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Abstract— Addressed here is the problem of constructing and
analyzing expression-invariant representations of human faces.
We demonstrate and justify experimentally a simple geometric
model that allows to describe facial expressions as isometric
deformations of the facial surface. The main step in the con-
struction of expression-invariant representation of a face involves
embedding of the facial intrinsic geometric structure into some
convenient low-dimensional space. We study the influence of the
embedding space geometry and dimensionality choice on the
representation accuracy and argue that compared to its Euclidean
counterpart, spherical embedding leads to notably smaller metric
distortions. We experimentally support our claim showing that
a smaller embedding error leads to better recognition.

Keyword: Isometry-invariant representation, multidimensional
scaling, isometric embedding, face recognition, spherical har-
monics.

I. I NTRODUCTION

Expression-invariant features of the human face play an
important role in various applications. Such are face recog-
nition in computer vision [1], [2], texture mapping for facial
animation in computer graphics [3], [4], [5], [6], [7], emotion
interpretation in psychology [8], and measurement of geomet-
ric parameters of the face in cosmetic surgery. The variability
of the face appearance due to its non-rigid structure makes
these tasks non-trivial and challenges for a convenient model
to analyze the nature of facial expressions.

In face recognition, the problem of expression-invariant
representation is of particular importance as most of today’s
face recognition systems are sensitive to facial expression
variations. The development of robust face recognition algo-
rithm insensitive to facial expression is one of the greatest
challenges of current research in this field [9], [10], [11],
[12]. Several approaches have been proposed for this purpose.
One possibility is to use only regions of the face the least
susceptible to variations due to facial expression [13]. For
example, one can remove the mouth region as it varies greatly
with expression. Yet, practice shows that there is no large
subset of the face that is perfectly rigid across a broad range
of expressions [14]

Another possibility is to add different expressions of each
subject into the gallery. The main limitation is the large
number of instances of each subject due to the richness of
all the possible expression. Even though, the probe expression
may still be substantially different from those sampled.

A third approach is a model of facial expression used to
generate synthetic facial expressions for any 3D surface. Such
models are usually very complicated and therefore, not suitable
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for the face recognition application, where real- or near-
real time performance is required. Moreover, it is practically
impossible to capture the subtle individual differences of
expressions in different subjects.

The present paper focuses on a simple geometric model
of facial expressions, referred to as theisometric modeland
expression-invariant representation of the face based on this
model. Our thesis is that facial expressions can be modelled
as isometries of the facial surface. A simplified setting of
this model assuming all expressions to be with closed mouth
was used in our three-dimensional expression-invariant face
recognition system [2], [15], [16], [17]. Here, we extend this
model to handle both open and closed mouth.

Using the isometric model, expression-invariant representa-
tion of the face is essentially equivalent to isometry-invariant
representation of a surface. We apply the isometric embedding
approach, introduced by Elad and Kimmel [18]. The key idea
is to represent the intrinsic metric structure of the facial surface
by embedding the surface into a low-dimensional Euclidean
space and replacing the geodesic distances by Euclidean ones.
The resulting representation, known ascanonical form, can
then be treated by conventional methods for rigid surface
matching.

The advantage of this approach over previously proposed
methods is that we do not attemptgeneratingfacial expres-
sions, but rather create a representation which is (approx-
imately) invariant to facial expressions. Secondly, we use
the whole facial surface without removing parts sensitive to
expressions. Thirdly, the gallery contains only a single instance
of a subject, e.g. the neutral expression. Finally, our algorithm
is computationally efficient and can be performed in near real-
time.

We start with a description of the isometric model and
its experimental validation in Section II. In Section III, we
present the Elad-Kimmel isometry-invariant surface matching
approach in a broader perspective, for both Euclidean and non-
Euclidean embedding spaces. We address some criteria for the
choice of the embedding space, and present the computational
core of the approach, based on multidimensional scaling.
Section IV deals with facial geometry representation in three-
dimensional spaces with Euclidean and spherical geometry.
Embedding into a three-dimensional sphere (S3) introduces
smaller distance distortion, and consequently, yields better
recognition. We provide an experimental evidence of this fact.
Section V deals with incorporating the texture information
using embedding into a two-dimensional space, specifically
discussing the two-dimensional sphereS2. Finally, Section VI
concludes the paper.
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II. I SOMETRIC MODEL OF FACIAL EXPRESSIONS

We describe a facial surface as a smooth compact connected
two-dimensional Riemannian manifold (surface), denoted by
S. The geodesic distances (shortest path lengths) onS are in-
duced by the Riemannian metric and are denoted bydS(ξ1, ξ2)
for ξ1, ξ2 ∈ S. A transformationψ : S → S ′ is called an
isometryif

dS(ξ1, ξ2) = dS′(ψ(ξ1), ψ(ξ2)), (1)

for all ξ1, ξ2 ∈ S. In other words, an isometry preserves the
intrinsic metric structure of the surface.

