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A Short- Time Beltrami Kernel for
Smoothing Images and Manifolds
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Abstract—We introduce a short-time kernel for the Beltrami
image enhancing flow. The flow is implemented by “convolving”
the image with a space dependent kernel in a similar fashion to
the solution of the heat equation by a convolution with a Gaussian
kernel. The kernel is appropriate for smoothing regular (flat)
2-D images, for smoothing images painted on manifolds, and
for simultaneously smoothing images and the manifolds they
are painted on. The kernel combines the geometry of the image
and that of the manifold into one metric tensor, thus enabling
a natural unified approach for the manipulation of both. Addi-
tionally, the derivation of the kernel gives a better geometrical
understanding of the Beltrami flow and shows that the bilateral
filter is a Euclidean approximation of it. On a practical level, the
use of the kernel allows arbitrarily large time steps as opposed to
the existing explicit numerical schemes for the Beltrami flow. In
addition, the kernel works with equal ease on regular 2-D images
and on images painted on parametric or triangulated manifolds.
We demonstrate the denoising properties of the kernel by applying
it to various types of images and manifolds.

Index Terms—Beltrami, diffusion, images, kernel, manifold,
smoothing.

I. INTRODUCTION

PDE-based algorithms have proven their worth in the fields
of image processing and computer vision. Nonlinear ad-

vanced equations are capable of excellent smoothing of im-
ages while preserving their visually important features. The geo-
metric and variational origin of many of these methods adds to
the understanding of their qualities. Important related work in-
clude [1]–[11] and references within.

The Beltrami framework [12], [13] enables state-of-the-art
image regularization based on geometric and variational sound
grounds. It produces a spectrum of image enhancing algorithms
ranging from the linear diffusion to the nonlinear flows.
See [14] for the connection between the Beltrami flow and previ-
ously proposed feature-preserving image smoothing algorithms.
Apart from regular (flat) 2-D images, the framework was used
for textures, video, and volumetric data [15], as well as orienta-
tion diffusion [16].

Sochen et al. [17]–[19] extended the Beltrami flow for im-
ages painted on explicit and implicit manifolds. They have also
shown the Beltrami flow to be a generalization of the harmonic
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maps approach for enhancing images painted on implicit man-
ifolds [20]–[22]. In [23], they extend their results to images
painted on triangulated manifolds. All these implementations of
the Beltrami flow are done by explicit numerical schemes that
require an upper bound on the time step used and might result in
many iterations (semi-implicit schemes based on operator split-
ting, as done in [24]–[26], exist only for gray-level images).

Many methods exist for the smoothing of meshes and graphic
objects. For a relevant approach, where the bilateral filter is
used for mesh denoising (see [27] for other approaches based
on image regularization methods). There are also methods for
the joint smoothing of manifolds and the images painted on
them. For PDE-based algorithms, see [28] and [29], where the
triangulated manifolds and the images undergo anisotropic dif-
fusions. The numerical scheme in [28] consists of Loop’s sub-
division, while [29] uses a finite element discretization in space.
Both use semi-implicit finite-difference discretizations in time.
These methods for either manifold or for joint manifold and
image smoothing do not enjoy the natural and simple geomet-
rical model that the Beltrami kernel introduces. They usually
do not have its smoothing quality, efficiency, and simplicity of
implementation.

A short-time kernel has been suggested for 1-D nonlinear dif-
fusion in [30] and an approximation for the 2-D Beltrami op-
erator in [31]. In [11], a short-time oriented Gaussian kernel is
used to implement vector-valued image regularization. Here, we
briefly review some of the ideas introduced in [32] and [33] and
construct a 2-D short-time kernel for the Beltrami flow. This
kernel enables the implementation of the Beltrami flow by “con-
volving” the image with the kernel, similarly to the solution of
the heat equation by a convolution with a Gaussian kernel. This
implementation replaces the conventional method of solving the
first variation of the Beltrami functional as a gradient descent
PDE process by the appropriate numerical schemes.

On a theoretical level, the derivation of the kernel gives
a better geometrical understanding of the Beltrami flow and
shows that the bilateral filter [34]–[36] is actually a Euclidean
approximation of it. For images painted on manifolds, the
kernel combines the geometry of the image and that of the
manifold into one metric tensor, thus enabling a natural unified
approach for the manipulation of both. The main practical ad-
vantages of the kernel include the ability to select an arbitrary
time step for the Beltrami flow and a straightforward applica-
bility of the kernel to all common types of images (grayscale,
color, painted on manifolds, etc.) and manifolds (parametric
and triangulated).

