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Abstract

Planar geometric curve evolution equations are the basis for many image processing and computer vision algorithms. In
order to extend the use of these algorithms to images painted on manifolds it is necessary to devise numerical schemes for
the implementation of the geodesic generalizations of these equations.

We present efficient numerical schemes for the implementation of the classical geodesic curve evolution equations on
parametric manifolds. The efficiency of the schemes is due to their implementation on the parameterization plane rather
than on the manifold itself. We demonstrate these flows on various manifolds and use them to implement two applications:
scale space of images painted on manifolds and segmentation by an active contour model.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The motion of curves and images in R2 has been researched extensively. There are many applications in
image processing and computer vision, such as scale space by linear and nonlinear diffusions [1–4], image
enhancement through anisotropic diffusions [3,5–8] and image segmentation by active contours [9–12]. The
level set formulation [13] has provided good means to implement these flows. Extending these motions to man-
ifolds embedded in spaces of higher dimensions can be beneficial for many applications.

Some of the previous work dealt with specific flows. Geodesic curvature flow on manifolds constructed
from patches homeomorphic to R2 was implemented by [14]. A similar flow was used on manifolds that
are graphs of functions ({x,y,z(x,y)}) to find shortest paths [15,16] and to construct an intrinsic scale space
for images on surfaces [17]. The same flow was implemented also on triangulated manifolds [18]. All the above,
except for the last, were implemented by projecting the PDEs to R2, performing the numerical calculations
there and then mapping back the solutions to the manifold.

A more general approach for the motion of curves on manifolds was developed by Cheng et al. [19] and
Bertalmio et al. [20]. In [19] many geometric flows are implemented and in [20] various PDEs and variational
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Fig. 1. The curve C(s) on the manifold X(U) and its origin eCð~sÞ on the parameterization plane U.
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problems are solved, both for general manifolds. Their approach is to implicitly represent both the manifold
and the curve or data on it as level sets of functions in RN . The level set representing the manifold is static and
the level set representing the curve or the data is moving according to the PDE. This approach has several
drawbacks. It necessitates the extension of the manifold and the curve or data on it to functions in RN .
The calculations are done in RN and might be computationally prohibitive for N > 3. Finally, the method
is restricted to manifolds that can be represented by a level set function, excluding more general manifolds,
such as self-intersecting ones.

We present efficient numerical schemes for the implementation of various flows on parametric manifolds.1

We solve the problems arising from the implicit representation approach described in the previous paragraph
by following in the footsteps of the first approach of working on the parameterization plane. Namely, we back
project the flow from the manifold to the parameterization plane, solve it on this plane and then map the result
back to the manifold. The complexity of the calculations is not affected by the dimension of the space in which
the manifold is embedded and the approach is suited for all manifolds, including self-intersecting ones.

We consider a parameterization plane U ¼ fu1; u2g 2 R2. This plane is mapped by X : R2 ! RN to the

parametric manifold X ðUÞ ¼ fx1ðu1; u2Þ; x2ðu1; u2Þ; . . . ; xN ðu1; u2Þg 2 RN . Any curve C(s) 2 X(U) has an origineCð~sÞ 2 U , i.e. each point p 2 C(s) is a mapping of a corresponding point ~p 2 eCð~sÞ given by p ¼ X ð~pÞ. s and ~s
are the arc length parameterizations of the curves C and eC , respectively. The derivatives of X with respect to ui

are defined as X i,
oX
oui. See Fig. 1.

The distance element on the manifold is
1 Fo
ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijduiduj

q
; ð1Þ
where we use Einstein’s summation convention and the (covariant) metric tensor of the manifold gij is calcu-
lated by
ðgijÞ ¼
g11 g12

g21 g22

� �
¼

X 1 � X 1 X 1 � X 2

X 2 � X 1 X 2 � X 2

� �
: ð2Þ
gij are the components of the contravariant metric tensor (the inverse of the covariant metric tensor) and
g ¼ detðgijÞ ¼ g11g22 � g2

12.
According to the above definitions, the derivative of C(s) with respect to its arc length is Cs, which is the

tangent to the curve C. Similarly, we have eC~s, which is the tangent to eCð~sÞ. We denote by N the normal to the
plane tangent to the manifold X(U) and in the direction of X1 · X2. bN is the unit vector normal to the curve
C(s) lying in that plane. eN represents the normal to eC~s in the plane U.

