. M. Bronstein, M. M. Bronstein, E. Gordon, and R. Kimmel, “Fusion
to embedding one surface into another. The errors introduced
by embedding into a space with some predefined geomefy

like R? or S? are avoided in this way.

Our algorithm is computationally efficient and has negiq
real-time performance. A basic version of the algorithm was
implemented in a prototype system developed at the D&%l
partment of Computer Science, Technion [15]. The system
is based on a commodity PC platform with AMD Opteron
processor supporting SSE extensions. All the software Hag

been tailored for this architecture. In a typical face recogs;

nition setup, end-to-end processing comprises the following

stages: 3D surface acquisition and reconstructinfO(sec),
smoothing (.33 sec), subsampling to approximatel2500
points (.08 sec), geodesic mask computatioh {0 sec), facial

(22]

surface cropping((08 sec) measurement of geodesic distanceg3]
between all the points using a parallelized parametric version

of FMM (1.60 sec), MDS carried out by40 iterations of
the SMACOF algorithm [27] Z.08 sec) and canonical form

[24]

comparison € 0.005sec). The overall processing time is .,z
about5 sec. In light of our recent results [39], [28], we foresee
that the MDS stage performance can be further significantly

improved using multigrid optimization.
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