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Abstract. This paper addresses the problem of feature enhancement in noisy images when
the feature is known to be constrained to a manifold. As an example, we approach the direction
denoising problem in a general dimension via the geometric Beltrami framework for image processing.
The spatial-direction space is a fiber bundle in which the spatial part is the base manifold and the
direction space is the fiber. The feature (direction) field is represented accordingly as a section of the
spatial-feature fiber bundle. The resulting Beltrami flow is a selective smoothing process that respects
the bundle’s structure, i.e., the feature constraint. Direction diffusion is treated as a canonical
example of a non-Euclidean feature space. The structures of the fiber spaces of interest in this paper
are the unit circle S1, the unit sphere S2, and the unit hypersphere Sn. Applications to color analysis
are discussed, and numerical experiments demonstrate again the benefits of the Beltrami framework
in comparison to other feature enhancement schemes for nontrivial geometries in image processing.
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1. Introduction. Many objects of low-level vision are vector fields of various
types. This is the case for gray-value images, color images, movies, 3D (three-
dimensional) volumetric images, and disparity in stereo vision, to name just a few
examples. These vector fields are traditionally considered as taking values in R

n.
Operations on these fields such as denoising, enhancement, sharpening, and segmen-
tation are done using a variety of algorithms. Several types of vector fields are con-
strained in a nontrivial way. When the constraint can be expressed via the vanishing
of a smooth function, e.g., a polynomial, the vector fields take their values in a non-
Euclidean space. One notable example is the direction vector field which assigns a
local direction to each pixel in the image. These directions are unit length vectors
that span the unit n-dimensional sphere Sn. Other classes of non-Euclidean vector
fields are perceptually treated color images [20] and the regularization of frames [23].
We study in this paper the n-dimensional direction vector fields and spherically con-
strained color models via the Beltrami framework [19].

The basic objects in the Beltrami framework are embedding maps of Riemannian
manifolds. These maps embed the image manifold (a surface for a 2D image) in a
fiber bundle whose base is the spatial manifold, e.g., R

2, and the fiber is the feature
manifold, e.g., R

1, for the intensity feature alone. If we denote by F the feature
manifold and assume that the image is given on a flat surface, then the spatial-
feature manifold M is given locally as M = R

2 ⊗ F . In all the examples below, the
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fiber bundle is trivial, yet our local treatment extends to nontrivial bundles as well.
Global issues of nontrivial fiber bundles are beyond the scope of this paper.

Another important ingredient of the Beltrami framework is a geometrical func-
tional, known as the Polyakov action (or harmonic energy [1]), which is defined over
the space of embedding maps. The minimization of the Polyakov action is done by an
Euler–Lagrange operator that drives, through a gradient descent equation, the initial
noisy feature vector fields towards a minimum of the Polyakov action. The special
form of this functional favors piecewise smooth images. Jumps in the feature space
(feature edges) are consequently preserved [4, 5].

Almost all works that try to minimize a functional with respect to a constraint
quantity embed the constrained feature in a higher-dimensional Euclidean space and
perform the minimization for the coordinates of this unconstrained space. The com-
mon wisdom is to combine a minimization of an unconstrained function and a pro-
jection on the constraint variety/manifold. The treatment of direction diffusion was
recently addressed along these lines in the low-level vision community. These studies
follow the well established literature in the liquid crystal community [3]. The har-
monic energy functional and its minimization are subjects to intensive mathematical
study as well [6, 7]. Two approaches for this problem are known: in a paper that
first directly addresses this issue, Perona [13] uses a single parameter θ as an internal
coordinate in S1. The second approach [21, 22, 2] embeds the unit circle S1 in R

2 (the
sphere S2 in R

3) and works with the external coordinates; see also [24] for a related
effort. The first approach is problematic because of the periodicity of S1. Averaging
small angles around zero such as θ = ε and θ = 2π−ε leads to the erroneous conclusion
that the average angle is θ = π. Perona solved this problem by exponentiating the
angle so that V = eiθ. This is actually the embedding of S1 in C which is isometric
to R

2. This method is specific to a 2D embedding space where complex numbers can
be used. The problem in using only one internal coordinate manifests itself in the
numerical implementation of the PDE through the breaking of rotation invariance. In
the second approach we have to make sure that we always stay on S1 along the flow.
This problem is known as the projection problem. It is solved in the continuum by
adding a projection term. Tang, Sapiro, and Caselles [21, 22] propose the formalism
of p-harmonic maps applied to the case of direction and color diffusion, and present
experiments in the case p = 2, which corresponds to the Dirichlet integral. More-
over, they also present experiments for the case p = 1 as the immediate extension
of the Rudin–Osher–Fatemi total variation (TV) denoising algorithm [14] to the case
of general maps with values on manifolds. Nevertheless, they did not study in detail
the algorithm for the p = 1 case. The algorithmic study for the case p = 1 was done
by Chan and Shen [2], who also use external coordinates with a projection term and
a TV measure in order to better preserve discontinuities in the vector field. This
works well for the case where the codimension is one, like a circle. Yet it is difficult to
generalize this approach to higher codimensions like the sphere. Moreover, the flow
of the external coordinates is difficult to control numerically since numerical errors
should be projected onto S1 and since no well-defined projection exists. Recently an
implicit way to define manifolds has been used in this context [1]. We concentrate
in this paper on the explicit methods. A comparison between the implicit harmonic
energy method and the implicit Beltrami framework can be found in [16].

We propose to work directly on the constrained manifold and to avoid the projec-
tion problem altogether. Our solution produces an adaptive smoothing process, which
preserves direction discontinuities. The proposed solution works for all dimensions and
codimensions, and overcomes possible parameterization singularities by introducing
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several internal coordinates on different patches (charts) such that the union of the
patches is the feature manifold, i.e., Sn. Adaptive smoothness is achieved by the de-
scription of the vector field as a 2D section of the (n+ 2)-dimensional spatial-feature
fiber bundle manifold with Sn fibers.

The problem is formulated, in the Beltrami framework [19, 9], in terms of the
embedding map

Y : (Σ, g) → (M,h),

where Σ is the 2D image manifold and M , in this case, is R
n⊗S1 with n = 2 (n = 4)

for gray-level (color) images. The key point is the choice of local coordinate systems for
both manifolds,1 the image manifold Σ (with metric g) and the embedding manifold M
(with metric h). At the same time we should verify that the geometric filter (i.e., the
denoising PDE) does not depend on the specific choice of coordinates we make.

Once a local coordinate system is chosen for the embedding space and the opti-
mization is done directly in this local coordinate system, we can never leave M and
avoid the problem of projection. The difficulty represented in the problem of projec-
tion is transformed into the problem of the choice of a local coordinate system, as
we describe below. Other examples of enhancement by the Beltrami framework of
nonflat feature spaces, like the color perceptual space and the derivatives vector field,
can be found in [20, 17].

An important issue in this approach is the numerical consideration in the choice of
local coordinates. While all coordinates are equally good from analytic and geometric
points of view, they are different from a numeric standpoint. A comparative study on
the numerical and algorithmic accuracies of different schemes is presented here and
shows that, for a range of parameters, one can get a better numerical accuracy while
maintaining the edge preserving quality of the anisotropic diffusions.

This paper is organized as follows. We review the Beltrami framework and point
to the relation with harmonic maps in section 2. We analyze the case of the general
n-dimensional direction diffusion with hemispheric coordinate system in section 3.
A stereographic coordinate system is introduced in section 4, and the appropriate
equations are derived. Section 5 deals with the numerical implementation of the ideas
presented in the previous sections for color image processing. Section 6 presents results
on various vector fields and color images. We compare in section 7 different direction
diffusion schemes from numerical and algorithmic points of view. We summarize and
conclude in section 8.