This paper is organized as follows. Section 2 shows how the geodesic flows are projected onto the param-
eterization plane. The level set representation of the flows on the parameterization plane and the numerical
r completeness sake, we include here results that where first presented in [21,22].
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schemes used to implement them are described in Sections 3 and 4, respectively. In Section 5, the flows are
demonstrated on various manifolds. Section 6 presents two application for the flows: a geometric scale space
for images painted on manifolds and the segmentation of these images by an extension of the geodesic active
contour model. Conclusions appear in Section 7.

2. Translating flows on manifolds to flows on the parameterization plane

Any geometric flow of the curve C(s) of the form Ct ¼ F bN , has a corresponding geometric flow on U of the

form eCt ¼ eF eN . If we can find eF as a function of F and the mapping X, we can simplify the calculation of the
flow on X(U) by performing the flow on U and then mapping the result onto X(U). To enable this, we repre-
sent vectors in the N-dimensional space according to the basis {X1,X2}. The other components of the vectors,
which are perpendicular to X1 and X2, do not affect the geometric flow of the curve C(s) on the manifold X(U).

2.1. Geodesic curvature flow

We start with the geodesic curvature flow of C(s)
Ct ¼ jg
bN ¼ Css � hCss;NiN : ð3Þ
This is the flow of the curve C(s) according to the component of its curvature, tangent to the surface X(U).
Taking only this component of the curvature keeps the curve on the manifold. See Fig. 2.

The representation of Cs according to the basis {X1,X2,N} is
Cs ¼ ui
sX i: ð4Þ
By differentiating this expression with respect to s we get
Css ¼ ui
ssX i þ ui

sðCk
ijX k þ bijNÞuj

s ð5Þ
with Ck
ij being Christoffel’s symbols and bij the coefficients of the second fundamental form [23]. jg

bN is the
component of Css in the plane tangent to X(U), i.e. the covariant derivative of Cs. We get it by discarding
the component of Cs in the direction of N
jg
bN ¼ DCsðsÞ

ds
¼ ui

ssX i þ Ck
ijX kui

su
j
s ¼ ðuk

ss þ Ck
iju

i
su

j
sÞX k: ð6Þ
If C(s) is a geodesic, then by definition DCsðsÞ
ds ¼ 0, and Eq. (3) becomes Ct = 0. This is the stopping point of the

geodesic curvature flow.
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Fig. 2. The curvature has two orthogonal components: the normal curvature and the geodesic curvature.
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We use the chain rule to compute Ct
Ct ¼ X kuk
t : ð7Þ
Combining this result with Eqs. (3) and (6) yields
uk
t ¼ uk

ss þ Ck
iju

i
su

j
s ð8Þ
or
 eCt ¼ eCss þ fC1
iju

i
su

j
s;C

2
iju

i
su

j
sg: ð9Þ
In order to write this equation as a function of ~s instead of s, we use
s ¼
Z
jC~sjd~s ) q,

o~s
os
¼ jC~sj�1 ¼ jX iui

~sj
�1 ¼ ðX iX jui

~su
j
~sÞ
�1

2 ¼ ðgiju
i
~su

j
~sÞ
�1

2; ð10Þ
where we replaced XiXj in q with gij, which are the components of the metric tensor. We get
ui
s ¼

o~s
os

ui
~s ¼ qui

~s ð11Þ
and
ui
ss ¼ qsu

i
~s þ qui

~ss ¼ qsu
i
~s þ q2ui

~s~s: ð12Þ

Using these relations in Eq. (9) yields
eCt ¼ qsC~s þ q2ðC~s~s þ fC1

iju
i
~su

j
~s;C

2
iju

i
~su

j
~sgÞ; ð13Þ
but the geometric flow depends only on the component of eCt in the direction of eN , i.e.
heCt; eN i ¼ q2ð~jþ hfC1
iju

i
~su

j
~s;C

2
iju

i
~su

j
~sg; eN iÞ ¼ ~jþ hfC1

iju
i
~su

j
~s;C

2
iju

i
~su

j
~sg; eN i

giju
i
~su

j
~s

; ð14Þ
where ~j is the curvature of eC .
We can compare this result with the result in [17] by defining X = {x,y,z(x,y)}. We calculate Ck

ij in this case
by
Ck
ij ¼ X ijX k; ð15Þ
where Xk is the contravariant version of the covariant vector Xk, calculated by
X k ¼ gkjX j: ð16Þ

This results in
Ck
ij ¼

zijzk

g
: ð17Þ
Inserting this expression for Ck
ij in Eq. (14) yields
heCt; eN i ¼ ~jþ hzij

g ui
~su

j
~sfz1; z2g; eN i

giju
i
~su

j
~s

; ð18Þ
which can be easily shown to be equivalent to the expression in [17].

