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Abstract. In this paper we link, through simple examples, between three basic approaches for signal and image
denoising and segmentation: (1) PDE axiomatics, (2) energy minimization and (3) adaptive filtering. We show the
relation between PDE’s that are derived from a master energy functional, i.e. the Polyakov harmonic action, and
non-linear filters of robust statistics. This relation gives a simple and intuitive way of understanding geometric
differential filters like the Beltrami flow. The relation between PDE’s and filters is mediated through the short time
kernel.
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1. Introduction

Averaging is a standard procedure for smoothing noisy
data and summarizing information, but it can have
rather dangerous and misleading results. Outliers, even
if rare by definition, can distort the results consider-
ably if they are given similar weights to “typical” data.
Such concerns led to the development of so-called ro-
bust estimation procedures in statistical data analysis,
procedures that data-adaptively determine the “influ-
ence” each data point will have on the results. Only
recently were such ideas and methods imported to sig-
nal and image processing and analysis [3, 6, 11, 16].
The application of the robust statistics ideas in signal
and image analysis lead to the introduction of various
non-linear filters. To fix ideas and get a perspective on
the serious problems that must be addressed we shall
consider below a series of simple examples.

A seemingly different approach to denoising and
segmentation is based on geometric properties of

signals. The filtering is done, in this approach, by solv-
ing a non-linear Partial Differential Equation (PDE).
The derivation of the PDE is based either on axioms
and requirements, such as invariance, separability [1,
15, 17] etc., or as a by product of a minimization pro-
cess for an energy functional [15, 18, 21].

In this paper we discuss, through simple examples,
the intimate connection between the above-mentioned
signal and image processing methodologies: (1) PDE
axiomatics, (2) energy minimization and (3) adaptive
smoothing filters. We show the relation between PDE’s
that are derived from a master energy functional and
non-linear filters. This relation gives a simple and intu-
itive way of understanding the Beltrami flow, and con-
nects between geometric differential filters and classi-
cal linear and non-linear filters.

We show that the Beltrami flow, which results from
the minimization process of the Polyakov action, is
related to non-linear filters of special type upon choos-
ing a Lγ induced metric and after discretization of the
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corresponding partial differential equation. A different
non-linear filter is constructed via a short time analysis
of the same PDE. The short time approach is different
since we analyze and eventually discretize the solution
of the differential equation. It is also more general since
we treat a variety of flows by not specifying the explicit
form of the metric at the outset. In this way we have a
clear intuitive understanding of the adaptive averaging
as a Gaussian weight function on the manifold that is
defined by the data. The flows differ in the geometry
attributed to the manifold through different choices of
the metric.

The paper is organized in an increasing order of tech-
nicality. In Section 2 we discuss simple examples that
make the basic idea clear. In Section 3 we deal with the
more technical considerations of the short time analy-
sis and show how different approaches are related to,
or special cases of, this framework. We construct the
appropriate nonlinear filter for the challenging prob-
lem of the averaging of constrained features in Sec-
tion 4. Image denoising is discussed and demonstrated
in Section 5 and our conclusions are summarized in
Section 5. Few of the more technical computations can
be found in the Appendix.

2. Averaging Data for Smoothing and Clustering

To make our presentation as simple as possible we first
limit our discussion to sets of scalar and vectors. One di-
mensional signals are analyzed next, and few remarks
on higher dimension signals, e.g. images, can be found
in the last subsection.

2.1. Averaging Scalar Variables (Values in IR)

Suppose we are given a set of real numbers {x1,

x2, . . . xN } and we would like to provide someone with
a typical representative value that somehow describes
these numbers. A natural choice would be their aver-
age, i.e.

x̄ =
N∑

i=1

(

1
N

)

· xi (1)

While for sets like {2.83, 3.7, 3.22, 2.97, 3.05} this is
a reasonable choice, it clearly is not for a set of values
comprising the number 1010 and a thousand values in
the interval (1 − ε, 1 + ε) for ε = 0.01. In this sec-
ond case, a typical number in the set is around 1 and

1010 may be regarded as an outlier to be either dis-
carded or given “special consideration”. To deal with
such situations we could propose the following process
of “smoothing” the initial set of values to produce new
sets that more clearly exhibit the “inner structure” of
the values in this set. For each i = 1, 2, . . . , N do

xnew
i = (1 − α)xold

i +
N∑

j=1
i #= j

wi
(

xold
i , xold

j

)

xold
j , (2)

where 0 < α < 1. In matrix form

Xnew

=










1 − α w1(x1, x2) · · · w1(x1, xN )

w2(x2, x1) 1 − α · · · w2(x2, xN )

...
...