2. The Beltrami framework. Let us briefly review the Beltrami geometric
framework for nonlinear diffusion in computer vision [19].

2.1. Representation and Riemannian structure. An image, and many other
quantities of interest in computer vision, are naturally represented via the concept of
a fiber bundle. The image domain is the base manifold. In the present study it is
taken as a subset of R

2 with the canonical Cartesian coordinate system (Y 1, Y 2). It
is denoted by Ω. At each point in the base manifold we attach a feature space—the
fiber. The fibers at different points of the base manifold are isomorphic. The fiber
space is denoted by F . The feature space, or fiber, may be a linear vector space or
more interestingly a Riemannian manifold. An image (or other quantity of interest)

1Note the difference between this approach and the one presented in [21, 22, 2], where the image
metric is flat.
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is a choice of a particular point in the fiber for every point in the base manifold. Such
a particular choice is called a section of the (trivial) fiber bundle Ω ⊗ F .

In general an n-dimensional (Riemannian) manifold is defined by a collection of
maps from charts of the manifold to R

n. Each chart covers part of the manifold. Their
union covers the whole manifold, and the transformation of the coordinates on the
intersection between any two charts is smooth. The Riemannian structure transforms
in a proper way (as a tensor) under any change of the coordinate system. We denote
the coordinates on the 2D section by (x1, x2), the coordinates on a chart of the
embedding space (the fiber bundle) by (Y 1, . . . , Y n). The embedding space is a hybrid
spatial-feature space. The first two coordinates (Y 1, Y 2) are the spatial coordinates
on Ω (the base manifold), and the rest (Y 3, . . . , Y n) are the feature coordinates (the
fiber’s coordinates). The simplest example is a gray-value image which is represented
as a 2D surface embedded in R

3. We denote the map by Y : Σ → R
3, where Σ is a 2D

section. The map Y is given in our example by (Y 1 = x1, Y 2 = x2, Y 3 = I(x1, x2)).
We choose on this surface a Riemannian structure, namely a metric. Note that this
differs from the harmonic energy functional, where the metric is taken from the base
manifold and not from the section. The metric is a positive definite and a symmetric
2-tensor that may be defined through the local distance measurements

ds2 = g11(dx
1)2 + 2g12dx

1dx2 + g22(dx
2)2.(2.1)

We use the Einstein summation convention in which the above equation reads as
ds2 = gµνdx

µdxν , where repeated indices are summed over. We denote the inverse of
the metric by gµν .

2.2. Image metric selection: The induced metric. A reasonable assump-
tion is that distances measured in the embedding spatial-feature fiber bundle, such
as distances between pixels and differences between gray-levels, correspond directly
to distances measured on the image manifold, i.e., the section. This is the assump-
tion of isometric embedding under which we can calculate the image metric in terms
of the embedding maps Y i and the embedding space metric hij . This follows di-
rectly from the fact that the length of infinitesimal distances on the manifold can be
calculated on the manifold and on the embedding space with the same result. For-
mally, ds2 = gµνdx

µdxν = hijdY
idY j . By the chain rule, dY i = ∂µY

idxµ, we get
ds2 = gµνdx

µdxν = hij∂µY
i∂νY

idxµdxν , from which we have

gµν = hij∂µY
i∂νY

j .(2.2)

As an example we take the gray-level image as a 2D image manifold embedded
in the 3D Euclidean space R

3. The embedding maps are

(Y 1(x1, x2) = x1, Y 2(x1, x2) = x2, Y 3(x1, x2) = βI(x1, x2)).(2.3)

The scaling factor β defines the ratio between distances in gray-values and distances in
the spatial space. It is a free parameter of the framework that interpolates between the
Euclidean L2 and L1 types of flows, as we will see below. We choose to parameterize
the image manifold by the canonical coordinate system x1 = x and x2 = y. The
embedding, by abuse of notation, is (x, y, βI(x, y)). The induced metric element g11

is calculated as follows:

g11 = hij∂x1Y i∂x1Y j = δij∂xY
i∂xY

j = ∂xx∂xx+∂xy∂xy+∂xβI∂xβI = 1+β2I2
x.

(2.4)
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Other elements are calculated in the same manner. The result is

G = (gµν) =

(
1 + β2I2

x β2IxIy
β2IxIy 1 + β2I2

y

)
.(2.5)

2.3. Polyakov action: A measure on the space of embedding maps.
Denote by (Σ, g) the image manifold and its metric, and by (M,h) the space-feature
manifold and its metric. Then the functional S[·, ·, ·] attaches a real number to a map
Y : Σ → M ,

S[Y i, gµν , hij ] =

∫
dV ||∇�Y ||2h,g,(2.6)

where dV is a volume element and the integration is over the Riemannian Frobenius
norm2 of the tangent map dY . In a local coordinate system the volume element is
expressed by dV = dx1dx2√g and ||∇�Y ||2h,g = 〈∇Y i,∇Y j〉ghij = gµν∂µY

i∂νY
jhij .

The Polyakov action is expressed in this local system of coordinates as

S[Y i, gµν , hij ] =

∫
dx1dx2√ggµν∂µY

i∂νY
jhij .(2.7)

This functional, for m = 2 (a 2D image manifold) and hij = δij , was proposed by
Polyakov [12] in the context of high energy physics and the theory known as string
theory. It is important to note that the image metric and the feature coordinates—
i.e., intensity, color, direction, etc.—are independent variables. This functional is
the natural generalization of the L2 norm from Euclidean domains to Riemannian
manifolds. The minimization of the functional with respect to the image metric can
be solved analytically in the 2D case (see, for example, [18]). The minimizer is the
induced metric. If we choose, a priori, the image metric induced from the metric of
the embedding spatial-feature space M , then the Polyakov action is reduced to the
area (volume) of the image manifold:

S[Y i, hij ] = 2

∫
dV = 2

∫
dx1dx2√g = 2

∫
dx1dx2

√
det(∂µY i∂νY jhij).(2.8)

This follows from the form of the induced metric,

〈∇Y i,∇Y j〉ghij = gµν∂µY
i∂νY

jhij = gµνgµν

and the identity

gµνgµν = Tr(G−1GT ) = Tr(G−1G) = Tr(Id) = 2,(2.9)

where Tr(X) denotes the trace of the matrix X.
Using standard methods in the calculus of variations (see [18]), the Euler–Lagrange

equations with respect to the embedding are

− 1

2
√
g
hil δS

δY l
=

1
√
g
∂µ(

√
ggµν∂νY

i) + Γi
jk〈∇Y j ,∇Y k〉g.(2.10)

Since (gµν) is positive definite, g ≡ det(gµν) > 0 for all xµ. This factor is the simplest
one that does not change the minimization solution while giving a reparameterization

2By Riemannian Frobenius norm we mean that the square of the elements is with respect to the
Riemannian structures of the corresponding Riemannian manifolds.
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invariant expression. The operator that is acting on Y i in the first term is the natural
generalization of the Laplacian from flat spaces to manifolds and is called the second
order differential operator of Beltrami [10], or the Beltrami operator, and is denoted
by ∆g. The second term involves the Levi–Civita connection whose coefficients are the
Christoffel symbols. The coefficients are given in terms of the metric of the embedding
space

Γi
jk =

1

2
hil (∂jhlk + ∂khjl − ∂lhjk) .(2.11)

This is the term that takes into account the fact that the image surface flows in a
non-Euclidean manifold and not in R

n.
A map that satisfies the Euler–Lagrange equations − 1

2
√
gh

il δS
δY l = 0 is a harmonic

map. The 1D and 2D examples are a geodesic curve on a manifold and a minimal
surface.

