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Abstract. The Beltrami image flow is an effective nonlinear filter, often used in color image processing. It was
shown to be closely related to the median, total variation, and bilateral filters. It treats the image
as a two-dimensional manifold embedded in a hybrid spatial-feature space. Minimization of the
image surface area yields the Beltrami flow. The corresponding diffusion operator is anisotropic and
strongly couples the spectral components. Thus, there is so far no implicit or operator–splitting-
based numerical scheme for the partial differential equation that describes the Beltrami flow in color.
Usually, this flow is implemented by explicit schemes, which are stable only for very small time steps
and therefore require many iterations. At the other end, vector extrapolation techniques accelerate
the convergence of vector sequences, without explicit knowledge of the sequence generator. In this
paper, we propose using vector extrapolation techniques for accelerating the convergence of the
explicit schemes for the Beltrami flow. Experiments demonstrate fast convergence and efficiency
compared to explicit schemes.
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1. Introduction. The Beltrami framework, introduced in [38, 39, 44], is based on a nonlin-
ear flow that was applied as an edge preserving denoising and deblurring algorithm for signals
and especially multichannel images; see, for example, [3]. Unlike related nonlinear filters such
as the total variation (TV) filter [23, 1, 8], which can be computed efficiently using semi-
implicit schemes [43], the Beltrami flow is usually implemented by an explicit finite-difference
approximation of the characterizing partial differential equation (PDE). Standard explicit
finite-difference schemes require small time steps for stability that lead to a large number of
iterations required for convergence to the desired solution. So far, there is no implicit scheme
for the Beltrami flow, due to the strong coupling of the color components and its anisotropic
nature. Our goal is to accelerate the slow convergence of the explicit schemes, for which we
propose employing vector extrapolation techniques.

As an alternative to the explicit scheme, an approximation using the short time kernel for
the Beltrami operator was suggested in [40]. This method is still computationally demanding,
since computing the kernel operation involves geodesic distance computation around each
pixel. A semi-implicit scheme has been devised in [11] for an approximation of the Beltrami
flow. This approximation is not, however, consistent with the PDE characterizing the Beltrami
flow. Rather, it discretizes a slightly different PDE. The Beltrami flow is also strongly linked
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to similar diffusion processes defined on nonflat manifolds [41], and formulations of it were
solved on manifolds as well as images [40, 36].

Strongly related to the Beltrami operator, the bilateral operator was studied in different
contexts (see, for example, [35, 42, 37, 14, 4]) and can be shown to be an approximation of
the Beltrami kernel. This filter has since been extended to the the nonlocal means filter [6].

In this paper, we propose applying vector extrapolation methods to accelerate the conver-
gence rate of standard explicit schemes for the Beltrami flow in color. Specifically, we use the
minimal polynomial extrapolation (MPE) method of Cabay and Jackson [7] and the reduced
rank extrapolation (RRE) method of Mes̆ina and Eddy [20, 13]. Because both MPE and RRE
take as their input only a vector sequence obtained from a fixed-point iterative procedure,
they can be applied not only to linearly generated sequences, but also to nonlinear ones. This
allows us to employ them for accelerating the convergence of the vector sequences generated
by the explicit finite-difference schemes for the Beltrami geometric flow. This approach for
efficient Beltrami filtering was introduced in [10], and we elaborate upon it in this paper,
further detailing the theory and practice of vector extrapolation methods. We demonstrate
the efficiency and accuracy of MPE and RRE in color image processing applications, such as
scale-space analysis, denoising, and deblurring.

This paper is organized as follows: Section 2 gives a brief summary of the Beltrami frame-
work. In section 3, we review approximations based on standard explicit finite-difference
schemes. In section 4, we present a detailed review of the MPE and RRE methods, which
were discussed only briefly before in the context of image processing [10]. This review includes
the derivation of the methods, computationally efficient and stable algorithms for their imple-
mentation, their known convergence theory, and a mode of application known as cycling. In
section 5, we apply RRE to our Beltrami color flow and demonstrate the resulting speedup.
Section 6 concludes the paper.