. . .
...

wN (xN , x1) wN (xN , x2) · · · 1 − α










Xold,

(3)

where XT = (x1, x2, . . . , xN ). The weights may be
chosen so that

N∑

j=1
j #=1

wi (xi , x j ) = α,

and wi (xi , x j ) reflects how much influence x j has on xi

based, say, on “how far” or “how different” x j is from
xi . We further assume that the “distance” is always
positive and symmetric. For example, we could choose

wi (xi , x j ) = βi

1 + |x j − xi |γ
i #= j,

with

βi = α







N∑

j=1
j #=1

1
1 + |x j − xi |γ







−1

.

Such a choice will make nearby points more “influen-
tial” on the displacement of xi toward its new location.
If, however, we shall choose wi (xi , x j ) = α

N−1 for all
i, the dynamics of update becomes

xnew
i = (1 − α)xold

i + α

N − 1

∑

j #=i

xold
j , (4)
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Figure 1. Random points on IR1 propagate via adaptive averaging with γ = 0, 1, 1.2, 2 (left to right).

and all points converge towards the mean of the initial
location. Indeed we will have in this case

Xnew =







1 − α α
N−1 . . . α

N−1
α

N−1 1 − α α
N−1

α
N−1 · · · 1 − α







︸ ︷︷ ︸

B

Xold, (5)

and the circulant matrix here B is diagonalized by the
Fourier Transform. It is easy to see that repeated appli-
cation of the update rule (5) will yield asymptotically
the vector

1
N

〈[1, 1, . . . , 1], [x1, x2, . . . , xN ]〉













1

1

1
...

1













,

where 〈V, W 〉 is the scalar product of vectors.
Here the linear analysis was applicable while in the

general case it is quite difficult to say what will be the
exact dynamics of the set of points. However, if the
set of points would comprise two subsets of values,
one clustered around 1 and the other around 1010 then
the corresponding non-linear dynamics will have the
two clusters converging to the two centroids (averages)
since points from the other set will be “deweighted”
by about 1

1+1010 . In fact this would precisely be the
behavior if we choose the weight function w(x, y) to be

(w(x, y) = (1 − χ{d(x, y) > “Th” })β,

where d(x, y) is the distance between x and y. Here
χ is the indicator function for the predicate in the
curly brackets and the threshold “Th” can be chosen
as 10,000. Therefore, we have seen that we can devise
an averaging procedure via the “weight” or distance

functions that will accomplish the following: If the data
appears in well-defined (separated) clusters of points
with distances between clusters of “Th” or more, the
result of iterative application of the smoothing process
will be a set of centroids that are typical values (in fact
the averages) of each cluster. The same type of effect
is achieved without the need of a threshold parame-
ter with the weights w j (xi , x j ) = 1

1+d(xi ,x j )γ
· β, for

γ some positive constant. This is very nice since we
have a data-adaptive smoothing process that provides
an effective clustering of the data points into a variable
size set of typical values. See Fig. 1.

2.2. Averaging Vectors (Values in IRd )

Given N points in IRd we construct a smoothing process
that moves each point towards the centroid of its clus-
ter (see Fig. 2). Let Xi i = 1, 2, . . . , N be N vectors
where Xi = (x1

i , x2
i , . . . , xd

i )T . We average each point
in its local neighborhood, giving only small weight to
far away points that may belong to a different cluster.
Specifically we choose

Xnew
i = (1 − α)Xold

i +
N∑

j=1
i #= j

wi (Xi , X j )Xold
j . (6)

This smoothing process acts on each component as fol-
lows

(

xa
i

)new = (1 − α)
(

xa
i

)old +
N∑

j=1
i #= j

wi (Xi , X j )
(

xa
j

)old

a = 1, . . . , d. (7)

This averaging process is similar, for each component,
to the scalar process Eq. (2) with the notable differ-
ence that the weights depend on the distance between
the points in IRd . This means that the averages of the
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Figure 2. Random vectors (points in IR2) averaging process with γ = 0.5, 1.2, 2 (left to right).

components are not independent. We take for example
the Euclidean distance between points:

d(Xi , X j ) =

√
√
√
√

d∑

a=1

(

xa
i − xa

j

)2
,

and choose a weight wi as a function of this distance

wi (Xi , X j ) = βi

1 + d(Xi , X j )γ
i #= j

with

βi = α







N∑

j=1
j #=i

1
1 + d(Xi , X j )γ







−1

.