The isometric model, assuming facial expressions to be
isometries of some “neutral facial expression”, is based on the
intuitive observation that the facial skin stretches only slightly.
All expressions of a face are assumed to be (approximately)
intrinsically equivalent (i.e. have the same metric structure).
Broadly speaking, the intrinsic geometry of the facial surface
can be attributed to the subject’s identity, while the extrinsic
geometry is attributed to the facial expression.

However, the isometric model also requires thetopology
of the surface to be preserved. This assumption is valid for
most regions of the face except the mouth. Opening the mouth
changes the topology of the surface by virtually creating a
“hole.” Fig. 1 demonstrates this particular property by showing
a minimal geodesic between two points on the upper and the
lower lips. In [2], [15], we ignored this possibility, assuming
all the expressions to be with closed mouth. Even in such a
limited setting, the isometric model appeared to be able to
gracefully represent strong facial expressions. In order to be
able to handle expressions with open and closed mouth, we
propose fixing the topology of the surface. We could enforce
the mouth to be always closed by “gluing” the lips when the
mouth is open; alternatively, we can constrain the mouth to
be open and disconnecting the lips by means of a cut in the
surface when the mouth is closed. Here, the later option is
adopted.

A. Validation of the isometric model

In order to validate the isometric model, we tracked a set
of feature points on the facial surface and measured how
distances between them change due to expressions, while
preserving the topology of the surface. In this experiment,133
white round markers (approximately2 mm in diameter) were
placed on the face of a subject as invariant fiducial points
(Fig. 2, left). The subject was asked to demonstrate different
facial expressions of varying strength with open and closed
mouth (total of16 expressions; see some examples in Fig. 2,
right). The faces in this and all the following experiments
were acquired using a coded-light scanner with acquisition
time of about150 msec and depth resolution of0.5 mm [19].
As the reference surface, we used a “neutral expression.”
The lips were manually cropped in all the surfaces. Fast
Marching Method (FMM) [20] was used to measure the
geodesic distances.

The changes of the distances due to facial expressions
were quantified using two measures: the absolute and the
relative error with respect to the reference distances. Relative
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Fig. 1. Illustration of the open mouth problem. First row: Geodesics
on the facial surface with three facial expressions. An open mouth
changes the topology of the surface, which leads to loosing the
consistency of the geodesics. Second row: The same face, in which
the topology is constrained by cutting out the lips. Consistency of
the geodesics is better preserved.

 

    
 
Fig. 2. Isometric model validation experiment. Left: facial image
with the markers. Right: example of one moderate and two strong
facial expressions with marked reference points.

and absolute error distributions are plotted in Fig. 3. The
standard deviation of the absolute and the relative errors were
5.89 mm and15.85%, respectively, for geodesic distances, and
12.03 mm and 39.62%, respectively, for the Euclidean ones.
We conclude that the changes of the geodesic distances due
to facial expressions are insignificant even for extreme ex-
pressions, which justifies our model. Moreover, the Euclidean
distances were demonstrated to be much more sensitive to
changes due to facial expressions compared to the geodesic
ones. This observation will be reinforced in Section IV-A,
where we compare our approach based on geodesic distances
and straightforward rigid matching of facial surfaces.

III. I SOMETRY-INVARIANT REPRESENTATION

Under the assumption of the isometric model, in order to
obtain an expression-invariant representation of the faceS,
we would like to keep only theintrinsic metric structure ofS.
Equivalently, we would like to somehow ignore theextrinsic
geometry, that is, the way the surfaceS is immersed into the
ambient space. An obvious invariant to isometries is the set of
all geodesic distances on the surfaceS. In practice,S is given
at a finite set of points{ξ1, ..., ξN}, and the geodesic distances
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Fig. 3. Normalized histograms of the absolute and the relative error
of the geodesic (solid) and the Euclidean (dotted) distances.

dS(ξi, ξj) are computed approximately from the samples ofS
using FMM and represented as anN ×N matrix ∆.

Yet, comparing explicitly the geodesic distances is diffi-
cult since the correspondence between the samples of two
surfaces is unknown. As a solution, Elad and Kimmel [18]
proposed to representS as a subset of some convenientm-
dimensional spaceQm, such that the original intrinsic geom-
etry is approximately preserved. Such a procedure is called
an (almost) isometric embedding, and allows to get rid of
the extrinsic geometry. As the result of isometric embedding,
the representations of all the isometries ofS are identical, up
to the isometry group inQm, which is usually easy to deal
with (for example, all possible isometries inR3 are rotations,
translations and reflections.)

