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Abstract The Beltrami flow is an efficient nonlinear filter,
that was shown to be effective for color image processing.
The corresponding anisotropic diffusion operator strongly
couples the spectral components. Usually, this flow is im-
plemented by explicit schemes, that are stable only for
very small time steps and therefore require many iterations.
In this paper we introduce a semi-implicit Crank-Nicolson
scheme based on locally one-dimensional (LOD)/additive
operator splitting (AOS) for implementing the anisotropic
Beltrami operator. The mixed spatial derivatives are treated
explicitly, while the non-mixed derivatives are approximated
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in an implicit manner. In case of constant coefficients, the
LOD splitting scheme is proven to be unconditionally stable.
Numerical experiments indicate that the proposed scheme
is also stable in more general settings. Stability, accuracy,
and efficiency of the splitting schemes are tested in applica-
tions such as the Beltrami-based scale-space, Beltrami de-
noising and Beltrami deblurring. In order to further accel-
erate the convergence of the numerical scheme, the reduced
rank extrapolation (RRE) vector extrapolation technique is
employed.

Keywords Splitting methods - Beltrami flow - Image
denoising - Diffusion

1 Introduction

Nonlinear diffusion filters based on partial differential equa-
tions (PDEs) have been extensively used in the last decade
for different tasks in image processing. Their efficient imple-
mentation requires designing numerical schemes in which
the issues of accuracy, stability, and computational cost all
play important roles.

The Beltrami image flow is an example of a nonlinear
filter, that is efficient for color image processing. It treats
the image as a 2-D manifold embedded in a hybrid spatial-
feature space. Minimization of the image area surface yields
the Beltrami flow. The corresponding diffusion operator is
anisotropic and strongly couples the spectral components.
Due to its anisotropy and non-separability, so far there is
no efficient implicit, nor operator-splitting-based numerical
scheme for the partial differential equation that describes the
Beltrami flow in color. Usual discretizations of this filter are
based on explicit schemes, that limit the time step and there-
fore result in a large number of iterations. In [7] an acceler-
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ation technique based on the RRE (reduced rank extrapola-
tion) algorithm was proposed in order to speed-up the slow
convergence of the explicit scheme.

As an alternative to the explicit scheme, an approxima-
tion using the short time kernel of the Beltrami operator
was suggested in [26]. Although unconditionally stable, this
method is still computationally demanding, since computing
the kernel involves geodesic distance computation around
each pixel.

The bilateral filter, which can be shown to be an Euclid-
ean approximation of the Beltrami kernel, was studied in dif-
ferent contexts (see [2, 4, 10, 22, 23, 27]), and in [18] signal
processing acceleration methods were proposed for efficient
evaluation of this filter. Recently, a related filter, the nonlo-
cal means filter, was proposed in [6] and shown to be useful
in denoising of gray-scale and color images. Its application
to fast video processing and surface smoothing was shown
in [14, 33].

In this paper we propose to approximate the system of
nonlinear coupled equations given by the Beltrami flow
using a semi-implicit finite difference scheme based on
operator splitting. Historically, additive operator splitting
(AOS) schemes were first developed for (nonlinear ellip-
tic/parabolic) monotone equations and Navier-Stokes equa-
tions [12, 13]. In image processing applications, the AOS
scheme was found to be an efficient way for approximat-
ing the Perona-Malik filter [29], especially if symmetry in
scale-space is required. The AOS scheme is first order in
time, semi-implicit, and unconditionally stable with respect
to its time-step [13, 29]. In the early 1950’s (see [19]) the
alternating-direction method (ADI) was introduced, and in
[31] the LOD (locally one-dimensional) splitting method
was proposed. The LOD scheme and other multiplicative
splitting methods were employed in the context of nonlinear
diffusion image filtering in [5]. We stress that the main char-
acteristic of this class of equations, which allows splitting, is
local isotropy. However, in the case of the anisotropic Bel-
trami operator, the main difficulty in splitting stems from the
presence of the mixed derivatives. To overcome this prob-
lem, we suggest to construct the following semi-implicit
scheme; the spatial mixed derivatives are discretized ex-
plicitly at the current time step nAf, while those that do
not contain mixed derivatives are approximated using an
average of two levels of time steps: nAt and (n + 1)At
(Crank-Nicolson scheme). Preliminary results concerning
this scheme were presented in a previous conference pa-
per [8]. We now proceed to extend these with both a theoret-
ical analysis of the stability and new experimental results.