2. The Beltrami framework. Let us briefly review the Beltrami framework for nonlin-
ear diffusion in computer vision [18, 38, 39, 44]. For a more complete introduction to the
Riemannian geometry tools used, henceforth, we refer the reader to [12].

We represent images as embedding maps of Riemannian manifolds in a higher dimensional
space. Denote such a map by X : Σ → M , where Σ is a two-dimensional (2D) surface, with
(σ1, σ2) denoting coordinates on it. We denote by M the spatial-feature manifold, embedded
in Rd+2, where d is the number of image channels. For example, a gray-level image can
be represented as a 2D surface embedded in R3. The map X in this case is X(σ1, σ2) =
(σ1, σ2, I(σ1, σ2)), where I is the image intensity. For color images, X is given by X(σ1, σ2) =
(σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)), where I1, I2, I3 are the three components of the color
vector (for example, red, green, blue for the RGB color space).

Next, we choose a Riemannian metric on this surface. Its components are denoted by gij .
The canonical choice of coordinates in image processing is Cartesian (we denote them here by
x1 and x2). For such a choice, which we follow for the rest of the paper, we identify σ1 = x1

and σ2 = x2. In this case, σ1 and σ2 are the image coordinates. We denote the elements
of the inverse of the metric by superscripts gij and the determinant by g = det(gij). Once
images are defined as embeddings of Riemannian manifolds, it is natural to look for a measure
on this space of embeddings.
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Denote by (Σ, g) the image manifold and its metric and by (M,h) the space-feature man-
ifold and its metric. Then, the functional S[X] attaches a real number to a map X : Σ→ M ,

(2.1) S[X, gij , hab] =
∫

dmσ
√

g||dX||2g,h,

where m is the dimension of Σ, g is the determinant of the image metric, and the range
of indices is i, j = 1, 2, . . . ,dim(Σ) and a, b = 1, 2, . . . ,dim(M). The integrand ||dX ||2g,h is
expressed in a local coordinate system, by ||dX||2g,h = (∂xiI

a)gij(∂xjI
b)hab. Here we have

used Einstein summation convention: Identical indices that appear up and down are summed
over. This functional, for dim(Σ) = 2 and hab = δab, was first proposed by Polyakov [22] in
the context of high energy physics, in the theory known as string theory.

The elements of the induced metric for color images with Cartesian color coordinates are

G = (gij) =

(
1 + β2 ∑3

a=1(I
a
x1

)2 β2 ∑3
a=1 Ia

x1
Ia
x2

β2 ∑3
a=1 Ia

x1
Ia
x2

1 + β2 ∑3
a=1(I

a
x2

)2

)

,

where a subscript of I denotes a partial derivative and the parameter β > 0 determines
the ratio between the spatial and spectral (color) distances. Using standard methods in
the calculus of variations, the Euler–Lagrange equations minimizing S with respect to the
embedding (assuming Euclidean embedding space) are

0 = − 1
√

g
hab δS

δIb
=

1
√

g
div (D∇Ia)

︸ ︷︷ ︸
∆gIa

,(2.2)

where the matrix D = √
gG−1. See [38] for explicit derivation. The operator that acts on Ia

is the natural generalization of the Laplacian from flat spaces to manifolds; it is called the
Laplace-Beltrami operator and is denoted by ∆g.

The parameter β, in the elements of the metric gij , determines the nature of the flow. At
the limits, where β → 0 and β → ∞, we obtain, respectively, a linear diffusion flow and a
nonlinear flow, akin to the TV flow for the case of gray-level images (see [39] for details).

The Beltrami scale-space emerges as a gradient descent minimization process

(2.3) Ia
t = − 1

√
g

δS

δIa
= ∆gI

a,

with reflective boundary conditions and a smooth initial solution Ia|t=0 = Ia
0 . For Euclidean

embedding, the functional in (2.1) reduces to

S(X) =
∫

√
g dx1 dx2,

where

g = det(gij) = 1 + β2
3∑

a=1

|∇Ia|2 +
1
2
β4

3∑

a,b=1

|∇Ia ×∇Ib|2.(2.4)
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The role of the cross product term
∑3

a,b=1 |∇Ia×∇Ib|2 in the minimization was explored in
[18]. It enforces the Lambertian model of image formation by penalizing misalignments of the
gradient directions in the various color channels. Accordingly, taking large values of β makes
sense as we would expect

∑3
a,b=1 |∇Ia ×∇Ib|2 to vanish in natural images and

∑3
a=1 |∇Ia|2

to be small.
The geometric functional S can be used as a regularization term for color image processing.