In the discrete setting, isometric embedding is a mapping
between two finite metric spaces

ϕ : ({ξ1, ..., ξN} ⊂ S,∆) → ({x1, ..., xN} ⊂ Qm,D) ,

such thatdS(ξi, ξj) ≈ dQm(xi, xj) for all i, j = 1, ..., N .
The matrices ∆ = (δij) = (dS(ξi, ξj)) and D =
(dij) = (dQm(xi, xj)) denote the pair-wise geodesic dis-
tances between the points in the original and the embedding
space, respectively. Elad and Kimmel [18] called the image
{x1, ..., xN} = ϕ({ξ1, ..., ξN}) the canonical formof S. We
emphasize that in general, such an isometric embedding does
not exist since embedding inevitable introduces metric distor-
tion. As the result, the canonical form is just anapproximate
representation of the discrete surface. Yet, it is possible to find
optimal canonical forms by minimizing someembedding error

criterion (see Section III-B).
Originally, Elad and Kimmel transformed the isometry-

invariant deformable surface matching problem into a problem
of rigid surface matching inR3. However, for non-trivial
surfaces there is usually an unavoidable representation error
resulting from the theoretical impossibility to embed a curved
surface into a Euclidean space [21]. The canonical represen-
tation of a face is therefore degraded by two types of error:
one stemming from the deviation from the isometric model
of facial expressions, and the other caused by embedding
distortion. While the first error is a limitation of our model, the
second one can be reduced by choosing a better embedding
space. An important question is whether such a choice will
also lead to better recognition.

There are two important aspects to be addressed. First,
the geometryof the embedding space is important. Certain
geometries appear to be more suitable for certain types of
surfaces, and thus allow smaller embedding errors [22], [6],
[23], [24]. For practical reasons, the geodesic distances in the
embedding space should be efficiently computable.1 Secondly,
thecodimensionof the embedding is important. In case of non-
zero codimension (m ≥ 3), embedding produces a canonical
form that can be plotted as a surface in the corresponding
embedding space. Yet, in this way we take into consideration
only the geometry of the face and do not make explicit use
of the photometric information (texture), which may contain
important information that can help to discriminate between
faces.

A way to incorporate the texture, described as a scalar field
α : S → R, is to perform a zero-codimension embedding
of S into some two-dimensional space (m = 2). Such an
embedding can be thought of ascanonical parameterization
of the facial surface. Alternatively, one can think of the
embedding as a warping of the texture image, producing a
canonical imagea = ϕ(α) [2]. Since the embedding approx-
imately preserves the intrinsic geometry of the facial surface,
the canonical image is expression-invariant. The difference
between these two cases is exemplified in Section IV where
we show embedding intoR3 andS3 and in Section V, where
embedding intoS2 is shown.

A. Preprocessing

The face canonization procedure consists of three stages:
preprocessing, embedding and matching. The aim of the first
stage is to crop a region of interest out of the facial surface,
which will be later used for the canonical form computation.
First, the surface undergoes standard processing for scanning
artifact removal (spike removal, hole filling, smoothing, etc).
Then, the facial contour is cropped using thegeodesic mask
[15]. The main idea is to compute a geodesically-equidistant
contour of a fixed radius from some set of anchor points (e.g.
nose tip and the sellion point) and cut all the points outside this
contour. If a topological constraint is employed to allow for

1A simple analytic expression for geodesic distances is available for spaces
with Euclidean, spherical and hyperbolic geometry. In [25], [26] we show an
efficient interpolation procedure for geodesic distances, thereby, the geodesic
distances need not necessarily to be expressed analytically.
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Fig. 4. First row, left to right: geodesic mask computation stages
in case of the topologically-constrained isometric model assumption
(open and closed mouth): geodesic circles around the nose and the
sellion; geodesic circles around the lips; the merged geodesic mask.
Second row: examples of the geodesic mask insensitivity to facial
expressions.

expressions with both open and closed mouth, two geodesic
masks are computed: one around the nose tip and the sellion
and another around the lips (Fig. 4, first row). The lips region
can be found using standard methods, e.g. according to the
texture information. A radius of30 mm is typically used for
the lip mask. The two masks are then merged together. This
way, we crop the facial surface in a geometrically consistent
manner, which is insensitive to facial expressions (Fig. 4,
second row).