Regarding the suggested scheme, as our equations are
nonlinear, a stability proof of the resulting finite difference
equations is a non-trivial task. We propose accordingly to
use the von-Neumann analysis of the suggested scheme un-
der the assumption of constant coefficients (for both cases
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of scale space and denoising). This analysis shows that for
this simple case, the LOD splitting scheme is uncondition-
ally stable. Furthermore, our numerical experiments indi-
cate that the LOD and the AOS splitting schemes for the
nonlinear Beltrami color filter also display a stable behav-
ior. We demonstrate the efficiency and stability of the split-
ting in applications such as: Beltrami-based scale space and
Beltrami-based denoising and deblurring. In order to further
expedite the LOD/AOS splitting schemes, we show how to
speed-up their convergence by using the RRE (reduced rank
extrapolation) technique. The RRE method was introduced
by MeSina and Eddy [9, 17] to speed-up the convergence of
general sequences of vectors without explicit knowledge of
the sequence generator. This technique was applied in [7] in
order to speed up the slow convergence of the standard ex-
plicit scheme for the Beltrami color flow. In this paper we
show that in applications such as scale-space and denoising
of color images, the semi-implicit LOD/AOS schemes can
also be accelerated using the RRE technique.

This paper is organized as follows: In Sect. 2 we briefly
summarize the Beltrami framework. In Sect. 3 we re-
view general semi-implicit splitting operator schemes for
the linear heat equation. In Sect. 4 we propose a semi-
implicit splitting scheme for the anisotropic Beltrami oper-
ator, based on the LOD/AOS schemes. We provide the von-
Neumann stability analysis of the LOD-based scheme which
is valid in the case where the coefficients are constants. In
Sect. 5 we demonstrate the efficiency and stability of the
LOD/AOS splitting schemes for Beltrami-based scale-space
and Beltrami-based denoising. Furthermore, we propose to
accelerate the LOD/AOS schemes using the RRE technique.
Section 6 concludes the paper.

2 The Beltrami Framework

Let us briefly review the Beltrami framework for non-linear
diffusion in computer vision [11, 24, 25, 32]. We repre-
sent images as embedding maps of a Riemannian mani-
fold in a higher dimensional space. We denote the map by
U:X — M, where ¥ is a two-dimensional surface, with
(o', %) denoting coordinates on it. M is the spatial-feature
manifold, embedded in R12, where d is the number of im-
age channels. For example, a gray-level image can be rep-
resented as a 2D surface embedded in R3. The map U in
this case is U(zr1 , 0’2) = (ol 02, 1(01,02)), where [ is the
image intensity. For color images, U is given by

Ue',o?) = (o', 0% I (0!, 0%, I* (0!, 0%), I} (0!, 0?)),

where 11, 1 2, I3 are the three components of the color vec-
tor.

Next, we choose a Riemannian metric on this surface, g,
with elements denoted by g;;. The canonical choice of co-
ordinates in image processing is Cartesian (we denote them
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here by x! and x?). For such a choice, which we follow in
the rest of the paper, we identify 0! = x! and 02 = x2. In
this case, o! and o2 are the image coordinates. We denote
the elements of the inverse of the metric by superscripts g'/,
and the determinant by g = det(g;;). Once images are de-
fined as embedding of Riemannian manifolds, it is natural
to look for a measure on this space of embedding maps.

Denote by (X, g) the image manifold and its metric,
and by (M, h) the space-feature manifold and its metric.
Then, the functional S[U] assigns a real number to a map
U:X—> M,

SIU. gij. hap) = / &o JgIdUI2,, (1)

where s is the dimension of ¥, g is the determinant
of the image metric, and the range of indices is i, j =
1,2,...dim(¥) and a,b =1, 2,...dim(M). The integrand

ldU ||§ , 1s expressed in a local coordinate system by

||dU||§’ p = (0, UNEY (3, U)hgp. This functional, for
dim(X) =2 and hg,p = 845, Was first proposed by Polyakov
[20] in the context of high energy physics, in the theory
known as string theory. The elements of the induced metric
for color images with Cartesian color coordinates are

G = (gij)
— <1+132231:1(U)?1)2 132 22:1 U)?lU)?z )
B oo ULUL 1482 (UL

where a subscript of U denotes a partial derivative and the
parameter 8 > 0 determines the ratio between the spatial
and spectral (color) distances. Using standard methods in
calculus of variations, the Euler-Lagrange equations with
respect to the embedding (assuming Euclidean embedding
space) are

1 . 88

1 .

—

AgU“

where the diffusion matrix is

D=/gG7". A3)
Note that we can write
2
div(DVU) = Z Ay, (dgrdx, U). 4
q,r=1

The operator that acts on U is the natural generalization
of the Laplacian from flat spaces to manifolds. It is called
the Laplace-Beltrami operator, and denoted by A,.