In the variational framework, the reconstructed image is the minimizer of a cost functional.
Functionals using the Beltrami flow for regularization can be written in the general form

Ψ =
α

2

3∑

a=1

||KIa − Ia
0 ||2 + S(X),

where K is a bounded linear operator. In the denoising case, K is the identity operator
Ku = u, and in the deblurring case, Ku = k ∗ u, k is the blurring kernel (often assumed
to be Gaussian), and k̄(x, y) = k(−x,−y). The parameter α controls the smoothness of the
solution.

The modified Euler–Lagrange equations as a gradient descent process for each case are
(i) for denoising,

(2.5) Ia
t = − 1

√
g

δΨ
δIa

= − α
√

g
(Ia − Ia

0 ) + ∆gI
a,

(ii) for deblurring,

Ia
t = − 1

√
g

δΨ
δIa

= − α
√

g
k̄ ∗ (k ∗ Ia − Ia

0 ) + ∆gI
a.(2.6)

The Laplace–Beltrami operator in (2.5) and (2.6) provides us with an adaptive smoothing
mechanism. In areas with large gradients (edges), the fidelity term is suppressed and the
regularizing term becomes dominant. At homogenous regions with low-gradient magnitude,
the fidelity term takes over and controls the flow.

3. Standard explicit finite-difference scheme. Our goal is to speed up the convergence
of the explicit scheme in Beltrami color processing. In this section, we detail the standard
explicit scheme. The applications we address are the Beltrami-based smoothing, Beltrami-
based denoising, and Beltrami-based deblurring.

We work on a rectangular grid with step sizes ∆t in time and ∆x in space. The spatial
units are normalized such that ∆x = 1. For each channel Ia, a ∈ {1, 2, 3}, we define the
discrete approximation (Ia)nij by

(Ia)nij ≈ Ia(i∆x, j∆x, n∆t).

On the boundary of the image we impose the Neumann boundary condition.
The explicit finite-difference scheme is written in a general form as

(3.1) (Ia)n+1
ij = (Ia)nij +∆tOn

ij(I
a),

where On
ij is the discretization of the right-hand side of the relevant continuous equation (2.3),

(2.5), or (2.6). Below, we give the exact form of the operator On
ij for each of the above cases.
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• Beltrami-based smoothing.
The explicit scheme (3.1) for discretizing (2.3) takes the form

(3.2) (Ia)n+1
ij = (Ia)nij +∆tLn

ij(I
a),

where Ln
ij(Ua) denotes a discretization of the Laplace–Beltrami operator ∆gUa, for

example, using a backward-forward approximation.
• Beltrami-based denoising.

The explicit scheme (3.1) is given in this case by

(Ia)n+1
ij = (Ia)nij +∆t

(
Ln

ij(I
a) +

α
√

g
((Ia

0 )nij − (Ia)nij)
)

.(3.3)

• Beltrami-based deblurring. Similarly, in the deblurring case, the explicit scheme (3.1)
reads as

(Ia)n+1
ij = (Ia)nij +∆t

(
Ln

ij(I
a) +

α
√

g
k̄n

ij ∗
(
(Ia

0 )nij − kn
ij ∗ (Ia)nij

))
.(3.4)

Due to stability requirements (see [9, 17]), explicit schemes limit the time step ∆t and
usually require a large number of iterations in order to converge. We propose using vector
extrapolation techniques in order to accelerate the convergence of these explicit schemes.