In order to compute the short-time kernel we need to calcu-
late geodesic distances between pixels in the image. For regular
2-D images and images painted on parametric manifolds we use
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Fig. 1. Gray-level image according to the Beltrami framework.

fast marching [37]–[39] on parametric manifolds [40], [41]. For
images painted on triangulated manifolds, we use fast marching
on triangulated manifolds [42].

This paper is organized as follows. Section II describes the
Beltrami flow for regular 2-D images and for images painted on
manifolds. The derivation of the short-time kernel is presented
in Section III. Section IV reviews shortly the method for cal-
culating geodesic distances on the image manifold, which is re-
quired for the implementation of the short-time kernel. The sim-
ulations and results are in Section V, and the conclusion appears
in Section VI.

II. BELTRAMI FLOW FOR IMAGES PAINTED ON MANIFOLDS

In the Beltrami framework [12], [13], the image is regarded as
the embedding , with the 2-D image manifold and

the space-feature manifold (see [43] and [44] to learn about
differential geometry of manifolds). The image is represented
by ,
with the spatial coordinates, the intensity components
and . Gray-level images, for instance, have

and
(see Fig. 1). The following derivation will assume the more
general case of color images painted on parametric manifolds
embedded in , where we have and the image
is

. For other values of and , the derivation is
similar.

If we choose the embedding space to be Euclidean, its metric
is represented by the diagonal matrix , with ones in the first

rows and in the next . is the relative scale between
the spatial coordinates and the intensity components. See [15]
on the meaning of its value. Non-Euclidean embedding spaces
were addressed in [14] and [45]. The metric elements of the
image are derived from the metric elements and the embed-
ding by the pullback procedure in (1),

(1)

with the derivative of with respect to .

The Beltrami flow is obtained by minimizing the area of the
image manifold

(2)

with respect to the embedding, where
. The corresponding Euler–Lagrange equations as a gradient

descent process are

(3)

with and the components of the contravariant metric of
the image manifold (the inverse of the metric tensor )
and the embedding space , respectively. Einstein’s summa-
tion convention is used. The Christoffel symbols (also known
as the Levi–Civita coefficients) are defined in terms of the
metric

(4)

Since we have chosen the embedding space to be Euclidean,
we have . See [14] for a detailed derivation.

In matrix form, (3) reads

(5)

The symbol is the Laplace–Beltrami operator which is the
extension of the Laplacian to manifolds. The resulting diffusion
flow for gray-level images is

(6)

i.e., the image surface moves according to the intensity compo-
nent of the mean curvature flow (see Fig. 2). Because we chose a
Euclidean embedding space, the Christoffel symbols are identi-
cally zero. For a color image painted on a manifold, the diffusion
equation for each component reads

(7)

This is a joint smoothing of the manifold and the image painted
on it. For smoothing only the manifold, (7) should be applied
only to the first components of . Applying
it to the last components will result in only image smoothing.

III. SHORT-TIME KERNEL FOR THE BELTRAMI FLOW

It can be shown that applying the heat equation

(8)
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Fig. 2. Filtering a signal with (top) a linear Gaussian kernel and (bottom) a
nonlinear Beltrami kernel.

to the 2-D regular image for the duration is equiv-
alent to convolving the image with a Gaussian (linear) kernel

(9)

where the kernel is given by

(10)

An iterative implementation of the PDE is replaced, in this ap-
proach, by a one-step filter.

In this section, we extend this result to the Beltrami flow.
Because of the nonlinearity of this flow (the Beltrami operator
depends on the image ), a global (in time) kernel is impos-
sible. We, therefore, develop a short-time kernel that if used it-
eratively, has an equivalent effect to that of the Beltrami flow.

The main idea behind the kernel is presented in Fig. 2 for a
1-D signal. For the Gaussian kernel, the amplitude of the filtered
signal at a specific point is the sum of the neighboring points’
amplitudes weighted according to their distance along the co-
ordinate axis. For the nonlinear Beltrami kernel, the weighting
is according to the distance on the signal itself. The Beltrami
kernel “resides” on the signal, while for the linear kernel the
Gaussian “resides” on the coordinate axis.