The parameter B8, in the elements of the metric g;;, de-
termines the nature of the flow. At the limits, where 8 — 0

and B — oo, we obtain respectively a linear diffusion flow
and a nonlinear flow, akin to the TV flow [21] for the case
of grey-level images (see [25] for details).

The Beltrami scale-space emerges as a gradient descent
minimization process

U;ZZ__—ZAgUa’ a=1,2,3. (5)

For Euclidean embedding, the functional in (1) reduces to

S(U) = / Jgdx'dx?

3 3
1
_ 2 2 4 b2
_/ 1+8 §:|vua| +§ﬁ §:|VU“><VU |
a=1 a,b=1
x dx'dx?. (6)

This geometric measure can be used as a regularization
term for color image processing. In the variational frame-
work, the reconstructed image is the minimizer of a cost-
functional. This functional can be written in the following
general form,

3
VW) =2 YUY = F* + S(U), ™

a=1

where the parameter A controls the smoothness of the solu-
tion and F is the given image.

The modified Euler-Lagrange equations as a gradient de-
scent process are

I UL LR D
S/ T/ERN o
a=1,2,3. ®

The above equations characterize an adaptive smoothing
mechanism. In areas with large gradients (edges), the fidelity
term is suppressed and the regularizing term becomes domi-
nant. At homogenous regions with low-gradient magnitude,
the fidelity term takes over and controls the flow.

3 Operator Splitting Schemes

In this section we review standard first order accurate split-
ting schemes for the two-dimensional heat equation. Split-
ting techniques are commonly employed in solving time-
dependent partial differential equations. They are used in
order to reduce problems in multiple spatial dimensions to a
sequence of problems in one dimension, which are easier to
solve.

@ Springer
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Consider the second order heat equation

2
up=y 0y @yu), inQx[0,T] )
i=1

with suitable boundary conditions on 9€2 x [0, T'], where €2
is a rectangle in R2, 9Q is the boundary of €2, and [0, T'] is
the time interval 0 <t < T.

We discretize this equation on a rectangular grid of size
N =m x m. The time steps are given by ¢, =nAt, 1 <n <
J and JAfr = T. Denote by U" the approximate N dimen-
sional solution at the time level n. The semi-implicit approx-
imation scheme can be written in vector-matrix notation

2
<1 — At ZA”(U”)> vt =yr, (10)

=1

where the N x N matrix Ay is the finite difference approxi-
mation of the second order differential operator corresponds
to the derivatives along the /-th coordinate axis. The main
drawback of this implicit scheme is the high computational
cost needed to invert the matrix I — At lezl A (U"), be-
cause unlike the one-dimensional case, the matrix is not
tridiagonal and therefore cannot be inverted in an efficient
manner. In order to overcome this problem, splitting meth-
ods were proposed [15, 19]. One of the simplest splitting
schemes belonging to the class of multiplicative operator
splitting schemes, is the locally one-dimensional (LOD)
scheme [31]

2
U"+1=H(1—AIA11(U"))71UH- (11)
I=1

The LOD scheme only needs to invert some three-diagonal
matrices. It is simple to implement, is unconditionally stable
and it is first order accurate. However, the system matrix in
(11) is not axis symmetric, a property that may be important
in some cases.

If such a property is required, one could use the additive
operator splitting (AOS) [13] which was actually invented
for parallel implementation of splitting methods

2
1 _
Ut =2 (1 - 280AnU™) o, (12)
=1

Note that the two three-diagonal matrices can to be in-
verted in parallel. Even for sequential implementations, the
AOS is almost as efficient as the LOD scheme; instead
of multiplying the operators, one computes them indepen-
dently and then average the sums of the inverse of the two
matrices. We want to emphasis that the matrices for AOS
use 2At instead of At.
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It is not a trivial matter to apply dimensional splitting
schemes for Beltrami type of equations. Our goal is to con-
struct a splitting scheme for the nonlinear anisotropic Bel-
trami operator, which would amount to inverting tridiagonal
matrices, be unconditionally stable and preserve the time
discretization accuracy that was obtained before the split-
ting.

4 The Proposed Splitting Scheme

In this section we propose a first order accurate operator
splitting scheme for the Beltrami filter. Before splitting, we
first introduce a semi-implicit approximation scheme to our
equations.