B. Multidimensional scaling

The second stage is the embedding. We assume the
smoothed and cropped surface to be sampled atN points
{ξ1, ..., ξN} (typically, N ranges between1000 and 3000),
and assume to be given as input the matrix of geodesic
distances∆ between the surface samples. Every pointx in the
embedding spaceQm is assumed to be corresponding to some
m-dimensional parametric coordinatesθ = (θ1, ..., θm). The
geodesic distances are given by some explicit or efficiently
approximated functiondQm(x1, x2) = dQm(θ1, θ2). The
canonical form is computed by the following optimization
problem

Θ = argmin
Θ

σ(Θ;∆), (2)

known asmultidimensional scaling(MDS) [27]. HereΘ =
(θ1, ..., θN ) is an N × m matrix of parametric coordinates
in Qm corresponding to the points{x1, ..., xN}. In case of
Euclidean embedding, the parametric coordinates inRm coin-
cide with the Cartesian coordinates inRm. Therefore, we can
refer to {x1, ..., xN} directly by their Cartesian coordinates,
which we denote byX ≡ Θ. In the non-Euclidean case, if the
embedding spaceQm can be realized as a geometric place in
some higher-dimensional Euclidean spaceRm′

(with m′ > m;

for example,S3 is represented as a unit sphere inR4), we will
use theN ×m′ matrix X to denote the coordinates inRm′

corresponding toΘ.
The functionσ is an embedding error criterion, measuring

the discrepancies between the original (geodesic) distances and
the embedding space distances. Most common choices ofσ
include theraw stress

σraw(Θ;∆) =
∑

i>j

(dij(Θ)− δij)
2
, (3)

and thenormalized stress

σnorm(Θ;∆) =

∑
i>j (dij(Θ)− δij)

2

∑
i>j d2

ij(Θ)
. (4)

Here dij(Θ) and δij are a short notation fordQm(θi,θj)
and dS(ξi, ξj), respectively. For additional embedding error
criteria, see [27].

Note that in fact we compute directly the image
ϕ({ξ1, ..., ξN}) rather thanϕ itself. Also note that the op-
timization problem is non-convex and using convex opti-
mization algorithms is liable to converge to a local rather
than global minimum. Nevertheless, convex optimization are
commonly used in the MDS literature [27]. Having a good
initialization or using multiscale or multigrid optimization
[28] reduces the risk of local convergence. Usually, first-order
(gradient-descent) optimization algorithms are employed for
large scale MDS problems. The computational complexity of
such methods grows asO(N2).

C. Canonical form matching

The final stage is matching of canonical forms. In case
of geometry-only representation (non-zero codimension), we
assume to be given two canonical forms{x1, ..., xN} =
ϕ({ξ1, ..., ξN}) and {x′1, ..., x′N ′} = ϕ′({ξ′1, ..., ξ′N ′}), cor-
responding to two surfacesS and S ′. The canonical forms
are represented in the parametric coordinates ofQm by the
matricesΘ andΘ′. The goal of matching is to compute some
distanced(Θ,Θ′) between the canonical forms.

First of all, the matching should account for the fact that the
canonical forms have some unresolved degrees of freedom and
are defined up to an isometry inQm. The most straightforward
approach is to use aniterative closest point(ICP) algorithm
[29], [30]. These algorithms minimize a distance between two
point clouds over all isometries inQm, i.e. find an optimal
rigid alignment betweenΘ andΘ′. The ICP problem is well-
studied inR3, and practically untouched for non-Euclidean
spaces. Moreover, ICP algorithms are usually computationally
intensive and thus comparison between a large number of
canonical forms, which is typical, for example, in one-to-many
face recognition applications with large databases, becomes
prohibitive.

As an alternative, themethod of momentscan be used [31].
In case of Euclidean embedding, the distance between two
canonical forms represented by the Cartesian coordinatesX
and X′ is computed as the difference of theirP -th order
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moments

dM(X,X′) =
∑

p1+...+pm≤P

(
µX

p1,...,pm
− µX′

p1,...,pm

)2

, (5)

where

µX
p1,...,pm

=
N∑

i=1

m∏

k=1

xpk

ik , (6)

is them-dimensional moment ofX for any p1, ..., pm ≥ 0. A
somewhat better approach is to consider the canonical form as
a two-dimensional triangulated mesh rather than just a cloud
of points, and compute the moments according to

µX
p1,...,pm

=
T∑

i=1

si

m∏

k=1

xpk

ik , (7)

whereT denotes the number of triangular faces, andxi and
si stand for the centroid and the area of thei-th triangle,
respectively. It is assumed that the canonical forms are first
aligned [18]. In the non-Euclidean case, ifQm is a subset of
someRm′

, we can apply the method of moments to the Carte-
sianm′-dimensional coordinatesX andX′. Alternatively, one
can define the moments directly inQm, and compute them in
the parameterization domain. The exact way of defining such
moments depends on the specific choice of the embedding
space and is usually non-trivial.