4. MPE/RRE acceleration techniques. The MPE [7] and the RRE [20, 13] are two vector
extrapolation methods that have proved to be very efficient in accelerating the convergence
of vector sequences arising from fixed-point iteration schemes for nonlinear, as well as linear,
large and sparse systems of equations. For a review of these methods and others, covering the
relevant developments until the mid 1980s, see [34]. The brief review we present here covers
the various developments that have taken place since the publication of [34].

Both methods are derived by considering vector sequences x0,x1, . . . , generated via a
linear fixed-point iteration process, namely,

(4.1) xn+1 = Axn + b, n = 0, 1, . . . ,

where A is a fixed N × N matrix, b is a fixed N -dimensional vector, and x0 is an initial
vector chosen by the user. Clearly, this sequence has a limit s that is the unique solution to
the linear system

(4.2) x = Ax + b,

provided ρ(A) < 1, where ρ(A) is the spectral radius of A. (Note that the system in (4.2)
can also be written as (I − A)x = b, and the uniqueness of the solution s follows from our
assumption that ρ(A) < 1, which guarantees that the matrix I − A is nonsingular since 1 is
not an eigenvalue of A.)

We now turn to simple derivations of MPE and RRE, which are based on those given
in [34]. Other derivations, based on the Shanks–Schmidt transformation [26, 25], have been
given in [30]. For a detailed treatment of this transformation, see [29, Chapter 16].
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Given the sequence x0,x1, . . . , generated as in (4.1), let

un = ∆xn = xn+1 − xn, n = 0, 1, . . . ,

and define the error vectors εn as in

(4.3) εn = xn − s, n = 0, 1, . . . .

Also making use of the fact that s = As + b, one can relate the error in step n to the initial
error via

(4.4) εn = (Axn−1 + b) − (As + b) = A(xn−1 − s) = Aεn−1,

which, by induction, gives

(4.5) εn = Anε0, n = 0, 1, . . . .

We now seek to approximate s by a “weighted average” of k + 1 consecutive xi’s as in

(4.6) sn,k =
k∑

i=0

γixn+i,
k∑

i=0

γi = 1.

Substituting (4.3) in (4.6), and making use of the fact that
∑k

i=0 γi = 1, we obtain

(4.7) sn,k =
k∑

i=0

γi(s + εn+i) = s +
k∑

i=0

γiεn+i

which, by (4.5), becomes

(4.8) sn,k = s +
k∑

i=0

γiAn+iε0.

From this expression, it is clear that we must choose the scalars γi to make the vector∑k
i=0 γiAn+iε0, the weighted sum of the error vectors εn+i, i = 0, 1, . . . , k, as small as pos-

sible. As we show next, we can actually make this vector vanish by choosing k and the γi

appropriately.
Now, given a nonzero N × N matrix B and an arbitrary nonzero N -dimensional vector

u, it is known that there exists a unique monic polynomial P (z) of smallest degree (which is
at most N) that annihilates the vector u, that is, P (B)u = 0. This polynomial is called the
minimal polynomial of B with respect to the vector u. It is also known that P (z) divides the
minimal polynomial of B, which divides the characteristic polynomial of B. Consequently,
the zeros of P (z) are some or all the eigenvalues of B.

Thus, if the minimal polynomial of A with respect to εn is

P (z) =
k∑

i=0

ciz
i, ck = 1,
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then
P (A)εn = 0.

By (4.5), this means that

(4.9)
k∑

i=0

ciAiεn =
k∑

i=0

ciεn+i = 0.

This is a set of N linear equations in the k unknowns c0, c1, . . . , ck−1, with ck = 1. In addition,
these equations are consistent and have a unique solution because P (z) is unique. From these
equations, it seems, however, that we need to know the vector εn = xn − s; hence the solution
s. Fortunately, this is not the case, and we can obtain the ci solely from our knowledge of the
vectors xi. This is done as follows: Multiplying (4.9) by A and recalling (4.4), we have

0 =
k∑

i=0

ciAεn+i =
k∑

i=0

ciεn+i+1.

Subtracting (4.9) from this, we obtain

0 =
k∑

i=0

ci(εn+i+1 − εn+i) =
k∑

i=0

ci(xn+i+1 − xn+i);

hence the linear system

(4.10)
k∑

i=0

ciun+i = 0.