In order to develop the Beltrami kernel for images painted on
manifolds, we replace (9) with

(11)

which we denote by

(12)

This is not a convolution in the strict sense because does not
depend just on the differences . In general, the coordi-
nates are arbitrary local coordinates on the manifold. These
coordinates are not a geometric object and the difference be-
tween coordinates, therefore, has no intrinsic meaning. We will

justify our definition of a convolution on a manifold after we
develop the explicit form of the kernel. The general form of
is

(13)

where we take, without loss of generality, and
omit from the notation of dependency on these coordinates.
It will be re-instated later on by fixing the integration constants.
Note that does not depend on at all, while is a regular
function of and can be expanded as a Taylor series

. In order to find , we use the fact that it
should satisfy (7). Therefore

(14)

The left-hand side of the equation is

(15)

For the right-hand side of (14), we calculate

(16)

The second derivative is calculated similarly. The first two
leading terms that multiply the exponential are

(17)

Putting everything together, we get for the leading order

(18)

Equating the leading terms in (15) and (18) yields

(19)

with the gradient according to the metric . This is the
eikonal equation on the 2-D image manifold, and its viscosity
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solution is a geodesic distance map on this manifold. The
method for efficiently solving the eikonal equation for image
manifolds is reviewed in the next section. The coefficients,
which depend on the spatial variables, are solutions of the PDEs
that are obtained by equating the coefficients of powers of . It is
not too difficult to be convinced that is a constant (see [30]
for an example of such a computation).

The resulting short-time kernel is thereby

(20)

where is an arc-length element on the image manifold, and
is the geodesic distance between two points, and

, on the image manifold. Note that in the Euclidean space
with a Cartesian coordinate system . The
geodesic distance on manifolds is, therefore, the natural gener-
alization of the difference between coordinates in the Euclidean
space. It is natural then to define the convolution on a manifold
by

(21)

The update step for jointly smoothing the manifold and the
image painted on it is

(22)

As in the case with (7), the smoothing process can be restricted
to either the manifold or the image simply by applying (22) to
the appropriate components of .
in the last equation is the neighborhood of the point ,
where the value of the kernel is above a certain threshold. Be-
cause of the monotone nature of the fast marching algorithm
used in the next section for the solution of the eikonal equa-
tion, once a point is reached, where the value of the kernel is
smaller than the threshold, the algorithm can stop and thereby
naturally bound the numerical support of the kernel. The value
of the kernel for the remaining points of the manifold would be
negligible. Therefore, the eikonal equation is solved only in a
small neighborhood of each image point. is taken such that
integration over the kernel in the neighborhood of the
point equals one.

The short-time Beltrami kernel in (20) is very similar to the
bilateral filter kernel [34]–[36], which for the Gaussian case and
Euclidean metric is of the form

(23)

with and constants.
The difference between them is that the Beltrami kernel uses

geodesic distances on the image manifold, while the bilateral
kernel uses Euclidean distances. The derivation of the Beltrami
kernel shows that the bilateral filter originates from image
manifold area minimization. The bilateral filter can actually be
viewed as an Euclidean approximation of the Beltrami flow.
Another connection between the Beltrami flow and the bilateral
filter appears in [46].

The Euclidean distance used in the bilateral filter, while being
easier to calculate, does not take into account the image inten-
sity values between two image pixels and, thus, ignores connec-
tivity. A pixel can have a relatively high kernel value, although
it belongs to a different object than that of the filtered pixel. The
Beltrami kernel takes this effect into account and penalizes a
pixel that belongs to a different “connected component.” That
is, it is not “as blind” as the bilateral filter to the spatial structure
of the image. Furthermore, the value of the bilateral kernel for
pixels close to the smoothed pixel is not necessarily larger than
that of further away ones. This means that its numerical support
is not as effectively bounded as that of the Beltrami kernel.

IV. SOLVING THE EIKONAL EQUATION ON IMAGES

As shown in the previous section, the construction of the
kernel for a pixel requires the calculation of the geodesic dis-
tances between the pixel and its neighbors. We place the origin
of the coordinate system of the image at the
pixel. Next, in order to solve the eikonal equation on the image
we use the fast marching method.