Such a choice will make nearby points more “influen-
tial” on the displacement of xi .

The distance that involve all the components of a
point provides the coupling in Eq. (7) between the aver-
aging processes of the different components. See Fig. 2.

2.3. Averaging Points on a Circle (Values in S1)

Suppose next that we have a set of values on the unit
circle S1, encoded say as complex numbers via {eiθ j }
where θ j ∈ [0, 2π). We would like to devise a process
of averaging over the values on S1 that can effectively
summarize for us the initial set of values. It is clear
that we cannot simply average the complex numbers
directly. Such an operation will most likely result in a

value not on the unit circle. An alternative is to average
the angles {θ j } as numbers between [0, 2π ], however,
we immediately realize that θ1 = ε and θ2 = 2π − ε

will yield an average of π , far away from both ε, and
2π − ε on the circle. The proper averaging in this case
should obviously be θav = 0, and certainly not π . The
problem here arises from the “jump” in our mapping of
S1 into the representation space ( of the angles. Clearly
the “average” of θ1 and θ2 should be the angle that bi-
sects the shortest arc that connects θ1 to θ2. Suppose we
have N points on the unit circle and we wish to devise a
process of averaging that will yield a better representa-
tion of these points (e.g. via clustering them). We shall
map these points P1(θ1), P2(θ2) · · · PN (θN ) into multi-
ple images on a real line (see Fig. 3) exhibiting the fact
that Pj corresponds to {θ j +k ·2π}, k = 0, ±1, ±2 . . .

Hence, we have a periodic configuration of points on
R that exhibits (maps) the single angle parameter.

Now, the (angular) distance between two points on
IR can be simply read as a distance on IR : d(P1, P2)

being defined as the closest distance on IR between
the multiple representations of P1 and P2. This cor-
responds to always measuring the distance on S1 by
the smallest arc connecting P1 and P2 (as is natural).
The averaging (smoothing) process for these points can
now be defined as follows: For all Pi look at the points

Figure 3. Averaging S1 values.
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in its symmetric 2π -neighborhood, i.e. consider the in-
terval

(

Pi −π, Pi +π
)

. Then consider all points in this
neighborhood as Q j ’s. Now compute

Pnext
i = (1 − α)Pi + α

∑

j #=i

w(d(Pi , Q j ))Q j

Clearly this process will move Pi a bit toward the
weighted average of the “influential” parts {Q j }, with
the influence function defined to depend on the distance
between Pi and Q j .

It is clear from the above defined process that pe-
riodicity is here preserved, hence we shall always get
“a correct” representation of N points on a circle, and
the various possibilities for choosing influence func-
tions w() will lead to a variety of types of clustering
processes. It is also clear that, although the averaging
process defined above works on infinitely many repre-
sentations of each point, its practical implementation
can easily be done by an updating process of only N
points. It was simply a conceptual advantage to look
at the problem on IR rather than work directly on S1.
Note that the distance defined this way is the geodesic
distance on the circle.

2.4. Adaptively Smoothing a Discrete Time Series

Suppose that we are given a discrete time series X =
(x1, x2, . . . , xN )T . Here xi = x(ti ) and this fact makes
this series different from the series of scalars we dis-
cussed above. Sets of this type appear often in almost
every field of research ranging from Engineering and
Physics through Biology and Psychology to Economy
and Sociology. Our adaptive averaging is based, as
above, on the distance function d(xi , x j ):

xn+1
i = (1 − α)xn

i +
∑

j #=i

wi
(

d
(

xn
i , xn

j

))

xn
j ,

where the superscript n is the iterations index.
In order to go from this principle to a specific algo-

rithm we have to specify the “smoothing function” w

and more important we have to decide what is the “ap-
propriate distance” between generic two measurements
xi and x j .