2.2. Geodesic constant flow

The next flow we deal with is the geodesic constant flow of C(s)
Ct ¼ F bN ; ð19Þ

where F is the velocity of the curve in the direction normal to the curve and tangent to the manifold X(U).
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Because bN is tangent to the manifold X(U), it can be represented according to the basis {X1,X2}
bN ¼ aiX i: ð20Þ

We need two conditions in order to find the two coefficients ai. The first condition is that bN is perpendicular to
Cs, that is
hCs; bN i ¼ 0: ð21Þ

The second condition is that bN is a unit vector
hbN ; bN i ¼ 1: ð22Þ

Using the representations of Cs and bN according to the basis {X1,X2} in Eqs. (21) and (22) yields
aiuj
sgij ¼ 0;

aiajgij ¼ 1:

(
ð23Þ
Solving these equations and using Eq. (11) yields
a1 ¼ q

g
1
2

u1
~s g12 þ u2

~s g22

� �
; a2 ¼ � q

g
1
2

u1
~s g11 þ u2

~s g12

� �
: ð24Þ
The resulting equation for the flow is
eCt ¼
Fq

g
1
2

fu1
~s g12 þ u2

~s g22;�u1
~s g11 � u2

~s g12g ð25Þ
and the corresponding geometric normal velocity on U is
heCt; eN i ¼ Fq

g
1
2

hfu1
~s g12 þ u2

~s g22;�u1
~s g11 � u2

~s g12g; eN i: ð26Þ
2.3. Geodesic advection

The last flow is the geodesic advection of C(s)
Ct ¼ V ; ð27Þ

where V is an external vector field, i.e. V is independent of the curve C(s).

The representation of V according to the basis {X1,X2} is
V ¼ biX i: ð28Þ

The scalar products between V and the vectors Xi are
vi, hV ;X ii ¼ bjgij: ð29Þ
A few manipulations yield
b1 ¼ v1g22 � v2g12

g
; b2 ¼ v2g11 � v1g12

g
: ð30Þ
The resulting equation for the flow is
eCt ¼ fv1g11 þ v2g12; v2g22 þ v1g12g: ð31Þ

This flow is an advection on the parameterization plane.

3. Level set representation of the flows

We next convert the flow equations we got in the previous section into level set equations [13]. This formu-
lation enjoys many numerical advantages.
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According to this formulation, the curve evolution equation
heCt; eN i ¼ E ð32Þ

is replaced by the level set equation
/t ¼ Ejr/j: ð33Þ
3.1. Geodesic curvature flow

For the geodesic curvature flow this means converting Eq. (14) to a level set formulation. We assume thateCð~sÞ ¼ fu1ð~sÞ; u2ð~sÞg is the zero set of /(u1,u2) and use the relation
f�u2
~s ; u

1
~sg ¼ eN ¼ r/

jr/j ; ð34Þ
to get
u1
~s ¼

/2

ð/2
1 þ /2

2Þ
1
2

; u2
~s ¼

�/1

ð/2
1 þ /2

2Þ
1
2

ð35Þ
and
~j ¼ div
r/
jr/j

� �
¼ /2

1/22 � 2/1/2/12 þ /2
2/11

ð/2
1 þ /2

2Þ
3
2

: ð36Þ
Putting all this together leads to:
/t ¼
/2

1/22 � 2/1/2/12 þ /2
2/11

g22/
2
1 � 2g12/1/2 þ g11/

2
2

þ C1
22/

3
1 þ ðC2

22 � 2C1
12Þ/

2
1/2 þ ðC1

11 � 2C2
12Þ/1/

2
2 þ C2

11/
3
2

g22/
2
1 � 2g12/1/2 þ g11/

2
2

¼
ð�1Þði�jÞ/i/j/ð3�iÞð3�jÞ

ggab/a/b

þ
ð�1Þði�jÞCk

ij/ð3�iÞ/ð3�jÞ/k

ggab/a/b

¼
ð�1Þði�jÞ/i/j/ð3�iÞð3�jÞ

gjrM/j2
þ
ð�1Þði�jÞCk

ij/ð3�iÞ/ð3�jÞ/k

gjrM/j2
ð37Þ
with Christoffel’s symbols calculated by derivatives of the first fundamental form
Ck
ij ¼