Regular 2-D images are parametric manifolds, where the
metric is given for every pixel. Therefore, calculating the
geodesic distances needed for implementing the kernel to these
images is done by an extension of the fast marching method
[37]–[39] to parametric manifolds [40], [41]. The same method
is used for images painted on parametric manifolds. For images
painted on triangulated manifolds we use fast marching on
triangulated manifolds [42]. In [40] and [41], the calculations
are done on the 2-D parameterization plane. In [42], the cal-
culations are restricted to the 2-D image manifold (that can be
embedded in of any or any other manifold). Since for
color images painted on manifolds and embedded in we
already have , calculating the distances explicitly on the
2-D image is advantageous. This is contrary to methods such
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Fig. 3. Orthogonal grid on the parameterization plane is transformed into a
nonorthogonal one on the image manifold.

Fig. 4. Numerical stencil used to update according to and .

as [47], where the calculations are done in inside a band
around the manifold.

The original fast marching method solves the eikonal equa-
tion in an orthogonal coordinate system. In this case, the nu-
merical support for the update of a grid point consists of one or
two points out of its four neighbors. For images where ,
we get a nonorthogonal coordinate system on the image, see
Fig. 3. The numerical support should include non-neighboring
grid points (pixels). For parametric manifolds, the method uses
the metric of the image at each pixel in order to find the pixels
used for the numerical scheme. In the case of triangulated mani-
folds, the triangulation is given in advance and it determines the
numerical support for each vertex.

The updated pixel together with the two other pixels in its nu-
merical support constitute the vertices of a triangle. This triangle
is the numerical stencil for updating the pixel. If the triangle is
obtuse, it should be split and replaced by two acute triangles.
For parametric manifolds the splitting is done according to the
metric at the updated pixel (see [40] and [41]). For triangulated
manifolds, an “unfolding” scheme is used (see [42]).

After this preprocessing stage, all the triangles in the numer-
ical grid are acute, as in Fig. 4. The figure shows the method by
which the vertex (pixel) is updated according to the vertices

and . The objective is to find such that and
use it to calculate based on and .

The numerical scheme according to [42] is as follows.
• .

• Solve the quadratic equation

• If and ,
then . Else,

.
The numerical scheme described in the previous paragraph en-
ables the update of a pixel according to two of its neighbors. In
order to use this scheme to generate the entire distance map the
following algorithm [38] is used.
Initialization:

1) The pixel at the origin (for which the kernel is constructed)
is defined as Accepted and given an initial value of zero.

2) All the other pixels are defined as Far and given the value
infinity.

Iterations:
1) Far “neighbors” of Accepted pixels are defined as Close.
2) The values of the Close pixels are updated according to the

numerical scheme.
3) The Close pixel with the minimal value becomes an Ac-

cepted pixel.
4) If there remain any Far pixels, return to step 1).
We use the term “neighbors” to describe pixels that belong

to the same numerical stencil. These pixels are not necessarily
neighboring pixels in the image. We find these “neighbors”
during the preprocessing stage described previously.

The complexity of the algorithm for triangulated manifolds is
upper bounded by

(24)

where is the number of pixels in the image. The results
from using a min-heap data structure for sorting the Close pixels
[38]. The complexity of the algorithm for parametric manifolds
is upper bounded by

(25)

where the components of are calculated at each pixel. The
term originates from the splitting proce-
dure (see [40] and [41]). Since there is no need to use all the
pixels in the image in order to update one pixel (the value of
the kernel for most of these pixels is negligible), we can bound
in advance the neighborhood in which the eikonal equation is
solved. Thus, we decrease substantially the practical complexity
of the algorithm.

The accuracy of the numerical scheme is , where is the
length of the longest triangle edge in the numerical grid. It is de-
termined for triangulated manifolds according to the given tri-
angulation and for parametric manifolds according to the local
metric at the image pixels.
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Fig. 5. Denoising a color image by the short-time Beltrami kernel. (a) The
original image, (b) the noisy image, (c) after one iteration of the kernel, and
(d) after two iterations.

Fig. 6. Level curves of the Beltrami kernel at various locations in a synthetic
image.

V. SIMULATIONS AND RESULTS

Fig. 5 shows the denoising of a regular 2-D color image
corrupted by zero mean Gaussian noise using the short-time
Beltrami kernel. In this case, , the time step taken was

, and only grid points with a kernel value above 0.01
were used for the filtering. The dynamic range of the color
components was between 0 and 1.