Once c0, c1, . . . , ck−1 have been determined from this linear system, we set ck = 1 and let
γi = ci/

∑k
j=0 cj , i = 0, 1, . . . , k. This is allowed because

∑k
j=0 cj = P (1) *= 0 by the fact that

I − A is not singular and hence A does not have 1 as an eigenvalue. Summing up, we have
shown that if k is the degree of the minimal polynomial of A with respect to εn, then there
exist scalars γ0, γ1, . . . , γk, satisfying

∑k
i=0 γi = 1, such that

∑k
i=0 γixn+i = s.

At this point, we note that s is the solution to (I − A)x = b, whether ρ(A) < 1 or not.
Thus, with the γi as determined above, s =

∑k
i=0 γixn+i, whether limn→∞ xn exists or not.

In what follows, we shall use the notation

(4.11) U(j)
s = [uj |uj+1 | · · · |uj+s ].

Thus, U(j)
s is an N × (s + 1) matrix. In this notation, (4.9) reads as

(4.12) U(n)
k c = 0, c = [c0, c1, . . . , ck]T.

Of course, dividing (4.12) by
∑k

i=0 ci, we also have

(4.13) U(n)
k γ = 0, γ = [γ0, γ1, . . . , γk]T.
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4.1. Derivation of MPE. As we already know, the degree of the minimal polynomial of
A with respect to εn can be as large as N . This makes the process we have just described
a prohibitively expensive one, since we have to save all the vectors xn+i, i = 0, 1, . . . , k + 1,
which is a problem when N is very large. In addition, we also do not have a way to know
this degree. Given these facts, we modify the approach we have just described as follows: We
choose k to be an arbitrary positive integer that is normally (much) smaller than the degree
of the minimal polynomial of A with respect to εn. With this k, the linear system in (4.10)
is not consistent and hence does not have a solution for c0, c1, . . . , ck−1, with ck = 1, in the
ordinary sense. Therefore, we solve this system in the least squares sense. Following that, we
compute γ0, γ1, . . . , γk precisely as described following (4.10), and then compute the vector
sn,k =

∑k
i=0 γixn+i as our approximation to s. The resulting method is known as the minimal

polynomial extrapolation (MPE) method. Clearly, MPE takes as its input only the integers k
and n and the vectors xn,xn+1, . . . ,xn+k+1 and hence can be employed whether these vectors
are generated by a linear or nonlinear iterative process.

We can summarize the definition of MPE through the following steps:
1. Choose the integers k and n, and input the vectors xn,xn+1, . . . ,xn+k+1.

2. Form the N × k matrix U(n)
k .

3. Solve the overdetermined linear system U(n)
k−1c

′ = −un+k by least squares. Here c′ =
[c0, c1, . . . , ck−1]T. Set ck = 1, and γi = ci/

∑k
i=0 ci, i = 0, 1, . . . , k.

4. Compute the vector sn,k =
∑k

i=0 γixn+i as approximation to limi→∞ xi = s.

4.2. Derivation of RRE. Again, we choose k to be an arbitrary positive integer that is
normally (much) smaller than the degree of the minimal polynomial of A with respect to
εn. With this k, the linear system in (4.13) is not consistent and hence does not have a
solution for γ0, γ1, . . . , γk in the ordinary sense. Therefore, we solve this system in the least
squares sense, subject to the constraint

∑k
i=0 γi = 1. Following that, we compute the vector

sn,k =
∑k

i=0 γixn+i as our approximation to s. The resulting method is known as the reduced
rank extrapolation (RRE) method. Clearly, RRE, just as MPE, takes as its input only the
integers k and n and the vectors xn,xn+1, . . . ,xn+k+1 and hence can be employed whether
these vectors are generated by a linear or nonlinear iterative process.

We can summarize the definition of RRE through the following steps:
1. Choose the integers k and n, and input the vectors xn,xn+1, . . . ,xn+k+1.