A semi-implicit Crank-Nicolson scheme for an equation
involving mixed derivatives can rely on the following dis-
cretization of the spatial derivatives operators: mixed deriv-
atives are computed at time step nA¢, while the non-mixed
derivatives are computed as the average of values at time
steps n At and (n + 1) Atz. This approach for handling mixed
derivatives in semi-implicit schemes for approximating lin-
ear equations has been considered in several previous works
(see [1, 16, 30] for example), including the context of im-
age processing [28], although it was not combined with the
Crank-Nicolson method in the case of [28]. In [1] a stabil-
ity analysis of a splitting scheme approximating a general
class of linear parabolic equations with mixed derivatives
was performed. The a priori estimates of the solution were
obtained by the method of energy inequalities and by assum-
ing certain bounds of the quadratic form involved in the par-
abolic equation. The Crank-Nicolson based splitting scheme
for the linear case presented in this paper is a particular case
of the general scheme given in [1] (for o = 0.5). However,
the stability proof we present here is based on a different
and simpler method, namely the von-Neumann analysis. We
furthermore accentuate that our proof relies only on the as-
sumption of parabolicity of the equations and it does not
need any assumptions on the boundedness of the quadratic
form. McKee and Mitchell developed a slightly different
scheme [16]. They utilized a von-Neumann analysis in their
stability proof, in a similar manner to our own. Their pro-
posed scheme, however, is different and specifically, it is not
symmetric with respect to the non-mixed directional deriva-
tive operators.

‘We now proceed to describe our proposed scheme. First,
let us refine our grid notations. We work on the rectangle
Q= (0,1) x (0, 1), which we discretize by a uniform grid
of m x m pixels, such that x; =iAx, y; = jAy, t, =nAt,
where l <i<m,1<j<m,n=1,2,...,J and JAr=T.
Let the grid sizebe Ax = Ay=h = ﬁ

For each channel U%, a =1, 2, 3 of the color vector, we
define the discrete approximation (U “)?j by

(U(iAx, jAY. nA1) = (U ~ U (iAx, jAy. nAr).
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We impose von-Neumann boundary condition, and initially
set U? to be our initial data image.

4.1 LOD/AOS Scheme for the Beltrami Scale-Space

We approximate the Beltrami filter given in (5) by the fol-
lowing semi-implicit Crank-Nicolson scheme:

(Ua)n—H _ (Ua)n
At

2
1 (1 L1
= S CARUY T+ SN AU
V&"\2 i3 25

)

2
+) ZAZAU“)”), (13)

where U is the N-dimensional vector denoting one of the
components of the color vector, and A;r is a central dif-
ference approximation of the operator dy, (dqrdyx,) at time
step n.

After rearranging terms, we have

(Ua)n—H
2 -1
At
=(1-—=)>_ A;‘,)
( 2 g” =1

2 2
At At
x|\ I+ Al +— A}l
( /gn ZZ qr 2 /gn ; ”)

q=1r#q

x (U", (14)
which can also be written as

(Ua)n—H
2 —1
At -
=1

2 2
x (1+ArZZAZ,+%ZA7,)
=1

g=1r#q
x (U", (15)
where
A ! 0y (A0y) A ! 0,(Cay)
11 = —= ) 2= —7= )y
\/g X X \/g y Yy
| | (16)
App=—0,(Bdy), Ay =-—=0y(Bdx),
«/E py y \/E y py

and the functions A, B, C are the corresponding elements of
the diffusion matrix associated with the Beltrami flow,

A(VU)

B(VU) (17)

D= G- =< B(VU))

C(VU)

Again, this semi-implicit scheme still has a major draw-
back. At each iteration one needs to solve a large linear sys-
tem whose matrix of coefficients is not tridiagonal and thus
costly. Instead, we employ the LOD splitting scheme

At - \ 7! At - \ 7!
vyt — (1 - =24 I——"A
(%] ( > 22) < > 11)
1+At/i I+At/§
X R —_—
) 11 ) 22

2
+Ary > A;r} uH,

q=1r#q

or the AOS scheme, that reads,

Uy = %[(1 — AtAp) T+ (I - ArAD) ]

1+At/§ 1+At/i
% ar al
) 11 2 22

2
—i—AtZZAZ,}(U“)”. (18)

q=1r#q

The above splitting schemes are efficient because at each
time step a tridiagonal matrix inversion is performed.

The system of differential equations we deal with is non-
linear. The question of theoretical stability of the LOD/AOS
based nonlinear finite difference scheme is a non-trivial
challenge, with theory still lagging behind common prac-
tice. Nevertheless, we can provide a von-Neumann stability
analysis to a simplified case where the coefficients of the
equation are set to be constants. This analysis shows that the
LOD splitting scheme, at least in this over-simplistic form, is
unconditionally stable. While the coefficients do not remain
constant during the diffusion process in all but the simplest
images, this condition is a minimal requirement in analyz-
ing the stability of numerical schemes, and must be verified.
Numerical experiments can then be performed in order to
gain some empirical insight. These indicate in our case that
the splitting is stable in the more general setting, as will be
shown in Sect. 5.