The nonlinear diffusion or scale-space equation emerges as the gradient descent
minimization flow

Y i
t =

∂

∂t
Y i = − 1

2
√
g
hil δS

δY l
= ∆gY

i + Γi
jk〈∇Y j ,∇Y k〉g.(2.12)

This flow evolves a given surface towards a minimal surface, and in general it contin-
uously changes a map towards a harmonic map.

Before closing this review of the Beltrami framework, we would like to point out a
few similarities and differences between this flow and those suggested in [14, 13, 21, 2]:

1. For flat fibers:
• We use the induced metric, while in other flows the image metric is flat.

The difference comes from the fact that in our framework the image
manifold is a section of the fiber bundle, while in the harmonic map
formulation it is the base manifold.

• In the case of flat and 1D fibers we get the “regularized total variation”
functional. In the limit of large β the evolution equation is identical (up
to

√
g) to the TV one. In the limit β → 0 we get the linear diffusion

case. In intermediate values we find a good compromise such that over-
smoothing, on the one hand, and stair-casing, on the other hand, can
be avoided. The Beltrami framework, in this case, is a one-parameter
generalization of the TV scheme.

• The multichannel functional, in the Beltrami framework, is another gen-
eralization of the TV functional. A term that depends on the direction
of the gradients is added to the term that depends on their magnitude
only. This provides a better adaptation of the process to the image
features.

• The Beltrami flow is degenerate (at ∇I → ∞). One can prove that
discontinuities are preserved for a finite time [5].

2. For nonflat fibers:
• The coordinates Y i are the local coordinates of the feature space, while

in the above-mentioned flows they are coordinates of a third manifold,
i.e., R

n+1, in which the feature space Sn is embedded. In other words,
the fiber in the harmonic map approach is embedded in R

n+1. This is
not possible in general (see the Nash embedding theorem [11]).

• The Polyakov functional is different in this case from the TV functional
due to the different weighting of the magnitude of the gradients.
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• The flow equation (2.12) has a clear geometric meaning. It is a mean
curvature flow projected (analytically) on the fiber. This projection is
an edge preserving operation [19]. It depends on ∇I in the general
multichannel case and not on |∇I| as in the harmonic map approach.

3. Hemispheric direction diffusion.

3.1. Fiber geometry. We are interested in the case where the fiber feature
space is the hypersurface Sn. We choose to represent the hypersphere Sn as an n-
dimensional manifold embedded in R

n+1, with Cartesian coordinate system {U i}n+3
i=3 ,

as the constrained hypersurface

n+3∑
i=3

(U i)2 = 1.(3.1)

We work in the chart, where {Y i}n+2
i=3 are local coordinates. On this chart, U i =

Y i, i = 3, . . . , n + 2, and

Un+3 =

√√√√1 −
n+2∑
i=3

(Y i)2.

Denote the metric elements for the feature space only by h̃ij . The metric elements
and the inverse metric elements are given by

h̃ij = δij +
Y iY j

1 −
∑n+2

k=3(Y k)2
,

(h̃−1)ij = δij − Y iY j .(3.2)

3.2. The induced metric. The induced metric and its inverse are accordingly

gµν = δµν +

n+2∑
i,j=3

h̃ij∂µY
i∂νY

j ,

gµν =
1

g

⎛
⎝δµν + εµσενρ

n+3∑
i,j=3

h̃ij∂σY
i∂ρY

j

⎞
⎠,

g = det(gµν),

= 1 +
n+3∑
i,j=3

h̃ij(Y
i
xY

j
x + Y i

yY
j
y ),

+
1

2
εµσενρ

n+3∑
i,j,k,l=3

h̃ij h̃kl∂µY
i∂ρY

j∂νY
k∂σY

l,(3.3)

where (gµν) is the inverse of (gµν), g is the determinant, and εµν is the 2D antisym-
metric tensor

(εµν) =

(
0 1
−1 0

)
.

An implicit summation on all repeated Greek indices is assumed.
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3.3. The flow equations. The Levi–Civita coefficients are calculated in Ap-
pendix B with the simple result

Γi
jk = Y ih̃jk.(3.4)

The minimization of the Polyakov action leads to the following evolution equa-
tions:

Y i
t = ∆gY

i + 2Y i − Y iTr(gµν), i = 1, . . . , n.(3.5)

3.4. The 1D hemispheric direction diffusion.

3.4.1. The S1 Beltrami operator. The S1 manifold can be described as the
solution to U2 + V 2 = 1. We will work with two charts. One is (Y 1 = x, Y 2 = y,
Y 3 = βU), and the other is (Y 1 = x, Y 2 = y, Y 3 = βV ). By abuse of notation we
denote the map by (x, y, βY ). The parameter β is a scaling factor. Each one of the
charts will be used in the range Y 2 ≤ 1/2. The line element on each of the charts of
the image manifold is

ds2 = ds2
R2 + ds2

S1 = dx2 + dy2 +
β2

1 − Y 2
dY 2.(3.6)

By using the chain rule we find

ds2 = (1 + A(Y )Y 2
x )dx2 + 2A(Y )YxYydxdy + (1 + A(Y )Y 2

y )dy2,(3.7)

where A(Y ) = β2

1−Y 2 .
The induced metric is therefore

(gµν) =

(
1 + A(Y )Y 2

x A(Y )YxYy

A(Y )YxYy 1 + A(Y )Y 2
y

)
,(3.8)

and the Beltrami operator acting on Y is ∆gY = 1√
g∂µ(

√
ggµν∂νY ), where g =

1 + A(Y )(Y 2
x + Y 2

y ) is the determinant of (gµν), and (gµν) is the inverse matrix of
(gµν).

3.4.2. The Levi–Civita connection. Since the embedding space is non-
Euclidean, we have to calculate the Levi–Civita connection. Remember that the
metric of the embedding space is

(hij) =

⎛
⎝ 1 0 0

0 1 0
0 0 A(Y )

⎞
⎠ .(3.9)

The Levi–Civita connection coefficients are given by the fundamental theorem of
Riemannian geometry in the following formula: Γi

jk = 1
2h

il (∂jhlk + ∂khjl − ∂lhjk),

where the derivatives are taken with respect to Y i for i = 1, 2, 3.
The only nonvanishing term is Γ3

33, which reads

Γ3
33 =

1

2A(Y )
∂Y (A(Y )) =

Y

1 − Y 2
= Y h33.(3.10)

The second term in the Euler–Lagrange equations in this case reads Y h33||∇Y ||2g.
We can rewrite this expression using the following identities:

h33||∇Y ||2g = (h11g
11 + h22g

22 + h33∂µY ∂νY gµν) − (h11g
11 + h22g

22)

= gµνg
µν − (g11 + g22) = 2 − 1

g
(g11 + g22) = 2 − 1

g
(1 + g),(3.11)
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where we used the induced metric identity (2.2), and the identity (2.9), in order to
rewrite

2 = Tr

(
1 0
0 1

)
= gµνg

µν = h11g
11 + h22g

22 + h33∂µY ∂νY gµν .(3.12)

3.4.3. The flow and the switches. The Beltrami flow is

Y i
t = ∆gY

i + Γi
jk(Y

1, Y 2, Y 3)〈∇Y j ,∇Y k〉g(3.13)

for i = 3. Only modifying the fiber values while keeping the case manifold constant is
a projection in the direction of the fiber. This projection slows the diffusion around
edges. The Beltrami flow on the two charts reads finally as

Ut = ∆gU + U
g − 1

g
,

Vt = ∆gV + V
g − 1

g
.(3.14)

In the implementation we compute the diffusion for U and V simultaneously and take
the values (U, sign(V )

√
1 − U2) for the range U2 ≤ V 2, and (sign(U)

√
1 − V 2, V ) for

the range V 2 ≤ U2.