In case of geometry and texture representation (zero codi-
mension), we assume in addition to be given two texture
imagesα, α′ : S → R. The embeddingsϕ and ϕ′ map N
points of α and N ′ points of α′ to Qm; the other points
are interpolated. As the result, we have two canonical images
a, a′ : Q2 → R. The matching in this case is performed
between the canonical images rather than canonical forms.
One can compare the imagesa and a′ directly, e.g. using
correlation, or, as an alternative, apply some transformT :
a → â and comparêa and â′. For example, in [15], we
proposed to project the Euclidean canonical images onto an
eigenspace created in a manner similar to eigenfaces [32],
[33]. In Section V we show the use of the spherical harmonic
transform for comparison of 2D spherical canonical images.
An estimate of the albedo (reflection coefficient) can be used
to make the canonical image insensitive to illumination [16].

IV. EUCLIDEAN AND SPHERICAL CANONICAL FORMS

The face recognition method introduced in [15] was based
on embedding facial surfaces intoR3, under a tacit assumption
of closed mouth. In this section, we show Euclidean canonical
forms in R3 incorporating a topological constraint, which
allows handling both open and closed mouth. Then, we show
that embedding into a three-dimensional sphere (S3) can be
considered as a generalization of the Euclidean embedding
and allows more accurate representation of faces.

A. Topologically-constrained Euclidean canonical forms

The main difference between Euclidean canonical forms
used in [15] and the topologically-constrained ones proposed
here is the preprocessing stage, in which a more complicated

geodesic mask is used (see Section III-A). In order to test
the topologically-constrained canonical form, we used a data
set containing102 instances with different facial expressions
of 7 subjects, including both open (70 instances) and closed
(32 instances) mouth. This is an extended version of the ex-
periment presented in [15], which contained only expressions
with closed mouth. In all our experiments, lip contour was
segmented manually. The matching of canonical forms was
based on 3D moments. For reference, we also show rigid
matching of the original surfaces.

Fig. 6 depicts a low-dimensional representation of the
dissimilarities between faces in sense ofdM. Each symbol
on the plot represents a face; colors denote different subjects;
the symbol’s shape represents the facial expression and its size
represents the expression strength. Ideally, clusters correspond-
ing to a specific subject should be as tight as possible (meaning
that the representation is insensitive to facial expressions) and
as distant as possible from other subjects, which means that
the representation allows us to discriminate between different
subjects. It can be seen that for rigid surface matching (Fig. 6,
left) the clusters overlap, implying that variability due to
facial expressions is larger than that stemming from subject’s
identity. On the other hand, using canonical forms, we obtain
tight and distinguishable clusters (Fig. 6, right). This is a
practical confirmation of our isometric model, implying that
the intrinsic geometry (captured by the geodesic distances) is
much better for discriminating the subject’s identity than the
extrinsic geometry (Euclidean distances).

B. Spherical canonical forms inS3

In [34], we argued thatR3 is not necessarily the best
candidate embedding space for face representation. Despite
being the most convenient to work with, the Euclidean space
intuitively seems to introduce large distortion, as facial sur-
faces are curved while the Euclidean space is flat. As an
alternative, a three-dimensional sphereS3 with variable radius
R is suggested. The choice ofR changes the curvature of
the embedding space, thus influencing the embedding error.
Embedding intoR3 can be considered as the asymptotic case
with R → ∞. Therefore, embedding intoS3 can potentially
lead to smaller embedding error.

A three-dimensional sphere of radiusR can be represented
as the geometric location of all vectors of lengthR in R4

S3 =
{
x ∈ R4 : ‖x‖2 = R

}
. (8)

For convenience, we discuss a unit sphere; the radiusR can be
taken into account by scaling the geodesic distances. For every
point on S3, there exists a correspondence between a vector
of parametric coordinatesθ = (θ1, ..., θ3) and a unit vector
in R4. Given two pointsθ1, θ2 on the sphere (corresponding
to unit vectorsx1,x2 ∈ R4), the geodesic distance between
them is the great circle arc length, given by

dS3(θ1, θ2) = cos−1(〈x1,x2〉). (9)
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Fig. 5. Examples of canonical forms obtained by embedding intoR3 with topology constraint. Bold line denotes the lip contour.

 

 
 

 

Fig. 6. Low-dimensional visualization of dissimilarities between faces obtained using rigid surface matching (left) and embedding intoR3

with topology constraint (right). Colors represent different subjects. Symbols represent different facial expression with open (empty) and
closed mouth (filled).