Below we provide the von-Neumann analysis of the LOD
splitting scheme. Our equations are of the form

Ul = % div(DVU?). (19)
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Equation (19) can be written in its general form as

U—AU +ZBU +CU
t \/Exx \/gx,\ ﬁY>

<A + By )U + <C + . )U
NEENE NEENE
In order to apply the von-Neumann analysis, the coeffi-

cients A, B, C in (20) are set to be constants. Thereby, the
equation is simplified to

U; = aUyy +2bUyy + cUyy, (20)

where the coefficients a, b, ¢ are now constants witha, ¢ > 0
and b® — ac < 0.

The Crank-Nicholson scheme with LOD splitting for ap-
proximating (19) can be written as

At At |

<I —(173)5)5> (1 — CTB):);)U'H_
At At .
1+ Sady || 1+ ey ) +20A10, |U",

(21)
where
R AW A T
axinjz n2 s
U’ 2U” +U”
ayyUl."jz Lyt h2 iz 1, (22)
5 U U U U U y
AL 4h?

Consider a solution of the difference scheme in the form

Uinj _ MeanAzeﬂiﬂheﬂjyh7 (23)

where B and y are constant wave numbers. We have

2
e Ufj = 5 (cos(Bh) — 1)U, (24)
2
Dy Ufj = o (cos(yh) = 1)U, (25)
[ .
dyUfs = i sin(y h) sin(BR) U} (26)

We denote r = %.

After substituting the above difference operators in the
scheme (21), we obtain the amplification factor

—2br sin(y h) sin(Bh)
(1 —ar(cos(Bh) — 1))(1 — cr(cos(yh) — 1))
(1 4+ ar(cos(Bh) — 1))(1 4+ cr(cos(yh — 1)))
(1 —ar(cos(Bh) — 1))(1 — cr(cos(yh) — 1))’

%':
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The scheme is stable if the amplification factor £ satisfies
|€] < 1. The term & can be written as
B —2br sin(yh) sin(Bh)
(14 2arsin®(Bh/2))(1 + 2cr sin®(yh/2))
(1 —2ar sin®(Bh/2))(1 — 2cr sin®(yh/2))
(1 + 2ar sin®(Bh/2))(1 + 2cr sin®(yh/2))

27

Next, we prove that |£| < 1. First, we need the following
lemma.

Lemma 1 If b* < ac, then the following inequality holds

4asin®(0/2) + 4csin’(¢/2)
Y0, p.

— 2|bsin(#) sin(p)| > 0,

Proof We have

(Valsin(8/2)| — el Sirl(</>/2)l)2 >0
Since b2 < ac, one has

asin®(0/2) + csin’(¢/2)
> 2/ac|sin(0/2) sin(g/2)|
> 2|b||sin(0/2) sin(p/2)|. (28)

But one can see that
1
[sin(6/2) = 5' sin(6)]. (29)
Thus (28) and (29) provide the required inequality

4asin®(0/2) + 4csin’(p/2) — 2|bsin(8) sin(@)| > 0.  (30)

We need to show that —1 < & < 1. First, we show that
E<l.

Eo1= ( —2br sin(yh) sin(8h)
N +2arsin?(Bh/2))(1 + 2cr sin®(yh/2))
(1 —2arsin®(Bh/2))(1 — 2cr sin®(y h/2))
(14 2arsin®(Bh/2))(1 + 2cr sinz(yh/Z))>
—1
_ —4arsin*(Bh/2) — 4crsin(yh/2)
(14 2arsin®(Bh/2))(1 + 2cr sin®(yh/2))
2br sin(y h) sin(Bh)
(1 + 2ar sin®(Bh/2))(1 + 2¢r sin2(yh/2))

From the above lemma, we have

—2br sin(y h) sin(Bh) < 4ar sin®>(Bh/2) + 4cr sin?(yh/2).
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We then conclude that £ < 1. Next, we show that & +

1>0.
—2br sin(y h) sin(Bh)

(14 2arsin®(Bh/2))(1 + 2cr sin®(yh/2))

(1 — 2arsin®(Bh/2))(1 — 2crsin®(yh/2))

(1 + 2arsin®(Bh/2))(1 + 2crsin®(yh/2))

(1 + 2arsin®(Bh/2))(1 + 2crsin®(yh/2))

(1 + 2ar sin®(Bh/2))(1 + 2crsin®(yh/2))

Thus,

8acr?sin®(Bh/2) sin*(yh/2)
(1 4 2arsin®(Bh/2))(1 + 2cr sin®(yh/2))
2br sin(y h) sin(Bh) + 2
T (1 +2arsin?(Bh/2))(1 + 2¢r sin2(yh/2))
(1)

E+1=

In order to get £ + 1 > 0, we need to show that the nu-
merator of the above expression is positive, i.e.