1

2
gklðoiglj þ ojgil � olgijÞ: ð38Þ
If the manifold is a plane, we expect the geodesic curvature flow to become the curvature flow. In this case,
g11 = g22 = 1, g12 = 0 and Ck

ij ¼ 0; 8i; j; k, and we get
/t ¼
/2

1/22 � 2/1/2/12 þ /2
2/11

/2
1 þ /2

2

; ð39Þ
which is the level set formulation of the curvature flow.

3.2. Geodesic constant flow

The next flow is the geodesic constant flow. First, we use Eq. (34) in Eq. (26) to get
heCt; eN i ¼ F

qg
1
2

ð40Þ
and then convert this flow into a level set representation by using Eqs. (25) and (35) that yield
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/t ¼ �Fg
1
2ðgij/i/jÞ

1
2 ¼ �Fg

1
2krM/k; ð41Þ
with $M/ being the gradient of / on the manifold M.
If the manifold is a plane, g = g11 = g22 = 1 and g12 = 0. Eq. (41) becomes
/t ¼ �F ð/2
1 þ /2

2Þ
1
2 ¼ �F kr/k; ð42Þ
which is the level set formulation of the constant flow on a plane.

3.3. Geodesic advection

The level set representation of the planar flow equation
eCt ¼ eV ð43Þ

is
/t ¼ heV ;r/i: ð44Þ

Therefore, the level set representation of Eq. (31) is
/t ¼ ðv1g11 þ v2g12Þ/1 þ ðv2g22 þ v1g12Þ/2: ð45Þ

If the manifold is a plane, X(U) = {u1,u2, const} so X1 = {1,0,0} and X2 = {0,1,0}. vi = Vi (the compo-

nents of V) and Eq. (45) becomes Eq. (27) as expected.

4. Numerical schemes for the level set equations

The implementation of the level set equations on the parameterization plane necessitates appropriate
numerical schemes. These schemes are presented in this section.

4.1. Geodesic curvature flow

We start with a numerical scheme for Eq. (37). The first term on the right-hand side of this equation is dif-
fusive and can be implemented with central differences. The second term is a non-convex hyperbolic term and
needs a special numerical scheme.

We used a fifth-order weighted essentially non-oscillatory (WENO) scheme with a global Lax–Friedrichs
(LF) flux in space [24] and a third-order total variation diminishing Runge–Kutta (TVD-RK) scheme in time
[25]. Non-periodic boundary conditions were used.

A re-distancing of the level set function was activated every few iterations, as a regularizing process. The re-
distancing was accomplished by the Sussman–Fatemi method [26]. This method uses the equation
/t ¼ signð/0Þð1� jr/jÞ ð46Þ

to transform the level set function /0 into a distance map. Also this equation is implemented by a fifth-order
WENO-LF, third order TVD-RK numerical scheme. The zero set of /0 is maintained by applying a volume
conserving condition of the form
ot

Z
X

Hð/Þ ¼ 0 ð47Þ
with H the Heaviside function and X a fixed domain. The condition is applied by using a gradient projection
step.
4.2. Geodesic constant flow

In order to implement Eq. (41) which is the level set formulation of the geodesic constant flow, we propose
an extension of the numerical scheme used in [27] for shape from shading
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jr/j � ½max2ðD�x /;�Dþx /; 0Þ þmax2ðD�y /;�Dþy /; 0Þ�
1
2: ð48Þ
In our case we use
rM/j � ½g11max2ðD�u1/;�Dþu1/; 0Þ þ 2g12 minmodðD�u1/;Dþu1/ÞminmodðD�u2/;Dþu2/Þ

þ g22max2ðD�u2/;�Dþu2/; 0Þ�
1
2 ð49Þ
with D�ui the backward difference in the ui direction, Dþui the forward difference in the same direction and
minmodða; bÞ ¼ ½signðaÞ þ signðbÞ�minðjaj; jbjÞ
2