4. Stereographic direction diffusion.

4.1. Fiber geometry. The hemispheric parameterization requires more charts
as n increases. As a result we have to work closer and closer to the singularity. As a
cure for that we switch to stereographic parameterization, which demands only two
charts independent of the dimension of the sphere. Moreover, we always work on the
furthest point from the singularity, that is, on the equator.

Every hypersphere Sn can be isometrically embedded in R
n+1. The hyper-

sphere is realized as the place of all the points in R
n+1 that satisfy the constraint∑n+1

i=1 U iU i = 1. We denote by Y i for i = 1, . . . , n the Cartesian coordinate system

on the subspace R
n that passes through the equator of Sn, i.e., {�U ∈ R

n+1|Un+1 = 0}.
The stereographic transformation gives the values of Y i as functions of the points on
the north (south) hemispheres of the hypersphere. Explicitly it is given (after shifting
the indices by two for notation consistent with the next sections) as

Y i =
U i

1 − Un+3
, i = 3, . . . , n + 2.

Inverting these relations, we find

U i =
2Y i

1 +
∑n

i=1 Y
i
, i = 3, . . . , n + 2,

Un+3 =
−1 +

∑n+2
i=3 Y i

1 +
∑n+2

i=3 Y i
.(4.1)

4.2. The induced metric. Now we can compute the induced metric of our
feature space

hij =

n+3∑
k=3

∂Uk∂Uk

∂Y i∂Y j
=

4

(1 + A)2
δij , i, j = 3, . . . , n + 2,(4.2)

where A =
∑n+2

k=3(Y k)2.
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4.3. The flow equations. The Levi–Civita connection can be obtained using
(2.11) and (4.2). The result is

Γi
jk =

4

1 + A

(
Y iδjk − Y kδij − Y jδki

)
.

The resulting diffusion equations are

Y i
t = ∆gY

i +
∑
jk

4

1 + A

(
Y iδjk − Y kδij − Y jδki

)
∂µY

j∂νY
kgµν ,(4.3)

where i = 3, . . . , n + 2. This can be rearranged to

Y i
t = ∆gY

i − 4gµν(∂µ log(1 + A))(∂νY
i) + (1 + A)(2 − g11 − g22)Y i.(4.4)

4.4. 1D and 2D directions. We denote our coordinate system by the sub-
scripts s (for south) and n (for north). The equations for the 1D case read

(Ys)t = ∆gYs − 4gµν(∂µ log(1 + A))(∂νYs) + (1 + A)(2 − g11 − g22)Ys,(4.5)

where A = Y 2
s and the induced metric is a function of Ys. A parallel equation is

written for Yn. We solve the north and south equations simultaneously for values
smaller than 1. At each iteration we update the values which are greater than 1 by
the simple relation Ys = 1/Yn. Note that the problematic zone(s), i.e., ±1, are as far
as possible from the singularities, i.e., the poles.

The 2D case is managed similarly via

(Y 1
s )t = ∆gY

1
s − 4gµν(∂µ log(1 + As))(∂νY

1
s ) + (1 + As)(2 − g11 − g22)Y 1

s ,

(Y 2
s )t = ∆gY

2
s − 4gµν(∂µ log(1 + As))(∂νY

2
s ) + (1 + As)(2 − g11 − g22)Y 2

s ,(4.6)

where As = (Y 1
s )2 + (Y 2

s )2 and the induced metric depends on Y 1
s and Y 2

s . As in the
1D case, we solve simultaneously for the south and north patches and work with Y i’s
which are smaller than 1. The update for values that are greater than 1 after the
diffusion (in each iteration) is done by Y i

s = AsY
i
n. Again the decision zone, i.e., the

equator, is the most numerically stable region since it is the furthest from the poles,
where singularities may appear.

5. Color diffusion. There are many coordinate systems and models of color
space which try to be as close as possible to human color perception. One of the pop-
ular coordinate systems is the HSV system [15]. In this system, color is characterized
by hue, saturation, and value. The saturation and value take their values in R

+, while
the hue is an angle that parameterizes S1.

In order to denoise and enhance color images by a nonlinear diffusion process
which is more adapted to human perception, we use here the HSV system. We need
a special treatment of the hue coordinate in section 3.

Let us represent the image as a mapping Y : Σ → R
4 × S1, where Σ is the 2D

image surface and R
4 × S1 is parameterized by the coordinates (x, y,H, S, V ). As

mentioned above, a diffusion process in this coordinate system is problematic. We
define therefore two coordinates,

U = cosH and W = sinH,
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and continue in a way similar to section 3. The metric of R
4 ×S1 on the patch where

U parameterizes S1 and W (U) is nonsingular is

hij =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 A(U) 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ ,(5.1)

where A(U) = 1/(1 − U2).
The induced metric is therefore

ds2 = dx2 + dy2 + A(U)dU2 + dS2 + dV 2

= dx2 + dy2 + A(U)(Uxdx + Uydy)
2 + (Sxdx + Sydy)

2 + (Vxdx + Vydy)
2

= (1 + A(U)U2
x + S2

x + V 2
x )dx2

+ 2(A(U)UxUy + SxSy + VxVy)dxdy + (1 + A(U)U2
y + S2

y + V 2
y )dy2.(5.2)

Similar expressions are obtained on the other dual patch.
The only nonvanishing Levi–Civita connection coefficient is Γ3

33 = Uh33. The
resulting flow is

Ut = ∆gU + 2U − U(g11 + g22),

Wt = ∆gW + 2W −W (g11 + g22),

St = ∆gS,

Vt = ∆gV.(5.3)

Note that the switch between U and W should be applied not only to the U and W
equations but also to the S and V evolution equations where, at each point, one needs
to work with the metric that is defined on one of the patches.

6. Experimental results. Our first example deals with the gradient direction
flow via the Beltrami framework. Figure 6.1 shows a vector field before and after the
application of the flow for a given evolution time. The normalized gradient vector
field extracted from the image is presented before and after the flow and shows the
way the field flows into a new smooth direction transactions field.

Our second example deals with color diffusion using different color spaces. We
use machine color space as our spectral model, where we first restrict the colors to one
quarter of the upper hemisphere defined around the black point in the RGB space,
as shown in Figure 6.2. In this example we use the hemispheric direction diffusion.
The intensity, or more accurately the magnitude, is handled separately. This is a
simple example since a single chart can be used as a parameterization, and indeed
this simplified version was often used by others as an example.

Next, we explore a popular model that captures some of our color perception. The
HSV (hue, saturation, value) model proposed in [15] is often used as a “user-oriented”
color model, rather than the RGB “machine-oriented” model.

Figure 6.3 shows the classical representation of the HSV color space, in which the
hue is measured as an angle, while the value (sometimes referred to as brightness) and
the color saturation are mapped onto finite nonperiodic intervals. This model lands
itself into a filter that operates on the spatial x, y coordinates, the value and saturation
coordinates, and the hue periodic variable. Our image is now embedded in R

4 × S1.
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Fig. 6.1. Two vector fields before (upper) and after (lower) the flow on S1.
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Fig. 6.2. The colors are restricted to one quarter of the upper hemisphere defined around the
black point in the RGB space.

V 

S H 

Fig. 6.3. The HSV color model captures human color perception better than the RGB model
which is the common way our machines represent colors. The original image (left), the noisy image
(middle), and the filtered image (right) demonstrate the effect of the flow as a denoising filter in the
HSV color space when using hemispheric coordinates.
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Fig. 6.4. An example of stereographic direction diffusion used in the HSV color space. The
original image (left), the noisy image (middle), and the filtered image (right) demonstrate the effect
of the flow as a denoising filter in the HSV color space when using stereographic coordinates.