We may choose a smoothing function

wi (xi , x j ) = βi

1 + d(xi , x j )γ
i #= j. (8)

where γ defines the degree of smoothing wanted.

The distance d(xi , x j ) could be |ti − t j | or it could
be α|ti − t j | + β|xi − x j | or it could even be distance
measured on the signal curve. For two adjacent mea-
surements xi and xi+1 the distance on the signal is

d2
i (xi , xi+1) = |ti+1 − ti |2 + |xi+1 − xi |2.

Note that the index i indicates that this distance is
between two adjacent points. The distance between
generic points is the sum of the distances between the
pairs of adjacent points that connect the given generic
points. Assuming, with no loss of generality, that j > i
it reads

d(xi , x j ) =
j−1
∑

k=i

dk(xk, xk+1).

This expression is simply an approximation of the
length of the curve which connects xi and x j .

2.5. Adaptively Smoothing an Image

An image is a two-dimensional analog of the dis-
crete time series. Denote the gray value at a pixel
Iij = I (xi , y j ) and we assume equal spacing in the
x and y directions. Denoising the image will clearly
necessitate a smoothing process. The special nature of
images demands the average to be taken over pixels that
“resemble” the center pixel Iij. This average should
be taken over projections of the same object and be
independent of pixels that describe different objects
or that are simply in a region far from the pixel of
interest.
The smoothing step can therefore be taken as

I n+1
ij = (1 − α)I n

ij +
∑

kl #=ij

wij
(

d
(

I n
ij , I n

kl

))

I n
kl.

where, again

wij(Iij, Ikl) = βi

1 + d(Iij, Ikl)
(ij) #= (kl). (9)

However, here we represent the image as a two-
dimensional surface which is the discretized graph of
I (x, y). The distance is measured on the image surface
as follows. For any pixel the distance to pixels in the
closest neighborhood, i.e. 3 × 3 stencil, is calculated
as

d2
near(Iij, Ikl) = |i − k|2 + | j − l|2 + |Iij, Ikl|2.
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For further away points the distance is defined as sum
of distances of near neighbors along the shortest path
on the manifold that connects the two points. Recently,
the fast marching method on curved domains algorithm
was developed in [13] it can compute these geodesic
distances very effectively. See, Fig. 4 for adaptive
smoothing with various γ values.

3. Short Time Kernel for Non-Linear
Differential Averaging

The solution of the linear diffusion equation is given
as a convolution with a Gaussian. The Gaussian func-
tion with a time dependent variance is called the kernel
of the differential equation. For a non-linear diffusion
the situation is different and a global (in time) kernel
does not exist. If, however, we are interested in the
evolution over a short time span, more can be said. A
kernel can be constructed for the short time evolution of
the non-linear diffusion equation [9]. We demonstrate
this and clarify the ideas that lie at the basis of any
of the geometrical evolution equations in the rest of
this section.

3.1. One-Dimensional Signal

Let us first consider a one dimensional signal Y (p).
The signal can be thought of as a curve embed-
ded in IR2, as (X1(p), X2(p)) = (p, Y (p)) see
Fig. 5. The equation we analyze is the geometric heat
equation

Yt (p) = Yss(p), (10)

where s is an arclength defined in terms of a general
metric by the relation

ds2 = g(p) dp2,

and for any function f we denote by fs the deriva-
tive ∂ f/∂s = 1√

g(p)
∂ f/∂p. This is the gradient descent

equation for the Polyakov action

S[Y, g] =
∫

dp
√

gg−1((X1
p

)2 +
(

X2
p

)2)

=
∫

ds
(

X2
s + Y 2

s

)

.

If we further assume that the metric on the curve is
induced from the ambient Euclidean IR2 space then

g(p) = 1 + Y 2
p and g(s) = X2

s + Y 2
s = 1 from the

definition of the arclength s. The Polyakov functional
has a very simple geometric meaning in this case:

S[Y ] =
∫

ds
(

X2
s + Y 2

s

)

=
∫

ds = length.

Note however that that other metrics are possible, e.g.
the Lγ -norm

g(p) =
((

∂ X
∂p

)γ

+
(

∂Y
∂p

)γ) 2
γ

.

Note that these functions are metrics since they trans-
form properly under a general reparameterization p →
p( p̃). In our canonical coordinate system (p, Y (p)) the
metric admit the form

g(p) =
(

1 +
(

∂Y
∂p

)γ) 2
γ

.