: ð50Þ
4.3. Geodesic advection

For a moving curve represented by the level set function /, the value of / does not change along the curve.
If we apply this to the curve moving on the parameterization plane, we get
0 ¼ d/
dt
¼ o/

ot
þ o/

ou1

du1

dt|{z}
vu1

þ o/
ou2

du2

dt|{z}
vu2

ð51Þ
with vui being the speed of the curve in the direction of the parameter ui. Comparing Eq. (51) with Eq. (45)
yields
vu1 ¼ v1g11 þ v2g12 ð52Þ

and
vu2 ¼ v2g22 þ v1g12: ð53Þ

An appropriate upwind numerical scheme for the component in the ui direction is
vui/ui � maxðvui ; 0ÞD�ui/þminðvui ; 0ÞDþui/: ð54Þ
5. Testing the numerical schemes

A curve evolution by geodesic curvature flow was implemented on a Klein bottle, see Fig. 3. This manifold
has high curvature and is self-intersecting. In this case, the Klein bottle was parameterized according to Denise
L. Chen’s example shown in the Matlab software, where the two parts of the manifold (bulb and tube) use a
separate parameterization. Therefore, this is a parametric manifold and not a non-orientable Klein bottle. The
high order numerical scheme, combined with the regularizing process, yields a geodesic curvature flow without
topological changes of the curve. See [28] for an analysis of such flows.

Geodesic constant flow is demonstrated in Fig. 4 for a section of a sphere and in Fig. 5 on the manifold
z = 0.5sin(4px) sin(4py). It is evident from the figures that the numerical scheme maintains its stability also
at shocks.

Geodesic advection is demonstrated in Fig. 6 for a Klein bottle and in Fig. 7 for a section of a sphere.
6. Applications in image processing and computer vision

Geometric flows of curves on parametric manifolds have many applications. In this section we demonstrate
their use in the areas of image processing and analysis. The first application consists of using the geodesic cur-
vature flow to create a geometric scale space for images painted on manifolds. This has been previously done
for manifolds that are function graphs [17]. The second application is the extension of the geodesic active con-
tour model [12] to images painted on manifolds. This enables to use the manifold’s geometry in order to
improve the segmentation of the image painted on it.



Fig. 3. Geodesic curvature flow on a Klein bottle. The two upper rows show the flow on the Klein bottle from two different viewing angles.
The bottom row shows the flow on the parameterization plane. The colors (except for the white or black color of the curve) depict the
values of the level set function. The black curves in the bottom row show the level curves of the level set function. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Geodesic constant flow on a section of a sphere. On the left the curve is evolving outward and on the right inward. The black curves
depict the location of the curve at various time steps. The other colors demonstrate the values of the level set function at the last iteration.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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6.1. A geometric scale space for images painted on manifolds

The geodesic curvature flow can be applied to images painted on manifolds too. This creates an intrinsic
scale space for the images on the manifolds [17]. Here we applied it to the image of the face of a mannequin
painted on the mannequin’s face manifold, see Fig. 8. The face manifold was originally a triangulated



Fig. 5. Geodesic constant flow on the manifold z = 0.5sin(4px) sin(4py). On the left the curve is evolving outward and on the right inward.
The black curves depict the location of the curve at various time steps. The other colors demonstrate the values of the level set function at
the last iteration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Geodesic advection on a Klein bottle. The order of the images is from left to right. The colors (except for the black color of the
curve) depict the values of the level set function. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. Geodesic advection on a section of a sphere. The order of the images is from left to right. The colors (except for the black color of
the curve) depict the values of the level set function. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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manifold, generated by a ‘home made’ laser scanner [29]. In order to transform the manifold into a parametric
manifold, the metric tensor has been approximated from the triangulated manifold. The approximation con-
sisted of matching a second order polynomial patch at every grid point. The matching was done using singular
value decomposition (SVD).



Fig. 8. Geodesic curvature flow of the face image on the face manifold.
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6.2. Geodesic active contours on parametric manifolds

Active contours are a widely spread tool for the important task of image segmentation. An active contour
evolves in time on an image, till it stops along the boundaries of the objects in it. The forces governing this
evolution consist of internal geometric forces and external forces originating from the image data.

We present the use of active contours for the segmentation of a more general type of images, i.e. images
painted on parametric manifolds. Good representatives of this kind of images are face images, where the face
manifold is a two-dimensional manifold embedded in a Euclidean three-dimensional space. Adding the man-
ifold data can be most beneficial in various tasks including face recognition where it enables a better segmen-
tation of face features such as the eyes.