S3 can be parameterized as

x1(θ) = cos θ1 cos θ2 cos θ3, (10)

x2(θ) = cos θ1 sin θ2 cos θ3,

x3(θ) = sin θ1 cos θ3,

x4(θ) = sin θ3.

whereθ ∈ [0, π] × [0, 2π] × [0, π]. The geodesic distance is
explicitly expressed as

dS3(θ1, θ2) =
cos−1

[
cos θ1

1 cos θ3
1 cos θ1

2 cos θ3
2 cos(θ2

1 − θ2
2)+

cos θ3
1 cos θ3

2 sin θ1
1 sin θ1

2 + sin θ1
1 sin θ3

2

]
. (11)

The normalized stress

σnorm(Θ;∆) =

∑
i<j(dij(Θ)− δij)2∑

i<j d2
ij(Θ)

≡ A

B
, (12)

appears advantageous from the point of view of optimization
in case of embedding intoS3 and has been adopted as the
embedding error criterion [34]. Here,Θ is a 3×N matrix of
parametric coordinates anddij = dS3(θi, θj). The gradient of
∇Θσnorm(Θ;D) is given by

∂

∂θl
k

σnorm(Θ;∆) = B−2

(
B

∂

∂θl
k

A−A
∂

∂θl
k

B

)
,

(13)

for k = 1, ..., N and l = 1, ..., 3, where

∂

∂θl
k

A = 2
∑

i

(dij − δij)
∂

∂θl
k

dik; (14)

∂

∂θl
k

B = 2
∑

i

dik
∂

∂θl
k

dik,

and
∂

∂θl
k

dik = (1− C2
ik)−1/2 ∂

∂θl
k

Cik; (15)

Cik = cos θ1
i cos θ3

i cos θ1
k cos θ3

k cos(θ2
i − θ2

k)
+ cos θ3

i cos θ3
k sin θ1

i sin θ1
k + sin θ1

i sin θ1
k.

The matching of spherical canonical forms is still an open
research question. In [34], we treated the spherical canonical
forms as point clouds inR4, and used four-dimensional
moments to compare them. However, it appears that moments
computed according to (7), where the canonical form is
considered as a two-dimensional triangulated mesh inR4,
yield notably better recognition results.

C. Embedding and recognition error

Numerical experiments were performed on a database of
four subjects, each appearing with26 facial expressions of
variable strength. The first two subjects in the data set were
identical twins. We emphasize that the main purpose of these
experiments is not to demonstrate the performance of the
isometry-invariant face recognition approach, which has been
already demonstrated on larger data sets [15], [35]. Our
primary goal is to establish the important connection between



7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

100 200 300 50 

EER 

RANK 1 ERROR 

Embedding sphere radius R (mm) 

R
ec

og
ni

tio
n 

er
ro

r 
(%

) 
R

M
S

 e
m

be
dd

in
g 

er
ro

r 
 (

m
m

) 

Embedding sphere radius R (mm) 

2

3

4

5

6

7
88

1010 

2 

3 

4 

5 

6 
7 
8 

70 400 500 600 700 80 90 60 

100 200 300 50 70 400 500 600 700 80 90 60 
0

2

4

6

8

10

12

14

16

18

20

4 

2 

6 

8 

10 

12 

14 

16 

18 

20 
EER 

RANK 1 ERROR 

Fig. 7. First row: embedding error versus the embedding sphere
radius for four different subjects (colors denote different subjects,
dashed lines indicate95% confidence intervals). Second row: EER
and rank-1 error rate versus the embedding sphere radius. The
asymptoteR →∞ corresponds to embedding intoR3.

metric distortion introduced by the embedding procedure and
recognition accuracy. Our toy set of104 faces with controlled
rich facial expressions seems to be sufficient for this purpose.

Fig. 7 (first row) shows the average embedding error as
a function of the sphere radiusR. The minimum error is
obtained aroundR ≈ 75 ÷ 90 mm slightly depending on
the subject, and then increases asymptotically asR grows to
infinity. The asymptoteR → ∞ corresponds to embedding
into R3. We conclude that 3D spherical embedding allows to
obtain more than twice lower embedding error compared to
3D Euclidean embedding.

Fig. 7 (second row) presents the equal error rate (EER) and
rank-1 recognition error as a function of the embedding sphere
radius. The minimum EER of7.09% is achieved forR =
70÷80 mm; the lowest rank-1 error of about5.48% is obtained
for R = 75 mm. Both measures grow more than twice as
the embedding sphere radius is decreased (R = 50 mm) or
increased (R → ∞). We conclude that both EER and rank-
1 error achieve the minimum at embedding sphere radii that
yield minimum embedding error. This experimental evidence
supports our conjecture that smaller embedding error results in
better recognition, and motivates the search for low-distortion
representation of surfaces.