We use the hemispheric direction diffusion for the results shown in Figure 6.3 and
the stereographic direction diffusion for the results shown in Figure 6.4. For the com-
plete set of full-size color images see http://www.math.tau.ac.il/∼sochen/Porcupine/
porcupine.html.

7. Comparison to other schemes. Several schemes have been suggested to
handle direction diffusion. The first to directly address this issue was Perona [13],
who uses a single parameter θ as an internal coordinate. However, the periodicity of
S1 leads to erroneous values of θ. Another approach, the linear approach, was offered
by Tang, Sapiro, and Caselles [21], in which the unit circle S1 is embedded in R2

and external coordinates are used. However, in this flow we have to actively keep our
coordinates on S1, which means that we have to project the results on the unit circle.
Chan and Shen [2] studied in detail another scheme in which the evolution equation
is derived according to the TV measure.

Kimmel and Sochen [8] have proposed an adaptive hemispheric smoothing scheme,
which is edge preserving, based on the Beltrami framework [19]. Throughout this
section this scheme is referred to as HP (hemispheric porcupine). The direction vector
field is described as a 2D manifold embedded in a higher-dimensional space M = R2×
S1. The key point in the HP scheme is the selection of local coordinate systems on the
manifold, so that their union is S1. On the other hand, the local coordinates selection
is done so that the numerical error is minimized. The advantage of this scheme is that
throughout the flow the coordinates are constrained to S1. Thus, there is no need
for a supplementary projection stage. We address in this work the issue of selecting
the right charts to cover S1, and an alternative stereographic coordinate system is
proposed. In this paper we refer to this scheme as SP (stereographic porcupine).

In this study we compare the numerical behavior of the above-mentioned schemes,
evaluate their algorithmic performance, and examine their edge preserving quality.

7.1. The evolution equations. In this subsection we mention the evolution
equations for each scheme. The interested reader is referred to the original articles.

As a first step, the direction θ is embedded in R2 via the map θ → ω =
[cos(θ), sin(θ)]. The plane is then diffused for some time t, and the result is pro-
jected back to the unit circle via the map ωt = [x, y] → arctan( yx ). This is if (x, y) is
still a one unit vector. If not, then the phase of the vector is used to determine the
appropriate projection; see Figure 7.1.
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Fig. 7.1. The projection error in the linear and TV schemes.

Tang, Sapiro, and Caselles [21] use the following flow for an L2 energy (which
results in a linear scheme),

ft = ∆f +
∥∥� f

∥∥2
f,(7.1)

where f stands for the pair (U, V ).
Chan and Shen [2] use the following flow for the TV energy:

ft = div

(
�f∥∥f∥∥

)
+
∥∥� f

∥∥f,(7.2)

where f stands for the pair (U, V ).
Kimmel and Sochen [8] use the following equation for the HP scheme:

ut = ∆gU + U · g − 1

g
,(7.3)

vt = ∆gV + V · g − 1

g
,(7.4)

where g = 1 + A(U)((Ux)2 + (Uy)
2) and A(U) = 1

1−U2 . The SP scheme is given by
the following equation:

Zt = ∆gZ − 4gµν(∂µlog(1 + A))(∂νZ) + (1 + A)(2 − g11 − g22)Z,(7.5)

where a stereographic coordinate system is used. Here A = Z2, and Z stands for both
north and south coordinates.

We remark that in the HP and SP schemes, according to the Beltrami framework,
images are considered as surfaces rather than functions. The related diffusion scheme
minimizes the area of the image surface. Thus, a basic concept in the Beltrami frame-
work is the manifold’s metric. In order to construct a valuable geometric measure
for a direction image we have to combine the spatial coordinates with the direction
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information. The simplest combination is done by introducing a scaling parameter β,
so that

ds2 = dx2 + dy2 + β2 1

1 − U2
dU2.

The parameter β has dimensions [ distance
direction ], and it fixes the relative scale between

the size of direction information and spatial distances. The parameter β plays an
important role in this study. It is a measure of the degree of coupling between the
different channels in the diffusion flow. Higher values of β draw the scheme to a
behavior similar to that of the TV scheme [2], and smaller values of β cause a behavior
similar to that of the linear scheme [21].

Therefore, we expect both HP and SP schemes to have a numerical error and an
edge preserving quality which depend on this parameter β.

7.2. Evaluation of the direction diffusion schemes. The evaluation of the
different schemes offered for direction diffusion is based on two main attributes of these
schemes. The first is their numerical and algorithmic accuracy, which is presented by
their degree of error. The second is the edge preserving quality of the scheme. We use
direction information which is synthetic. Then, random noise chosen from a uniform
distribution on a predefined interval is added to the direction data, and each scheme
is used to denoise the image. The numerical error of each scheme is calculated. The
algorithmic error is also defined, as the deviation of the resultant direction from the
original noise-free direction data. The edge preserving quality of each algorithm is
examined on an artificial image which is composed of two different directions, and also
on an image which combines a slowly varying direction and a large direction edge.

7.3. Definition of the numerical error. The numerical error is differently
defined and calculated for each scheme. In the linear and TV schemes, the numerical
error is defined as the amount of the projection needed, so that the direction informa-
tion is on the unit circle. Thus, if the flow has resulted in some coordinates (U1, V 1)
which are not necessarily on the unit circle, we take as the projected coordinates the
intersection of the unit circle with the line connecting (U1, V 1) to the origin of axes;
see Figure 7.1. The point (U, V ) is given by

U =
U1√

U12 + V 12
, V =

V 1√
U12 + V 12

.(7.6)

Thus, the error is clearly

error =
√

(U1 − U)2 + (V 1 − V )2.(7.7)

In the HP and SP schemes, the evaluation of the error is not straightforward, as
there is no projection error; the evolving coordinates never leave the unit circle. The
numerical error is therefore defined relative to the results of a similar flow in which
there is no selection of a local coordinate system; thus, the coordinates (u, v) are not
coupled and are not constrained to the unit circle. For the HP we denote this error
by HEU1,V 1 and expect it to obtain a sharp maximum at (−π, −π

2 , 0, π
2 , π) because

one of the internal coordinates approaches 1 there and the denominator approaches
infinity (see Figure 7.2). It is important to notice that it is not an error of the
hemispheric scheme. In its minimum value, obtained between the sharp maximum
points, it provides a maximum bound on the error in the HP scheme.
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Fig. 7.2. Artificial error in the HP scheme. In regions 1 and 3 the U coordinate is selected,
and therefore the numerical error results from the difference between V 1, which is independently
calculated, and V , which is derived from the coordinate U . In regions 2 and 4 the V coordinate is
selected, and therefore the numerical error results from the difference between U1, which is indepen-
dently calculated, and U , which is derived from the coordinate V .

For SP the definition of an error is even more complicated. Not only is there no
projection error, but there are more variables for which an error term may be defined.
First, u and v are obtained using the embedding θ → (u, v) = [cos(θ), sin(θ)]. Next,
the stereographic coordinates Zn and Zs are derived, as the intersection of the line
between the north (south) pole and the south (north) hemisphere. Thus, we may look
at the error in Zs and Zn as well as in u and v. Following are the error terms used:

• SEzn and SEzs—Error terms for the stereographic coordinates.
We let Zn and Zs evolve independently. Then, we compare the stand-alone
Zn to the one calculated using the coupled Zn and Zs (where we select the
local appropriate chart according to the direction). We do the same for Zs

(see Figure 7.3). We expect the error for Zn to have a singularity at π
2 and

the error for Zs to have a singularity at −π
2 . Note that SEzn as defined is

expected to be zero in the range [−π, 0], and SEzs as defined is expected to
be zero in the range [0, π]. Since this is an error for the values of Zn and Zs,
we need another error definition which measures the degree of error in the
(u, v) coordinates.