We show that taking into account the geometry of the manifold boosts the performance of active contours.
The inclusion of the manifold’s geometry is done by evolving the contour on the manifold, instead of on a flat
planar image. In order to keep the contour on the manifold the geodesic components of the driving forces are
used.

The active contours for image segmentation (‘snakes’) were introduced by Kass et al. [9]. Geometric active
contours formulated and implemented based on the level set method [13] were presented by Caselless et al. [10]
and Malladi et al. [11]. The first incorporation of a geometric (re-parameterization invariant) functional min-
imization was done in the geodesic active contour model of Caselless et al. [12] where the functional
Z L

0

f ðCðsÞÞds ð55Þ
using the edge sensitive weighting
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f ðjrI jÞ ¼ 1

1þ jrI j2

k2

ð56Þ
of the image I is minimized by the Euler–Lagrange equations
Ct ¼ ðjf � hrf ;NiÞN ð57Þ
with j the curvature of the contour C, s its arc length, L its length and N its normal. The first term on the
right-hand side of Eq. (57) is directly related to the geodesic curvature flow. The second term is geodesic advec-
tion. The level set representation [13] of the equation is
/t ¼ f � div
r/
jr/j

� �
jr/j þ hrf ;r/i: ð58Þ
Additional developments followed, including [30–35].
The geodesic extension of Eq. (57) is
Ct ¼ ðjgf � hrf ; bN iÞbN ð59Þ

with bN the projection of the normal to the contour on the tangent plane to manifold M. The weighting func-
tion f stays as in Eq. (56). Replacing j with jg in Eq. (57) and using bN instead of N are necessary in order to
keep the active contour on the manifold.

The geodesic curvature flow, which is the first term on the right-hand side of Eq. (59), is a curve shortening
flow. Its role is to contract the curve. The weighting function f that multiplies it stops the contraction at the
image edges. The geodesic advection, which is the second term on the right-hand side of Eq. (59), is not active
where the amplitude of the image edge (j$Ij) is constant since there $f = 0. It comes into action in the vicinity
of the edge and pulls the active contour to the maximum change of the intensity.

This flow is implemented numerically by performing the calculations on the parameterization plane. For
the second term on the right-hand side of Eq. (59) we can identify V from Eq. (27) to be
V ¼ rf ; ð60Þ

yielding
vi, hV ;X ii ¼
of
ox1

; . . . ;
of
oxN

� �
;

ox1

oui
; . . . ;

oxN

oui

� �	 

¼ of

oui
,f i: ð61Þ
Combining this with Eqs. (52) and (53) gives
vu1 ¼ g11f1 þ g12f2 ð62Þ

and
vu2 ¼ g22f2 þ g12f1: ð63Þ

Plugging this into Eq. (45) and using Eq. (37) for the first term on the right-hand side of Eq. (59) gives the
following level set equation on the parameterization plane:
/t ¼ f
ð�1Þði�jÞ/i/j/ð3�iÞð3�jÞ

gjrM/j2
þ
ð�1Þði�jÞCk

ij/ð3�iÞ/ð3�jÞ/k

gjrM/j2

" #
þ ðfmgmm þ fð3�mÞg12Þ/m: ð64Þ
This equation is solved using the numerical schemes described in the previous section.
Fig. 9 shows the performance of the geodesic active contour model for an image painted on a Klein bottle.

The image of a blurred square is painted on the parameterization plane and projected to the manifold to create
the image appearing on the Klein bottle in the figure. The original contour is a concentric circle on the param-
eterization plane. It contracts till it stops on the edges of the square, thus segmenting it from the image’s
background.



Fig. 9. The performance of the geodesic active contour model for an image painted on a Klein bottle. The segmented object is painted
green on a blue background and the contour is red. The Klein bottle is shown from two viewing directions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

A. Spira, R. Kimmel / Journal of Computational Physics 223 (2007) 235–249 247



248 A. Spira, R. Kimmel / Journal of Computational Physics 223 (2007) 235–249
7. Conclusions

We introduced level set formulations and their corresponding numerical schemes for the implementation of
various geometric flows of curves on parametric manifolds. The implementation of the schemes on the param-
eterization plane of the manifold is the source of their efficiency and robustness.

The flows were then used for creating a scale space for images painted on manifolds and for implementing
the geodesic active contour model for the segmentation of this kind of images.
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