V. SPHERICAL CANONICAL IMAGES IN S2

In case of zero-codimension embedding (i.e. embedding the
facial surface into a two-dimensional space), the embedding
produces a canonical parameterization of the surface, which
allows comparing texture in an expression-invariant way. The

Fig. 8. Face embedded intoS2 with different radii, from left to right:
R = 80mm, 100mm and150mm.

simplest case is embedding intoR2, producing a warped
texture, which we called thecanonical image[2].

In this section we propose to embed the facial image into
a two-dimensional sphere (S2) rather than a plane, which
will be shown to produce lower embedding distortions. Sec-
ondly, we present another experimental evidence supporting
our conjecture that lower embedding error directly implies
higher recognition accuracy. Finally, we take advantage of
the fact that the new canonical image is defined onS2 and
use spherical harmonics to measure dissimilarity between
two images. Rotation and reflection invariance of spherical
harmonics removes the embedding ambiguity and does not
require alignment of the canonical images.

We parameterizeS2 using two angles: the elevationθ1 ∈[−π
2 , +π

2

]
measured from the azimuthal plane in the northern

direction, and the azimuthal angleθ2 ∈ [0, 2π). The geodesic
distance between two pointsθ1 = (θ1

1, θ
2
1) andθ2 = (θ1

2, θ
2
2)

is given by

dS2 (θ1, θ2) = (16)

R cos−1
(
cos θ1

1 cos θ1
2 cos(θ2

1 − θ2
2) + sin θ1

1 sin θ1
2

)
,

whereR is the sphere radius. As before, we consider a unit
sphere; different values ofR are achieved by scaling the input
distance matrix∆.

As the embedding error criterion, we use the raw stress
(3) wheredij(Θ) = dS2 (θi, θj). One of the points, sayθ1,
is anchored to the north pole of the sphere (θ1

1 = π
2 ). This

point is chosen to be the nose tip and is determined as a local
maximum of the Gaussian curvature on the facial surface.

The mappingϕ : S → S2 from the original surface to the
sphere can be regarded as a warping transformation, which
maps the original facial imageα : S → R onto a section
of the sphere. The resulting image,a : ϕ(S) ⊂ S2 7→ R,
can be computed for anyθ by means of linear interpolation
(see Figures 8, 9). The imagea referred to as thespherical
canonical image[2] is invariant to isometric deformations of
the face and, hence, insensitive to facial expressions. Yet, the
spherical canonical image is not a fully invariant signature of
the face, since fixing a single fiducial point on the pole still
allows one degree of freedom of rotation and reflection about
that point.

A. Spherical harmonic signatures

In order to obtain a truly invariant signature of the face,
we use thespherical harmonic transform(SHT). A function
a ∈ L2

(
S2

)
can be expanded in the spherical harmonic basis
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with coefficients

âl,m = 〈a, Y m
l 〉 (17)

=
∫ π

0

∫ 2π

0

a
(
θ1, θ2

)
Y m

l (θ1, θ2)dθ2 cos(θ1)dθ1,

for l ∈ N ∪ {0} and |m| ≤ l, where

Y m
l

(
θ1, θ2

)
=

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l

(
sin θ1

)
eımθ2

(18)

is the (l, m)-spherical harmonic, andPm
l is the associate

Legendre function of degreel and orderm. A discrete version
of the SHTâl,m can be carried out efficiently using the FFT
[36].

A handy property of spherical harmonics is that for every
∆θ2, a

(
θ1, θ2

)
anda

(
θ1, θ2 ±∆θ2

)
are transformed to two

sets of coefficients, which differ only in the complex phase.
Hence, the set of coefficientscl,m = |âl,m| removes the
rotation and reflection ambiguities from the canonical image
and defines an invariant signature of the face.