Use of these metrics for the definition of a distance
leads, upon discretization, to the smoothing function
w() of the previous section.

From an axiomatic point of view we may also wish
to construct a curve flow which is invariant under dif-
ferent groups of transformations. Invariance under the
Euclidean group that includes translations and rotations
leads to the Euclidean induced metric, and results in a
curvature flow projected on the Y axis. This projection
action preserves edges longer along the flow, enhanc-
ing this way the boundary between different regions in
the image as will be seen below.

Different requirements (such as invariance under dif-
ferent groups of transformations) lead to a different
form for the metric and to a different flow. We analyze
all these possibilities at the same time by not specify-
ing any particular form of the metric and leaving it as
a free “parameter” of the framework.

The flow is the one-dimensional analog of the
Beltrami flow

Yt = 1
√

g
∂p(

√
gg−1∂pY ) ≡ *gY (11)

where g is the metric on the curve. Another way to
write this equation is

Yt = Dp∂pY = (∂p + A′)g−1∂pY

= g−1(∂2
pY + A∂pY

)

(12)
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Figure 4. Image adaptive averaging with γ = 0, 1, 1.5, 2 (top down), with a cross-section that shows the edge preserving property.
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Figure 5. The signal as a curve.

where Dp = ∂p + A′ is the covariant derivative, A′ =
1
2 g−1∂pg is the connection and A = A′ − g−1∂pg =
− 1

2 g−1∂pg. This equation can describe a variety of
curve evolution dynamics upon different choices of the
metric g. In more complicated situations we encounter
the same form of Eq. (12) where the connection A de-
pends on the metric of the embedding space as well. In
flows with g depending on ∂pY Eq. (12) is non-linear,
and prevents the existence of kernels for long time inter-
vals. If however g ≡ 1 then Eq. (11) becomes the usual
heat equation with the well known Gaussian smoothing
kernel.

Upon discretization Y (p) → Yi this equation as-
sumes the following form

Y n+1
i =

∑

j

W n
ij Y n

j

where n is the iteration index and W n is a matrix whose
entries depend on the values of Y n and ∂pY n . For one
iteration only we can think about the update rule as if
W n is a fixed function of p describing the underlying
curve which is fixed during this one short time up-
date. After Y is updated the metric is updated and then
again it is fixed during the next update of Y . The cou-
pling between the metric (or connection), that describes
the geometry, and the feature of interest Y , prevents a
global fundamental solution to exist, yet we can find
such solution for each time step in which the geometry
is fixed.

In order to derive the short time kernel of these equa-
tions we use the following ansatz, known in physics as
the WKB approximation,

Y (p, t + ε) =
∫

K (p, p′; ε)Y (p′, t) dp′, (13)

where the kernel is assumed to be of the form

K (p, p′; t) = H(p, p′, t)√
t

exp
{

−+(p, p′)

t

}

. (14)

We take, without loss of generality, H(p, p′, t) = con-
stant, see Appendix A for the details. This form is a
generalization of the Gaussian kernel solution of the
linear diffusion equation. The function + depends on
the diffusion tensor only while H depends on the de-
tails of all the terms of the equation. The validity of
this approximation procedure can be found in [9] for
example.

Note that upon discretization of the curve p = ah,
where h = L/N , L is the length of the curve, and N is
the number of segments, this equation takes the form
of a system of linear equations

Xi new
a =

N∑

b=1

Kab Xi old
b . (15)

This has the same form as the one described in the pre-
vious section when we discussed averaging sequences
of scalars and vectors.

Inserting Eq. (13) in Eq. (11) we see that the ker-
nel K (p, p′; t) as a function of p satisfies the same
equation as Xi . As a power series in t we get

(

+(p, p′)

t2
+ O

(

1
t

))

K (p, p′; t)

=
(

1
t2

g−1(p)(∂p+(p, p′))2

+O
(

1
t

))

K (p, p′; t). (16)

For short times only the most singular part is dominant,
namely

+(p) = g−1(p)(∂p+(p))2, (17)

where by abuse of notations +(p) is a shorthand for
+(p, p′), and with boundary condition

+(p′) = 0. (18)

This equation can be rewritten as an algebraic–
differential system of equations

F(p, +, Z) = Z2 − g(p)+ = 0
(19)

Z = ∂+

∂p
.