• SEUV —Error terms for U and V . It is important to evaluate the error
for the (U, V ) variables. We define the error term as the distance between the
vector (U, V ) when evaluated using the coupled Zn and Zs, and the vector
(U, V ) when using the independently calculated Zn and Zs (see Figure 7.4).

It is important to note that SEz and SEUV are not errors of the Beltrami
porcupine methods. They give an indication of the actual error by noticing that
the minimum of SEz and SEUV is the upper bound for the Beltrami porcupine algo-
rithm. This is so since the most unreliable numeric regions are exactly the regions
where the minimum in the SEZ,UV is obtained. The actual error in other areas is
smaller since we do not trust one of the components that leads to a greater error.
Thus, a small value of an error may indicate that using the appropriate local chart
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(0,0) ZnZn(Zs)

SEzn

(0,0)

Zs(Zn) Zs

SEzs

Fig. 7.3. Artificial error in the Zn (upper) and Zs (lower) variables in the SP scheme.

is not as important as it is when the error is larger. The higher the error, the more
important it is to use the right local chart.

7.3.1. Definition of the algorithmic error. The definition of the algorithmic
error is the same for all schemes. It is simply the deviation of the direction following
diffusion from the noise-free direction, which is originally given. While the numerical
error gives an indication of the stability of the method, the algorithmic error deals with
performance: how close the resultant direction is to the actual one. The algorithmic
error is defined as follows:

E =
√

(cos(θ) − cos(θ1))2 + (sin(θ) − sin(θ1))2,

where θ is the original noise-free angle and θ1 is the resultant angle following the
diffusion scheme.

7.3.2. Definition of an edge preservation quality. An important quality of
any diffusion scheme is its edge preserving ability. The first test image used to examine
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Fig. 7.4. Artificial error in the (U, V ) coordinates in the SP scheme.
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Fig. 7.5. Algorithmic error for the linear, TV, HP, and SP schemes. Left: the four schemes
together, using a small time step, dt = 0.00001. Right: the HP, SP, and linear schemes, using a
larger time step, dt = 0.001.

edge preservation is composed of two different directions. We apply each tested scheme
to this image. We expect that the TV-based method will preserve edges better than
the linear-based approach. As for the porcupine methods, we expect edge preservation
quality to depend on the parameter β. The second test image is composed of two
significantly different directions, where each direction is slowly varying. Using this
test image, we may compare the edge preserving quality with the handling of the
slowly varying data.

7.4. Comparison results and discussion. In this section we present the re-
sults of the numerical errors, algorithmic errors, and edge preserving performance.

In the test we go over S1 from −π to π using an equal step size. For each angle,
random noise entries, chosen from a uniform distribution, are added to the vector field.

In Figure 7.5(left) we present the algorithmic error for the four schemes using
a time step dt = 0.00001. All errors lie within the same range. However, the best
performance is presented by the TV scheme, while the linear, HP, and SP approaches
seem to have the same performance. In Figure 7.5(right) we used a larger time step,
dt = 0.001, to observe the different behavior of the linear, HP, and SP schemes. The
linear scheme has the smallest algorithmic error among the three schemes, and the
HP and SP schemes seem to have the same algorithmic performance.
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Fig. 7.6. Numerical error for the TV, linear, and HP schemes. In this test we go over S1 from
−π to π using an equal step size of π
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Fig. 7.7. Left: numerical error for Zn. Here we go over S1 from −π to π using an equal step
size of π

8
. As expected, it has a singular point at π

2
. Right: numerical error for Zs. As expected,

it has a singular point at −π
2

.

Figure 7.6 compares the numerical errors of the HP, TV, and linear schemes. A
logarithmic scale is used, as the error of the TV scheme is two orders of magnitude
higher than the error of the linear and HP schemes! The HP error term has a periodic
behavior, and it is very large at the singular points, (−π, −π

2 , 0, π
2 , π). Away from the

singular points, the HP error is slightly smaller than the linear scheme error, and
the TV error is significantly higher than the HP error. However, as we approach the
singularities, the HP error increases, and there the linear scheme’s error is smaller.

In Figure 7.7 we show the numerical errors of Zn and Zs in the SP scheme. As
expected, the errors have sharp maxima at π

2 and −π
2 , respectively.

Another definition for the numerical error of the SP scheme was given, SEUV , in
which we refer to the (U, V ) variables rather than the (Zn, Zs) variables. In Figure 7.8
this error is presented: the differences between the values of (U, V ) when calculated
using a coupled scheme for (Zn, Zs) and when calculated using an independent scheme
for (Zn, Zs) are shown. It is interesting to note that this error has a periodic behavior,
with maximum values at (−π

2 , π
2 ), as can be expected.
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Fig. 7.8. The differences between the values of (u, v) when calculated using the (Zn, Zs) coupled
scheme and when independently calculated using (Zn, Zs). Here we go over S1 from −π to π using
an equal step size of π
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Fig. 7.9. Numerical error for HP for β = 10 (left) and for β = 0 (right). Here we go over S1

from −π to π using an equal step size of π
32

.

The next step is to examine the dependence of the numerical error in the HP and
SP schemes on the scaling parameter β. Figure 7.9 shows the numerical error for the
HP scheme for a larger value of β (left) and for a smaller value of β (right). The scale
used for presenting these results is again logarithmic. Away from the singular points,
larger values of β produce smaller errors. In the vicinity of the singular points, the
error increases when β increases.

The same goes for the SP scheme. In Figures 7.10 and 7.11 we present the results
with respect to the three error measures we have defined for the SP scheme. The scale
used for presenting the results is logarithmic. In Figure 7.10 the results for a larger
value of β are presented, and in Figure 7.11 the results for a smaller value of β are
presented.

When β = 100, the values of SEzn in the range [0, π] and away from the singularity
at π

2 lie between the numerical errors of the linear and TV schemes. The error
decreases as we move away from π

2 and is even smaller than the linear scheme error as
we move closer to 0 and π. In the range [−π, 0], SEzn is equal to zero. SEzs presents
a mirror behavior. SEUV is smaller than the numerical errors of the TV and linear
schemes. It obtains maximum values at ±π

2 . When β = 0, the values of SEzn in the
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Fig. 7.10. Numerical errors of the SP scheme for a large value of β = 100. (a) The numerical
error of Zn. (b) The numerical error of Zs. (c) The numerical error of the (U, V ) variables.

range [0, π] and away from the singularity at π
2 are a little bigger than those obtained

for β = 100. Again, SEzs presents a mirror behavior. In this case, SEUV , away from
the singular points ±π

2 , is higher than the one obtained for β = 100. Note that the
error values in the vicinity of the singularities are much higher for the lower value
of β.