8acr?sin®(Bh/2)sin*(yh/2)

— 2brsin(yh) sin(Bh) +2 > 0. (32)

Let us analyze the discriminant of this quadratic equa-
tion:

A = r*[b*sin*(Bh) sin*(y h)
— 16a*c* sin*(Bh/2) sin®(yh/2)].

Next, we use the relation 2 < ac, and get
A < r*(ac)*sin*(Bh)[sin*(yh) — 16sin*(yh/2)]

< 16r%(ac)? sin®(Bh/2) sin®(yh/2)

X (cosz(ﬂh/Z) cosz(yh/Z) — 1) <0.

This implies A <0, i.e. —1 <&.

We obtained that —1 < & < 1. Thereby, we showed that
the modulus of the amplification term is bounded by 1 inde-
pendently of r. Thus, we conclude that for the simple case of
constant coefficients, the semi-implicit approximation based
on Crank-Nicolson scheme is unconditionally stable.

We note that for the AOS scheme, one can find time-steps
and diffusion operators for which the scheme is unstable in
the linear case. The AOS method does remain stable for the

Beltrami flow in practice, with maximally stable time-steps
similar to those allowed by the LOD scheme.

4.2 LOD/AOS Scheme for the Beltrami-Based Denoising

The splitting scheme in the presence of a fidelity term re-
quires a slight modification that we detail below. In this case

we solve for each channel the equation

21
Uf = "= (U* —

FY + AU, 33
NG )+ A (33)

with von-Neumann boundary condition and the initial con-
dition
U (x,0) = F%(x). (34)

The Crank-Nicolson scheme approximating (33) is

(Ua)n+l
-1
A 1 20—
(-3 ps )
x [((1 + ﬁfi’h)(! + ﬁf%)
2 2

2
+ArY > AL

)(U“)” +2AtF*
q=1r#q

A
vl

It is possible to use LOD/AOS approximations for the in-
verse of the matrix in the above scheme. However, we would
like to treat the fidelity term in a special way. When the term
A/+/g" is large, we find that the scheme proposed below
possesses better stability properties.

We now describe the details for treating the fidelity term
for our Crank-Nicolson scheme. Dividing the numerator and
the denominator by the matrix

A
St =|1+2At— |1, 35
(1+22 ) =

and rearranging terms, we get

(Ua)n+1
At 2
- (1 — 7(5")—l ZAZ)
=1

ny—1 At An Ar AN

x | (8™ (I + 7A11><I + 7A22>
2

+ AtZZAg,>(U“)"

g=1r#q
A
Ver|

-1

+2(SH ' ArFe (36)
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Approximating the semi-implicit scheme based on the
LOD-splitting, we have

(Ua)n-H

1 o\ 1 o\
:(I—EAI(S”) 1A§2> (I—EAI(S”) 1A’1’1>

X |:(S”)_1 ((1 + ﬂA’ﬁ) <1 + ﬁfigz)
2 2

2
+ary Y Ag,) "

g=1r#q

+2(SH "' ArFe (37)

A
Ve |

While using the AOS splitting, the Crank-Nicolson
scheme reads

(Ua)n+l

1 — - o
= (1 —arsm ™' AYy) " (1= AT AL

X |:(S”)_1 ((1 + ﬂA’ﬁ) <1 + ﬁfigz)
2 2

2
+ArY > A;r) UH" + 28" At F® \/%}
q=1r#q

The above schemes are efficient since at each time step
we only need to perform a tridiagonal matrix inversion.

Below we provide a stability analysis for the linear case
when a fidelity term is present.

The equation we need to discretize is:

U = aUyy + 26Uy + cUyy + 24(f = U), (38)

with constants a, b, ¢ satisfying b2 <acand A > 0.

Denote Q = m.

The Crank-Nicolson scheme with LOD splitting for ap-
proximating (38) can be written as:

ot = (1—a® 00 ) (1-c205.)
=((1-eFom) (1-eFom) )
At At
X |:Q((I + Taaxx) <I + 768),y>

+ 2Atb8xy> U™+ 2mef}.

| — 2br sin(yh) sin(Bh) + (1 — 2ar sin? (B)) (1 — 2¢r sin®(4))|

Consider a solution of the difference scheme in the form
At N/ —1liph /—1jyh
Uy = MM eV 1iPhev=1ivh, (39)
where B and y are constant wave numbers.