The algebraic equation is solved to yield

Z =
√

g+. (20)
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Figure 6. Gaussian on the curve.

The resulting differential equation is solved by separa-
tion of variables

d+√
+

=
√

g(p) dp, (21)

that yields the solution

+(p) = 1
4

(
∫ p′

p

√
g dp̃

)2

= 1
4

(
∫ p′

p
ds

)2

. (22)

This equation has a simple interpretation. The kernel
is a Gaussian on the curve, i.e. the convolution is per-
formed on the signal (see Fig. 6). Distances from a
point should be measured on the signal itself and not
on the grid that happens to be used in order to describe
it. This way, points on one side of a significant jump
are farther away from the points on the other side of the
jump and therefore have small influence on the average
there. This explains the edge preserving nature of the
geometric heat equation and the filter that emerges out
of it.

In Fig. 7 a one dimensional ‘edge’ is convolved with
a Gaussian kernel once with support along the x axis,
and once, intrinsically defined, i.e., with a support of
the signal itself. The variance in both cases was defined
to yield similar results along the flat areas. We see that
the kernel defined on the signal better preserves the
bimodal nature of the data.

3.2. One-Dimensional Curve Embedded in IRn

Equation (11) can be easily generalized to an ar-
bitrary one-dimensional curve embedded in IRn by
simply applying the geometric diffusion equation
componentwise:

Xi
t = 1

√
g
∂p

(√
gg−1∂p Xi)≡ *g Xi i = 1, 2, . . . , n.

(23)

Figure 7. Smoothing a noisy signal (green solid line) once with
a Gaussian along the p axis (red dashed line) and with the kernel
defined on the signal itself (blue doted line). For a better view see
http://www.cs.technion.ac.il/∼ron/pub.html

This equation can describe a variety of curve evolution
dynamics upon different choices of the metric g. Note
that the metric involves all components leading to a
system of coupled equations.

In order to derive the short time kernel of these equa-
tions we use the following ansatz

Xi (p, t + ε) =
∫

K (p, p′; ε)Xi (p′, t) dp′ (24)

where the kernel form, like in Eq. (14) is given by

k(p, p′; t) = C√
t

exp
{

−+(p, p′)

t

}

. (25)

Now, C is a constant and+ is the same as in the previous
subsection, i.e.,

+(p) = 1
4

(
∫ p′

p

√
g dp′′

)2

= 1
4

(
∫ p′

p
ds

)2

= 1
4

s(p, p′)2. (26)

s(p, p′) is the distance on the curve between point p
and the point p′.

3.3. Affine Invariant Averaging

Once we have a formulation for the kernel in terms
of an arc-length through the relation ds2 = g dp2, we
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can envision the construction of group invariant kernels
by imposing invariance properties on the metric. The
simplest example is the special affine invariant metric
of a curve, i.e.

s(p0, p′) =
∫ p′

p0

〈Xp, Xpp〉1/3 dp. (27)

See e.g. [1, 5, 19].

3.4. Relation to Other Works

3.4.1. The Bilateral Filter. The short time kernel can
be approximated in a small window by approximating
the integral

∫ p0+dp

p0

√

g(p′) dp′ =
√

g(p) dp.

We can use the Euclidean induced metric, i.e.,

g = 1 +
(

∂ f
∂p

)2

.

Then,

4+ = (
√

g(p) dp)2 =
(

1 +
(

∂ f
∂p

)2
)

dp2

= dp2 + d f 2,

which is exactly the bilateral filter that was recently
proposed by Tomasi and Manduch, [2, 10, 23].

3.4.2. The TV Digital Filter. Recently Chan, Osher
and Shen [7] analyzed non-linear filter of the following
form

U new =
∑

β∼α

hαβU old
β ,

where the sum is over neighbors of α (including α

itself ). The weights hαβ are of the form

hαβ = wαβ

λ +
∑

γ∼α wαγ

for α #= β. The diagonal weight is

hαα = λ

λ +
∑

γ∼α wαγ

.

These filters are constructed by direct discretization
of the differential operator that results in a gradient de-
scent minimization of the TV functional. In practice it
is a regularized functional that is minimized leading to
a direct relation to the Beltrami flow which is based
on the Euclidean induced metric (see [21] for details).
Writing the discretized differential operator as a ma-
trix whose entries depend on the signal appear also in
[24, 25].