Next, we examine the edge preserving quality of each direction diffusion scheme.
The following synthetic data was generated so that there is a difference of π

2 radians
between the left and right sides of the noise-free image. Random noise entries, chosen
from a uniform distribution in the range [−π

9 , π
9 ], are added to the noise-free data,

and each scheme is applied to the image. The noise-free and noisy initial images are
shown in Figure 7.12. The diffusion results are presented for all schemes, while for
the HP and SP approaches we show the results for both smaller and higher values of
the parameter β. In Figure 7.13 the results for the linear and the TV schemes are
presented. It is interesting to note that the linear scheme is less edge preserving than
the TV scheme, as can be expected. In Figures 7.14 and 7.15 the results for the HP
and SP schemes are also presented. Here, we note the dependence of the results on the
value of the parameter β. We can go from linear to TV behavior simply by adjusting
the value of β. If we examine the relationship between the numerical errors of the TV
and linear schemes (see Figure 7.6), and their edge preserving quality, we note that
while the linear scheme offers a low numerical error, it is less edge preserving, and
while the TV scheme better preserves edges, it has a significantly higher numerical
error. For the HP and SP schemes, both the numerical errors (see Figures 7.9, 7.10,
7.11) and the edge preserving quality depend on the parameter β. We may find a
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Fig. 7.11. Numerical errors for the SP scheme for a small value of β = 0. (a) The numerical
error of Zn. (b) The numerical error of Zs. (c) The numerical error of the (U, V ) variables.

Fig. 7.12. The original noise-free image (left) and the image after random noise was added
(right).

value of β in the HP and SP schemes so that we obtain a numerical error which
is in the order of the linear scheme’s error and an edge preserving quality which is
comparable to that of the TV scheme.

Another example for exploring the edge preserving quality of each scheme is the
direction fan example. The test image (Figure 7.15) is composed of a major gradient
in directions in the image’s center and a slowly varying angle as we move away from
the center. The direction information is presented both by arrows (Figure 7.16 (left))
and by a color image, representing the angles (Figure 7.16 (right)). Random noise
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Fig. 7.13. Left: the result of linear diffusion, with 10,000 iterations and a time step equal to
0.0001. Right: the result of TV diffusion, with 100,000 iterations and a time step equal to 0.00001.

Fig. 7.14. Left: the result of HP diffusion for β = 0. Right: the result of HP diffusion for
β = 10. These results were obtained following 10,000 iterations with time step equal to 0.001.

Fig. 7.15. Left: the result of SP diffusion for β = 0. Right: the result of SP diffusion for
β = 100. These results were obtained following 10,000 iterations with time step equal to 0.0001.

entries, chosen from a uniform distribution in the range [−π
9 , π

9 ], are added to the
noise-free data, and a noisy direction image is obtained (Figure 7.17). Next, each
scheme is applied to the image with the time step, number of iterations, and value
of β (for the HP and SP schemes) that produce the best results. When applying
the linear scheme, the edge is blurred while the amount of noise is still significant
(Figure 7.18). The TV approach results in a sharper boundary relative to the linear
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Fig. 7.16. The noise-free direction fan image, represented by arrows (left) and as a color image
(right).

Fig. 7.17. The noisy direction fan image, represented by arrows (left) and as a color image
(right).

Fig. 7.18. The result of linear diffusion following 10,000 iterations with time step 0.0001,
represented by arrows (left) and as a color image (right).

scheme, but if we examine the smoothed direction, we note a stair-casing effect; thus
the smaller changes in direction are ignored (Figure 7.19).
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Fig. 7.19. The result of TV diffusion following 100,000 iterations with time step 0.00001,
represented by arrows (left) and as a color image (right).

Fig. 7.20. The result of HP diffusion following 1,000 iterations with time step 0.01. The value
of β is 1.5. Representation by arrows (left) and as a color image (right).

Fig. 7.21. The result of SP diffusion following 1,000 iterations with time step 0.01. The value
of β is 10. Representation by arrows (left) and as a color image (right).

The HP scheme produces good results, as it keeps a sharp boundary and restores
the original slowly changing behavior of the original direction data (Figure 7.20). The
SP scheme produces similar results to those for the HP scheme, but as can be seen,
some noise is still present (Figure 7.21).
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8. Concluding remarks. There are some important issues in the process of
denoising a constrained feature field. The first is to make the process compatible with
the constraint in such a way that the latter is never violated along the flow. The
second is the type of regularization which is applied in order to preserve significant
discontinuities of the feature field while removing noise. The third is the numeric and
algorithmic accuracy of the algorithms.

These issues are treated in this paper via the Beltrami framework. First a Rie-
mannian structure, i.e., a metric, is introduced on the feature manifold, and several
local coordinate systems are chosen to intrinsically describe the constrained feature
manifold. The diffusion process acts on these coordinates, and the compatibility with
the constraint is achieved through the intrinsic nature of the coordinate system. The
difficulty in working on a non-Euclidean space transforms itself to the need to locally
choose the best coordinate system to work with.

The preservation of significant discontinuities is dealt with by using the induced
metric and the corresponding Laplace–Beltrami operator acting on feature coordinates
only. This operation is in fact a projection of the mean curvature, in the normal(s)
direction(s) to the surface, to the feature direction(s). This projection slows the
diffusion process along significant (supported) discontinuities while letting the process
proceed in the homogeneous regions at a normal speed.

The result of this algorithm is an adaptive smoothing process for a constrained
feature space in every dimension and codimension. As an example we have shown
how our geometric model coupled with a proper choice of charts handles the direction
diffusion problem. This is a new application of the Beltrami framework, proposed
in [18]. We tested the new model on vector fields restricted to the unit circle S1, and
hybrid spaces like the HSV color space. The integration of the spatial coordinates
with the color coordinates yields a selective smoothing filter for images in which some
of the coordinates are restricted to a circle.

Moreover, it is shown that even when algorithms are analytically equivalent, they
may differ in their accuracy (numerical and algorithmic). It is shown that the hemi-
spheric and stereographic coordinate systems present an advantage in the sense that
a parameter β can be found, i.e., β = 10, or 100, respectively, such that the edge
preserving quality is as good as that for the TV algorithm, while the numerical error
is two orders of magnitude smaller!

Appendix A. The Levi–Civita method for S2. Using (3.9) and the general
formula

Γi
jk =

1

2
hil (∂jhlk + ∂khjl − ∂lhjk) ,(A.1)

we get, for example,

Γ3
33 =

1

2
h3l (2∂3hl3 − ∂lh33) =

1

2

(
h33∂3h33 + 2h34∂3h34 − h34∂4h33

)
=

1

2

[
(1 − U2)

∂

∂U

(
1 − V 2

1 − U2 − V 2

)
− 2UV

∂

∂U

(
UV

1 − U2 − V 2

)

+UV
∂

∂V

(
1 − V 2

1 − U2 − V 2

)]
,
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and a straightforward calculation gives

Γ3
33 =

U(1 − V 2)

1 − U2 − V 2
= Uh33.(A.2)

Appendix B. The Sn diffusion flow. The hypersphere Sn is presented as an
n-dimensional manifold embedded in R

n+1 as the constrained hypersurface

n+1∑
i=1

(U i)2 = 1.

We work in the chart where {U i}ni=1 are local coordinates. On this chart, Un+1 =√
1 −

∑n
i=1(U

i)2.
Theorem B.1. The local Sn metric elements are

h̃ij = δij +
U iU j

1 −
∑n

s=1(U
s)2

.

Proof. The hypersphere is embedded isometrically in R
n+1. We use the induced

metric technique as follows:

ds2 =

n∑
i=1

(dU i)2 + (dUn+1)2.(B.1)

The Un+1 coordinate is a function of all the others, and as such we can apply the
chain rule to get

dUn+1 =

n∑
i=1

∂Un+1

∂U i
dU i = −

n∑
i=1

U i√
1 −

∑n
s=1(U

s)2
dU i.