Fig. 7. Difference between smoothing an image as a regular 2-D image and
smoothing it as image painted on its original manifold. In the top two rows, the
image is smoothed as a regular 2-D image. In the bottom two rows, the image
is smoothed on the original manifold, where at the green squares and

at the blue squares. The respective times of the images are: (a) ,
(b) , (c) , (d) , (e) , and (f) .

The use of pixels with a weight larger than 0.01 resulted in
an average of 21 neighboring pixels that take part in the filtering
of each image pixel. When the threshold is reached, the fast
marching algorithm is stopped, and the calculation of the dis-
tance to unnecessary points is avoided. In order to make the fast
marching algorithm even faster, we can bound in advance the
neighborhood in which the eikonal equation is solved. This way,
the preprocessing stage of the algorithm, including the splitting
of obtuse angles, is done only for relevant pixels. In Fig. 5, the
size of this neighborhood is 7 7.

In order to demonstrate the spatial structure of the kernel, we
tested it on the synthetic image in Fig. 6. At isotropic areas of
the image, the kernel is isotropic and its weights are determined
solely by the spatial distance from the filtered pixel. Across
edges the significant change in intensity is translated into a long
geodesic distance, which results in negligible kernel weights on
the other side of the edge. The filtered pixel is computed as an
average of the pixels on the “right” side of the edge.

Fig. 7 shows the implementation of the Beltrami kernel to
images painted on manifolds. The figure demonstrates the dif-
ference between smoothing a noisy color image as a regular 2-D
image and smoothing it as an image painted on its original man-
ifold. The noise added is a zero mean Gaussian noise and for the
kernel , the time step taken was , and only grid
points with a kernel value above 0.01 were used for the filtering.
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Fig. 8. SNR of the smoothed images as a function of time.

Fig. 9. Smoothing a triangulated manifold. (a) Original manifold, (b) noise
added to the manifold, (c) after one iteration of the Beltrami kernel, and (d) after
two iterations of the kernel.

An average of five pixels were used in the kernel as a result of
these values. Both methods remove the noise, but smoothing the
image on the manifold better preserves the edges of the image
since these edges coincide with those of the manifold. This can
be seen also in Fig. 8 which contains a plot of the signal to noise
ratios (SNR) of the images smoothed according to the two ap-
proaches. A better SNR is achieved by smoothing the image

Fig. 10. Jointly smoothing a face manifold and the face image painted on it.
(a) Original face, (b) noises added to the face, (c) after one iteration of Beltrami
kernel, and (d) after two iterations of the kernel.

on the manifold, and this SNR deteriorates much slower if the
image is over smoothed.

Fig. 9 shows the smoothing of a triangulated face manifold
with Gaussian noise added to it. After one iteration of the Bel-
trami kernel the added noise is removed. After the
second iteration the scanning errors in the original manifold are
also smoothed away. Since every vertex in the triangulation is
moved independently of its neighbors, the uniformity of the tri-
angulation might be degraded. This can be corrected by re-tri-
angulation of the manifold [48], again using the fast marching
method on manifolds.

Fig. 10 demonstrates the joint smoothing of a manifold and
the image painted on it. Added to the scanned face manifold
and face image were Gaussian noises which are independent
from one another. It is evident from the figure that most of both
noises is removed. The amplitude of the remaining noise signals
is too large and the boundaries they create prevent the flow from
smoothing them. This is more noticeable in the face manifold
than in the face image.

VI. CONCLUSION

We have presented a short-time kernel for the Beltrami flow
for regular 2-D images, images painted on manifolds, and the
smoothing of the manifolds themselves. From the theoretical
standpoint, a connection has been shown between the Beltrami
flow and the bilateral filter. The bilateral filter is found to be
a Euclidean approximation of the Beltrami flow. It was also
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shown that for images painted on manifolds, incorporating the
metric of the manifold in the flow produces better results.

From a practical standpoint, the numerical implementation
of the kernel handles every possible manifold represented by
all common manifold representation. It enjoys low computa-
tional complexity further enhanced by an arbitrary time step for
a Beltrami-like adaptive smoothing, which is impossible for the
explicit numerical schemes currently existing for color images.
All these attributes make the Beltrami kernel a highly practical
tool for real life image processing and graphics applications.
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