The short time approach is different since we analyze
and eventually discretize the solution of the differential
equation. It is also more general since we treat a variety
of flows by not specifying the explicit form of the met-
ric at the outset. In this way we have a clear intuitive
understanding of the adaptive averaging as a Gaussian
weight function on the manifold that is defined by the
data. The flows differ in the geometry attributed to the
manifold through different choices of the metric.

3.4.3. Relation to Projective Averaging. In [4] an
adaptive non-linear and projective invariant averaging
process was introduced. It was demonstrated that it is
equivalent to a projective invariant PDE that generates
the curve flow.

4. Averaging Constrained Features

One often encounter, in some signal and image pro-
cessing tasks, a more complex feature-space signal.
Examples of such features are color, texture, curva-
ture, derivative vector field, orientation vector field etc.
The feature space may have non-trivial geometry rep-
resented by a metric [8, 12, 14, 20, 22]. Regularization
or smoothing of the feature space is frequently done
with a non-linear diffusion system of equations. In this
section we derive the short time kernel for the diffusion
of an orientation defined over a one-dimensional curve.

4.1. Orientation Field over a Signal

In the case of averaging an orientation field, we define
the orientation at each point (p, Y (p)) as the angle
between the feature vector and the p axis. By definition,
the vector field has a unit magnitude and this property
should be preserved during the smoothing flow.

The vector field is a map f : C →S∞, and the geo-
metric smoothing flow may here too be derived as a gra-
dient descent flow from the Polyakov action defined as

ft (p) = *g f (p) + -(∂p f )2g−1, (28)
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see [14], where

- = h−1∂ f h, (29)

and h is the metric on S1. Thus, for example, if the
components of the orientation vector field are f and e
such that f 2 + e2 = 1, then the metric on the patch that
is described by f is calculated as follows

ds2 = d f 2 + de2 = d f 2 +
(

∂e
∂ f

d f
)2

=
(

1 + f 2

1 − f 2

)

d f 2 = 1
1 − f 2

d f 2.

From the definition

ds2 = h d f 2,

we get

h = 1
1 − f 2

.

The calculation of - is straightforward and gives

- = h−1 ∂f h = (1 − f 2) ∂f (1 − f 2)−1

= f
1 − f 2

= fh.

Let us write Eq. (28) in a more suggestive form:

ft =
(

∂p + 1
2

g−1 ∂pg + - ∂p f
)

g−1 ∂p f. (30)

We simplify this expression by noting that

- ∂p f = 1
2

h−1 ∂f h ∂p f = 1
2

h−1 ∂ph.

Finally we get

ft = (∂p + A′)g−1 ∂p f = g−1(∂p + A) ∂p f

where A′ = 1
2 g−1 ∂pg + 1

2 h−1 ∂ph and A = −1
2 g−1

∂pg + 1
2 h−1 ∂ph.

Repeating the analysis of the previous subsections
we derive the solution of the form

K (p, p′; t) = H(p, p′, t)√
t

exp
{

−+(p, p′)

t

}

. (31)

and develop h(p, p′; t) in a Taylor series

H(p, p′; t) =
∞∑

n=0

tn Hn(p, p′).

The leading term is the same as in the non-constrained
diffusion and therefore

+(p) = 1
4

(
∫ p′

p

√
g dp′′

)2

= 1
4

(
∫ p′

p
ds

)2

. (32)

Here g is the induced metric

g = 1 + (Yp)
2 + h(∂p f )2

and while in the previous case H = constant here
the situation is different and a careful analysis (see
Appendix) gives

H = Ch−1/4 + O(t) (33)

where C is a constant and h is the metric on S1.

4.2. Orientation Field over a Curve Embedded
in IRn

The above analysis applies to a constrained vector field
defined over a curve embedded in IRn . The map is
f : C → S1 and the PDE associated with it is

ft (p) = *g f (p) + -(∂p f )2g−1 (34)

The only difference is in the structure of the inner
metric g.

g =
∑

i

(

Xi
p

)2 + h(∂p f )2

=
∑

i

(

Xi
p

)2 + 1
1 − f 2

(

∑

i

∂ f
∂ Xi

Xi
p

)2

.

The short time kernel is the same as in the above sub-
section.