Using this expression in (B.1), we get

ds2 =

n∑
i,j=1

h̃ijdU
idU j

=

n∑
i=1

(dU i)2 +

(
−

n∑
i=1

U i√
1 −

∑n
s=1(U

s)2
dU i

)⎛⎝−
n∑

j=1

U j√
1 −

∑n
s=1(U

s)2
dU j

⎞
⎠

=
n∑

i,j=1

δijdU
idU j +

n∑
i,j=1

U iU j

1 −
∑n

s=1(U
s)2

dU idU j

=

n∑
i,j=1

(
δij +

U iU j

1 −
∑n

s=1(U
s)2

)
dU idU j ,(B.2)

from which the assertion follows.
Theorem B.2. The local Sn inverse metric elements are

h̃−1
ij = δij − U iU j .
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Proof. By direct calculation,

n∑
j=1

h̃ij h̃
−1
jk =

n∑
j=1

(
δij +

U iU j

1 −
∑n

s=1(U
s)2

)(
δjk − U jUk

)

= δik − U iUk +
U iUk

1 −
∑n

s=1(U
s)2

−
n∑

j=1

U i(U j)2Uk

1 −
∑n

s=1(U
s)2

= δik.(B.3)

One can check similarly that

n∑
j=1

h̃−1
ij h̃jk = δik.

Theorem B.3. The induced metric, and its inverse, are accordingly

gµν = δµν +

n∑
i,j=1

h̃ijU
i
µU

j
ν ,

gµν =
1

g

⎛
⎝δµν + εµσενρ

n∑
i,j=1

h̃ijU
i
σU

j
ρ

⎞
⎠ ,

g = det(gµν)

= 1 +

n∑
i,j=1

h̃ij(U
i
xU

j
x + U i

yU
j
y ) +

1

2
εµσενρ

n∑
i,j,k,l=1

h̃ij h̃klU
i
µU

j
νU

k
ρU

l
σ,(B.4)

where (gµν) is the inverse of (gµν), g is the determinant, and εµν is the 2D antisym-
metric tensor

(εµν) =

(
0 1
−1 0

)
.

An implicit summation on all repeated Greek indices is assumed.
Proof. The calculation of the metric element is done directly by the induced

metric identity

ds2 = gµνdx
µdxν = dx2 + dy2 +

n∑
i,j=1

h̃ijdU
idU j

= δµνdx
µdxν +

∑
ij

h̃ijU
i
µU

j
νdx

µdxν ,(B.5)

from which we extract the metric coefficients. The metric is a 2 × 2 matrix whose
determinant is g = g11g22 − g2

12 = εµνg1µg2ν . Using the explicit form of the metric,
we get
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g =

⎛
⎝1 +

∑
ij

h̃ijU
i
xU

j
x

⎞
⎠(

1 +
∑
kl

h̃klU
k
yU

l
y

)
−

⎛
⎝∑

ij

h̃ijU
i
xU

j
y

⎞
⎠(∑

kl

h̃klU
k
xU

l
y

)

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U i

yU
j
y ) +

∑
ijkl

h̃ij h̃klU
i
x(U j

xU
k
y − U j

yU
k
x )U l

y

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U i

yU
j
y ) + εµν

∑
ijkl

h̃ij h̃klU
i
xU

j
µU

k
νU

l
y

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U i

yU
j
y )

+
1

2
εµν

∑
ijkl

h̃ij h̃klU
i
xU

j
µU

k
νU

l
y −

1

2
εµν

∑
ijkl

h̃ij h̃klU
i
yU

j
µU

k
νU

l
x(B.6)

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U i

yU
j
y ) +

1

2
εµνεσρ

∑
ijkl

h̃ij h̃klU
i
σU

j
µU

k
νU

l
ρ.

Finally, we prove the formula for the inverse metric

gµνgνλ =
1

g

⎛
⎝δµν + εµσενρ

n∑
i,j=1

h̃ijU
i
σU

j
ρ

⎞
⎠

⎛
⎝δνλ +

n∑
i,j=1

h̃ijU
i
νU

j
λ

⎞
⎠

=
1

g

⎛
⎝δµλ + εµσελρ

n∑
i,j=1

h̃ijU
i
σU

j
ρ +

n∑
k,l=1

h̃klU
k
µU

l
λ

+ εµσενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
σU

j
ρU

k
νU

l
λ

⎞
⎠(B.7)

=
1

g

⎛
⎝δµλ +

n∑
i,j=1

h̃ij(U
i
xU

j
x + U i

yU
j
y )δµλ + εµσενρ

n∑
i,j,k,l=1

h̃ij h̃klU
i
σU

j
ρU

k
νU

l
λ

⎞
⎠ ,

where the last equality comes from a case-by-case analysis. Remember that λ, ν ∈
{1, 2}, and take, for example, µ = λ− 1 = 1. In this case we get

2∑
σ,ρ=1

ε1σε2ρ
n∑

i,j=1

h̃ijU
i
σU

j
ρ +

n∑
k,l=1

h̃klU
k
xU

l
y = ε12ε21

n∑
i,j=1

h̃ijU
i
yU

j
x +

n∑
i,j=1

h̃ijU
i
xU

a
y

= −
n∑

i,j=1

h̃ijU
i
yU

j
x +

n∑
i,j=1

h̃ijU
j
xU

i
y = 0,(B.8)

where we have used the fact that the metric is a symmetric tensor. Other cases are
analyzed in a similar manner. The third term is also analyzed on a case-by-case basis,
and the result, as the reader can verify, is

εµσενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
σU

j
ρU

k
νU

l
λ =

1

2
δµλε

αβενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
αU

j
νU

k
ρU

l
β .

The whole expression in the parentheses in B.7 is, therefore, δµλg, which completes
our proof.
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The last piece of information needed for our machinery is the explicit form of the
Levi–Civita coefficients.

Theorem B.4. The Levi–Civita coefficients are

Γi
jk = U ih̃jk.(B.9)

Proof. From the formula (2.11) we get

Γi
jk =

1

2

∑
l

h−1
il (∂jhlk + ∂khjl − ∂lhjk)

=
1

2

∑
l

(δil − U iU l)

(
∂j

(
U lUk

1 −
∑

s(U
s)2

)
+ ∂k

(
U jU l

1 −
∑

s(U
s)2

)
− ∂l

(
U jUk

1 −
∑

s(U
s)2

))
.

Let us compute the first term, for example,

∂j

(
U lUk

1 −
∑

s(U
s)2

)
=

δjlUk

1 −
∑

s(U
s)2

+
δjkU l

1 −
∑

s(U
s)2

+
2U jU lUk

(1 −
∑

s(U
s)2)2

.(B.10)

Summing up the three terms, we get

Γi
jk =

1

2

∑
l

(δil − U iU l)

(
δjlUk

1 −
∑

s(U
s)2

+
δkjU l

1 −
∑

s(U
s)2

+
2U jU lUk

(1 −
∑

s(U
s)2)2

+
δkjU l

1 −
∑

s(U
s)2

+
δlkU j

1 −
∑

s(U
s)2

+
2U jU lUk

(1 −
∑

s(U
s)2)2

− δlkU j

1 −
∑

s(U
s)2

− δjlUk

1 −
∑

s(U
s)2

− 2U jU lUk

(1 −
∑

s(U
s)2)2

)
.

Now simple algebra gives

Γi
jk =

1

1 −
∑

s(U
s)2

∑
l

(δil − U iU l)

(
δkjU l +

U jU lUk

1 −
∑

s(U
s)2

)

=
1

1 −
∑

s(U
s)2

(
U i − U i

∑
l

(U lU l)

)(
δkj +

U jUk

1 −
∑

s(U
s)2

)
= U ih̃jk.

Acknowledgments. We thank Alfred Bruckstein from the Technion Israel for
stimulating discussions on diffusion and averaging, and on color analysis. We also
thank Guillermo Sapiro from the University of Minnesota for sharing with us his
ideas and results on direction diffusion.

REFERENCES
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