2. Form the N × k matrix U(n)
k .

3. Form the N×(k+1) matrix U(n)
k , and solve the overdetermined linear system U(n)

k γ =
0 by least squares, subject to the constraint

∑k
i=0 γi = 1. Here γ = [γ0, γ1, . . . , γk]T.

4. Compute the vector sn,k =
∑k

i=0 γixn+i as approximation to limi→∞ xi = s.

4.3. Treatment of nonlinear equations. We now turn to the treatment of nonlinear
equations, such as those based on the Beltrami framework, by vector extrapolation methods.
Assume that the system of nonlinear equations in question has been written in the (possibly
preconditioned) form

(4.14) x = F(x),
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where F(x) is an N -dimensional vector-valued function and x is the N -dimensional vector of
unknowns, such as the column-stacked vector form of the discretized image. Let the sequence
of approximations xn to the solution s be generated via

(4.15) xn+1 = F(xn), n = 0, 1, . . . ,

and assume that this sequence converges to the solution vector s. In our case, F is the right-
hand side of the explicit discretization equation for the Beltrami color flow (given in a general
form in 3.1):

F((Ia)ij) = (Ia)ij +∆tOn
ij(I

a).

For x close to s, F(x) can be expanded in a Taylor series in the form

F(x) = F(s) + F′(s)(x − s) + O(‖x − s‖2) as x → s.

Here F′(x) is the Jacobian matrix of the vector-valued function F(x). Recalling also that
F(s) = s, this expansion can be put in the form

F(x) = s + F′(s)(x − s) + O(‖x − s‖2) as x → s.

By the assumption that the sequence x0,x1, . . . converges to s (which takes place provided
ρ(F′(s)) < 1), it follows that xn is close to s for all large n, and hence

xn+1 = s + F′(s)(xn − s) + O(‖xn − s‖2) as n → ∞.

Rewriting this in the form

xn+1 − s = F′(s)(xn − s) + O(‖xn − s‖2) as n → ∞,

we realize that, for all large n, the vectors xn behave as if they were generated by a linear
system of the form (I − A)x = b via

(4.16) xn+1 = Axn + b, n = 0, 1, . . . ,

where A = F′(s) and b = [I−F′(s)]s. This suggests that the extrapolation methods MPE and
RRE (which were designed by considering vector sequences generated by a linear fixed-point
iterative process as in (4.1)) can be applied to sequences of vectors obtained from nonlinear
fixed-point iterative methods. Indeed, methods such as MPE and RRE have been applied with
success to the numerical solution of large and sparse nonlinear systems of equations arising in
various areas of science and engineering, such as computational fluid dynamics, semiconductor
research, and computerized tomography.

4.4. Efficient implementation of MPE and RRE. In subsections 4.1 and 4.2, we gave
the definitions of MPE and RRE. These definitions actually form the basis for the implemen-
tations of MPE and RRE that have been presented in [28]. An important feature of these
implementations is that they determine sn,k with minimal computation time and storage re-
quirements. The implementations we give in what follows were developed in [28], where a
FORTRAN 77 code is also included.
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In these implementations, the least squares problems are solved by using QR factorizations
of the matrices U(n)

k , as in
U(n)

k = QkRk.

Here Qk is an N × (k + 1) unitary matrix satisfying Q∗
kQk = I(k+1)×(k+1). Thus, Qk has the

columnwise partition

(4.17) Qk = [q0 |q1 | · · · |qk ],

such that the columns qi form an orthonormal set of N -dimensional vectors, that is, q∗
i qj =

δij . The matrix Rk is a (k + 1) × (k + 1) upper triangular matrix with positive diagonal
elements. Thus,

(4.18) Rk =





r00 r01 · · · r0k

r11 · · · r1k
. . . ...

rkk



; rii > 0, i = 0, 1, . . . , k.

This factorization can be carried out easily and accurately using the modified Gram–Schmidt
(MGS) orthogonalization process. See, for example, [16] and [28]. For completeness, we give
here the steps of MGS as applied to the matrix U(n)

k :
1. Compute r00 = ‖un‖ and q0 = un/r00.
2. For i = 1, . . . , k do

Set u(0)
i = un+i

For j = 0, . . . , i − 1 do
rjk = q∗

ju
(j)
i and u(j+1)

i = u(j)
i − rjkqj

end
Compute rii = ‖u(i)

i ‖ and qi = u(i)
i /rii.

end
Here, ‖x‖ =

√
x∗x. In addition, the vector u(j+1)

i overwrites u(j)
i so that the vectors un+i,

u(j)
i , and qi all occupy the same storage location.