It is important to understand that these equations are
of the same form for any coordinate system we choose
(up to transformation of coordinates of course). We
need at least two charts to cover S1 but we can also
adopt the ideas developed in Section 2 and construct for
each point the coordinate system where the orientation
is the furthest point from the singularity.
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Figure 8. In each couple the left is the original image, while the right is the filtered one processed with the Beltrami approximated by the
bilateral filter. The convolution kernel is e−ds2 = e−(dx2+dy2+0.1 d I 2)/16, normalized, with window size of 5 × 5.

5. Image Denoising Results

The short time kernel for images is conceptually a
straitforward generalization of the 1D case. It is given
as a weighted Gaussian on the image manifold (see [20]
for detailes):

K (p, p′) = C
t

e− d(p,p′)2
t + O(t0).

Here p and p′ are two points on the image manifold and
d(p, p′) is the distance between them i.e. the length of
the shortest geodesic on the manifold between these
points. The results for small window are given below
in Fig. 8.

6. Summary and Conclusions

We briefly explored here the relation between PDE
based filters, classical signal processing linear filters,

and non-linear filters. It was shown that the short time
kernels of the Beltrami flow may be considered as ap-
proximations for known linear and non-linear filters.
The discussion covers Gaussian filters, the non-linear
bilateral filters, and further non-trivial robust and data-
adaptive filters. Our approach yields a unified and com-
prehensive view on the relation between these seem-
ingly unrelated set of tools.

Appendix

We analyze in this appendix the time structure of a
general WKB approximation. The Kernel obeys the
equation

Kt = g−1(∂p + A)∂p K (35)

and we define a WKB kernel in the form

K (p, p′; t) = H(p, p′, t)√
t

exp
{

− +(p, p′)

t

}

. (36)
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and develop H(p, p′; t) in a Taylor series

H(p, p′; t) =
∞∑

n=0

tn Hn(p, p′)

Inserting this ansatz in the diffusion Eq. (35) we get on
one hand

∂K
∂t

= +

t2

H(p, p′, t)√
t

exp
{

−+(p, p′)

t

}

+
∞∑

n=0

(

n − 1
2

)

tn − 3
2 Hn(p, p′)

× exp
{

−+(p, p′)

t

}

.

On the other hand we find

∂p K = − H(p, p′; t)∂p+

t3/2
exp

{

−+(p, p′)

t

}

+ ∂p H
t1/2

exp
{

−+(p, p′)

t

}

and

∂2
p K = −

H(p, p′; t)∂2
p+

t3/2
exp

{

−+(p, p′)

t

}

− 2
(∂p H)(∂p+)

t3/2
exp

{

−+(p, p′)

t

}

+ H(p, p′; t)(∂p+)2

t5/2
exp

{

−+(p, p′)

t

}

+
∂2

p H(p, p′; t)

t1/2
exp

{

−+(p, p′)

t

}

.

By comparison of the coefficients of the power series
we get from the leading term

+ H0 = g−1(∂p+)2 H0

and from the second term

+ H1 − 1
2

H0 = g−1(H1(∂p+)2 − 2(∂p+)(∂p H0)

− h0(∂p + A)∂p+
)

. (37)

The coefficient of H1 is the equation for the leading
term and thus assumed to be satisfied. For the rest, we
know from the solution of the first equation that

∂p+ =
√

g+

and

∂2
p+ = (∂g)+ + g∂+

2
√

g+
= 1

2

√

ψ

g
∂pg + g

√
g+

2
√

g+

= 1
2

√

ψ

g
∂pg + g

2
.

Using these identities we get

g
2

H0 = H0
(

∂2
p+ + A∂p+

)

+ 2(∂p+)(∂p H0)

= H0

(

1
2

√

+

g
∂pg + 1

2
g + A

√

g+

)

+ 2
√

g+(∂p H0)

from which we finally obtain

∂p H0 +
(

1
4

g−1 ∂pg + 1
2

A
)

H0 = 0.

The form of A when the feature space is not con-
strained is

A = √
g ∂p

1
√

g
= −1

2
g−1∂pg.

We conclude that in this case H0 = constant. In the
constrained case A = − 1

2 g−1∂pg + 1
2 h−1∂ph. The co-

efficient H0 is in this case

H0 = Ch−1/4

where C is a constant of integration.
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