For establishing stability, we use the definition of stability
in the Lax-Richtmeyer sense. Therefore we require

|e*2 | <1+ KA, (40)

where K is a constant.
Indeed if (40) is satisfied, it follows that

U™ < [e*™M] < (1 + K At)"

< eKnAt K TK

="t <e'

for all t, < T, which reveals the stability of the solution.

Lemma 2 The amplification factor for the LOD scheme sat-
isfies

A
oA | < 1+2--1 1AL (41)

Proof The required inequality is clear if [e*2!| < 1. We then
assume

[e*A] > 1. (42)

Replacing the relations (24), (25), (26) into our scheme
leads to

1§11 <
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(14 20 A1 4 2ar sin?(B2)) (1 + 20 A1 + 2¢r sin®(4))

M = £ +£At, (43)
where
£ = Q[—2br sin(y h) sin(Bh)
' (1= arQ(cos(Bh) — D)((1 — er Q(cos(yh) — 1))
(1 +ar(cos(Bh) — 1))(1 4+ cr(cos(yh) —1))]
(1 —arQ(cos(Bh) — D)((1 — cr Q(cos(yh) — 1))
(44)
and
fo = 1
' T+24r
8 20f
(1 —arQ(cos(Bh) — 1))((1 — cr Q(cos(yh) — H) U™
(45)
We first show that |£1| < 1. We have
(46)
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Using the computation of the amplification factor £ for
the scale space case (see (27)), we get

|E1l <161 <1, 47)
for all A > 0.
Next, we analyze the term &g.
_ 20Mf1/1U"
(1 4+ 2AAt + 2ar sin (5na+ 2AAt + 2cr sin (o))
(48)

Fig. 1 Top row, left: The
original image which contains
JPEG artifacts. Right: Results of
the LOD splitting scheme with
At =1, after 1 iteration. Middle
row, left and right: Results of
the LOD splitting scheme with
At =1, after 2 and 4 iterations,
respectively (8 = /103, =0).
Bottom row, left: a close-up of
the original image. Right:

a close-up of the resulting image
after 4 iterations

From assumption (42) we get |e®"2!| > 1 for all n, which
by means of (39), leads to |U"| > M. Moreover using Q =
m < 1 we get:

2
8ol = 5211 (49)

From (47) and (49) we obtain the needed inequal-
ity (41). O
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Fig. 2 The different image
channels of an image patch
taken from the images in Fig. 1.
Left to right, top to bottom: An
image patch before denoising,
its different color channels, the
denoised image, and the
denoised color channels. The
color arrows indicate the
direction of the gradient in the
various color channels

Fig. 3 Beltrami scale-space computed using the LOD splitting scheme. Top left: The original image. Top right: Results of the LOD splitting
scheme with At = 10—, after 20 iterations. Bortom left: Results after 40 iterations. Bottom right: Results after 80 iterations (8 = +/103, » = 0)

We thus conclude that also in the denoising case with
constant coefficients, the semi-implicit LOD approximation
based on the Crank-Nicolson scheme is unconditionally sta-
ble.

5 Experimental Results

We proceed to demonstrate experimentally the stability,
accuracy, and efficiency of the LOD and AOS splitting

@ Springer

schemes for the Beltrami color flow. In Figs. 1-3 we show
the results of the Beltrami flow, implemented by employ-
ing the LOD splitting scheme for approximating (5). This is
performed both for denoising purposes and for scale-space
analysis.

Next we illustrate the use of the splitting schemes in the
case where the functional involves a fidelity term. A noisy
image as well as the reference denoising result, based on the
explicit scheme, are shown in Fig. 4. In Fig. 5 we show the
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Fig. 4 Left: An image with artifacts resulting from lossy compression. Right: The reference image. Beltrami-based denoising by explicit scheme,
run with 4000 explicit iterations, At = 0.0005, A =1, B = +/5 x 10*

Fig. 5 Comparison of the images obtained using LOD and AOS schemes. Left: Denoising by LOD. Right: Denoising by AOS. (A =1, At =0.02,
B=+/5x10%)

Fig. 6 Left: An image after the
introduction of channel-wise
salt and pepper noise. Right:
The image after Beltrami-based
denoising, using 100 LOD
iterations, At = 0.5, A = 1072,

B=+2x10*

result of the AOS and LOD splitting schemes. Note that the  strongly from what is expected by the Lambertian image for-
visual results obtained by the two schemes are similar to the =~ mation model.