As a dissimilarity measure between two such signatures, we
use the Euclidean norm

dSH

(
cl,m, c′l,m

)
=

∑

l≥0,|m|≤0

(
cl,m − c′l,m

)2
. (19)

Using basic properties of spherical harmonics, it is straight-
forward to show that such a measure is characterized by the
similarity property, i.e.

dSH

(
cl,m, c′l,m

) ≤
∑

l≥0,|m|≤0

∣∣âl,m − â′l,m
∣∣2 = ‖a− a′‖ , (20)

and sincedSH

(
cl,m, c′l,m

)
is invariant under anyR ∈ G,

whereG is the group of rotations and reflections about the
north pole onS2,

dSH

(
cl,m, c′l,m

) ≤ min
R∈G

‖a−Ra′‖ . (21)

In other words, similara anda′ (up someR ∈ G) will result
in small dissimilarities in sense ofdSH, whereas dissimilara
anda′ will result in large values ofdSH. In practice, different
“frequencies” in the spherical harmonics domain typically
carry different amounts of information useful for discriminat-
ing between different subjects. Therefore, a more sophisticated
dissimilarity measure could be based on a weighted Euclidean
norm. Optimal weights can be found from a training set e.g.
by using PCA.

A disadvantage of the proposed representation is that it is
invariant only to azimuthal roto-reflection, while being sensi-
tive to general roto-reflections onS2. This, in turn, requires
the use of constrained embedding, which fixes the location
of the nose tip, and thus relies on its location. The use of a
non-constrained embedding is feasible in combination with a
signature invariant under a general roto-reflection group onS2.
Construction of such a signature is based on the fact that the
subspace

Vl = span {Y m
l : |m| ≤ l} (22)

is closed under a roto-reflection group onS2 [37]. Hence, a

 
 

    

    

    
 

Fig. 9. First row: original facial images; second row: spherical canon-
ical images shown in parametric coordinates; third row: spherical
harmonics transform coefficients

signature of the form

cl = ‖âl‖ = ‖(âl,−l, ..., âl,l)‖ (23)

is invariant under general rotations and reflections. Dissimi-
larity between such signatures can be measured as in (19).

B. Embedding and recognition error

The spherical canonical images method was applied to the
data set from Section IV-C. Fig. 10 (first row) depicts the
average embedding error for each subject plotted as a function
of R. It appears that embedding sphere radius yielding the
minimum embedding error ranges from90 to 100 mm, slightly
depending on the subject.

Fig. 10 (second row) presents the equal error rate (EER)
and rank-1 recognition error as a function of the embedding
sphere radius. The minimum EER of12.39% is achieved at
R = 90 mm. At this embedding sphere radius, rank-1 error
of 1.96% is achieved, which remains nearly constant forR =
90÷125 mm. Both recognition error measures appear to be in
close correspondence with the embedding error. This provides
an additional experimental evidence to support our conjecture
that smaller embedding error results in better recognition.

VI. D ISCUSSION AND CONCLUSION

We started with the assumption that facial expressions can
be considered as isometries of the facial surface and showed
an empirical justification for this model. We demonstrated
how this model can be applied to constructing expression-
invariant representations of faces using the isometric em-
bedding approach. The resulting representation is useful, for
example, in 3D face recognition. We studied the impact of
the embedding space choice on the metric distortion intro-
duced by the embedding and concluded that spaces with
spherical geometry are more favorable for representation of
facial surfaces. We also provided an experimental evidence
that spherical embedding leads to better recognition rates
compared to Euclidean ones. Furthermore, the use of spherical
canonical images inS2 allows us to perform matching in the
spherical harmonic transform domain, which does not require
preliminary alignment of the images. The results of Mémoli
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Fig. 10. First row: embedding error versus the embedding sphere
radius for four different subjects (colors denote different subjects,
dashed lines indicate95% confidence intervals). Second row: EER
and rank-1 error rate versus the embedding sphere radius. The
asymptoteR →∞ corresponds to embedding intoR2.

and Sapiro [38] and our follow-up results [25], [26], [35] show
that the idea of non-Euclidean embeddings can be generalized
to embedding one surface into another. The errors introduced
by embedding into a space with some predefined geometry
like R3 or S3 are avoided in this way.

Our algorithm is computationally efficient and has near
real-time performance. A basic version of the algorithm was
implemented in a prototype system developed at the De-
partment of Computer Science, Technion [15]. The system
is based on a commodity PC platform with AMD Opteron
processor supporting SSE extensions. All the software has
been tailored for this architecture. In a typical face recog-
nition setup, end-to-end processing comprises the following
stages: 3D surface acquisition and reconstruction (0.90 sec),
smoothing (0.33 sec), subsampling to approximately2500
points (0.08 sec), geodesic mask computation (0.10 sec), facial
surface cropping (0.08 sec) measurement of geodesic distances
between all the points using a parallelized parametric version
of FMM (1.60 sec), MDS carried out by40 iterations of
the SMACOF algorithm [27] (2.08 sec) and canonical form
comparison (< 0.005 sec). The overall processing time is
about5 sec. In light of our recent results [39], [28], we foresee
that the MDS stage performance can be further significantly
improved using multigrid optimization.
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