reference image. The effectiveness of the denoising effect This can be seen, for example, on decorrelated salt and
is particularly pronounced where the noisy image deviates  pepper noise, as demonstrated in Fig. 6. For the purpose of
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Fig.7 Left: Graph of the residuals (explicit, LOD, explicit + RRE and
LOD + RRE) versus CPU times. Parameters: Ar = 0.2 for the explicit
scheme, Ar =3 for LOD, . =0.5, 8 =+/3 x 103. Right: Comparison

Fig. 6, a robust fidelity term was added, along the lines sug-
gested in [3]. Specifically, the descent equation was

A (U9 — F9)
(U” _ F“)2 +€

AU, (50)

where A controls the regularization as before, and € is a
small constant, taken to be 10~3 in our case.

5.1 RRE Technique for Acceleration of the LOD Splitting
Scheme

In [7] vector extrapolation was applied in order to speed up
the slow convergence of the explicit schemes for the Bel-
trami color flow. In the experiments below we demonstrate
how the RRE extrapolation technique can also be used to
accelerate the convergence of implicit schemes. Figure 7(a)
shows that the RRE method accelerates the LOD scheme.
A comparison is also given to the convergence rate achieved
by the method of [7].

In Fig. 7(b) the accuracy of the LOD based scheme,
as well as the LOD based scheme combined with RRE is
considered with respect to different time steps, in order to
observe the rate of acceleration of the RRE extrapolation
scheme. The reference image for the computation of the
MSE error of the schemes is the image obtained by the ex-
plicit scheme with a small time-step. Figure 7(a) indicates
how the RRE extrapolation scheme leads to a better ac-
celeration rate when using a relative small time step. The
time-steps used are considerably larger than the time steps
needed for maintaining the stability of the explicit scheme
(the largest possible time step preserving numerical stabil-
ity for this example was At = 0.2). Even for these relatively

@ Springer

of CPU times for LOD and accelerated LOD (for the denoising case).
CPU time versus error norm. Time steps: At = 0.34, 0.42, 0.52, 0.66,
0.82,1.02,1.28,1.6.,A=0.1, B =3 x 103

large time steps, however, the RRE method results in a sig-
nificant speedup without compromising the accuracy of the
scheme.

5.2 Beltrami Deblurring of Images Using Splitting
Schemes

Another common usage for nonlinear regularization is in de-
blurring images. The Euler-Lagrange equations characteriz-
ing the deblurring of an image blurred using a convolution
kernel k is

Uf:AgU“—zz/E*(k*Ua—Ug). (51)
a

In the deblurring case, we split the operator k % k operat-
ing on U? by taking the center element of its influence on
the image at time (n + %)At, and using an inverted matrix
S” similar to the one described in (35). Here we make the
assumption that the deblurring operator’s energy is largely
centered around the middle pixel. While this leaves an ex-
plicit part of the kernel which may limit the time steps used,
in the experiments made by us this limitation surfaced at
step sizes at which operator accuracy was already a limiting
factor. These time steps are furthermore significantly larger
than the ones possible with the explicit deblurring scheme.
In Fig. 8 we show Beltrami-regularized deblurring, for both
Gaussian blur and (location independent) motion blur de-
blurring.

6 Conclusions

Due to its anisotropy and non-separability, no implicit
scheme, nor operator splitting based scheme was so far
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Fig. 8 Left-to-right,
top-to-bottom: (ab) An image
blurred by Gaussian filter with
standard deviation o = 3,

(b) the same image after
deblurring using LOD-based
Beltrami deblurring, (¢) an
image blurred by a narrow
Gaussian filter similar to motion
blur, (d) the same image after
deblurring. Parameters:

At =0.05, scheme,

— 4 _ 1
h=5x10% B =l

introduced for the partial differential equations that de-
scribe the Beltrami color flow. In this paper we propose a
semi-implicit splitting scheme based on LOD/AOS for the
anisotropic Beltrami operator. The spatial mixed derivatives
are discretized explicitly at time step nAt¢, while the non-
mixed derivatives are approximated using the average of the
two time levels n At and (n + 1) At.

We provide a von-Neumann stability analysis of the
LOD-based scheme, which is valid in the simple case where
the coefficients of the equation are constants. In the more
general nonlinear case, the stability of the splitting is empir-
ically tested in applications such as Beltrami-based scale-
space and Beltrami-based denoising, which display a sta-
ble behavior. In order to further accelerate the convergence
of the splitting schemes, the RRE vector extrapolation tech-
nique is employed.
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