Note that Qk is obtained from Qk−1 by appending to the latter the vector qk as the
(k + 1)th column. Similarly, Rk is obtained from Rk−1 by appending to the latter the 0
vector as the (k + 1)th row and then the vector [r0k, r1k, . . . , rkk]T as the (k + 1)th column.

An important point we wish to emphasize is that, when forming the matrix U(n)
k , we

overwrite the vector xn+i with un+i = ∆xn+i as soon as the latter is computed, for i =
1, . . . , k. We save only xn. Next, when computing the matrix Qk, we overwrite un+i with
qi, i = 0, 1, . . . , k. This means that, at all stages of the computation of Qk and Rk, we are
keeping only k + 2 vectors in memory. The vectors xn+1, . . . ,xn+k+1 need not be saved.

With the QR factorization of U(n)
k (hence of U(n)

k−1) available we can give algorithms for
MPE and RRE within a unified framework as follows:

Algorithms for MPE and RRE.
1. Input: k and n and the vectors xn,xn+1, . . . ,xn+k+1.
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2. Compute the vectors un+i = ∆xn+i, i = 0, 1, . . . , k, and form the N × (k + 1) matrix

U(n)
k = [un |un+1 | · · · |un+k ]

and its QR factorization, namely, U(n)
k = QkRk, with Qk and Rk as in (4.17) and

(4.18).
3. Determination of the γi:

• For MPE:
With ρk = [r0k, r1k, . . . , rk−1,k]T, solve the k × k upper triangular system

Rk−1c′ = −ρk; c′ = [c0, c1, . . . , ck−1]T.

Set ck = 1, and γi = ci/
∑k

i=0 ci, i = 0, 1, . . . , k.
• For RRE:

With e = [1, 1, . . . , 1]T, solve the (k + 1) × (k + 1) linear system

R∗
kRkd = e; d = [d0, d1, . . . , dk]T.

This amounts to solving two triangular systems: first R∗
ka = e for a and, following

that, Rkd = a for d. Next, compute λ = 1/
∑k

i=0 di; λ is always positive (it
becomes zero only when sn,k = s in the linear case).
Next, set γ = λd, that is, γi = λdi, i = 0, 1, . . . , k.

4. With the γi computed, compute ξ = [ξ0, ξ1, . . . , ξk−1]T via

ξ0 = 1 − γ0; ξj = ξj−1 − γj, j = 1, . . . , k − 1.

5. Compute
η = [η0, η1, . . . , ηk−1]T = Rk−1ξ.

Then compute

sn,k = xn + Qk−1η = xn +
k−1∑

i=0

ηiqi.

4.5. Residual estimation. One common way of assessing the quality of the approximation
sn,k is by looking at the residual vector r(sn,k) associated with it. When the xm are generated
by the iterative process xm+1 = F(xm), we have r(x) = F(x) − x, and

r(sn,k) = U(n)
k γ if F(x) is linear [F(x) = Ax + b],

r(sn,k) ≈ U(n)
k γ if F(x) is nonlinear.

Therefore,

‖r(sn,k)‖ = ‖U(n)
k γ‖ if F(x) is linear,

‖r(sn,k)‖ ≈ ‖U(n)
k γ‖ if F(x) is nonlinear.
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In addition, no matter how the xm are generated, ‖U(n)
k γ‖ can be computed without having

to compute sn,k and F(sn,k) explicitly, and at no cost, via

‖U(n)
k γ‖ =

{
rkk|γk| for MPE,√
λ for RRE.

Here, rkk is the last diagonal element of the matrix Rk, and λ is the parameter computed in
step 3 of the algorithms in the preceding subsection. For details, see [28].

4.6. Cycling with MPE and RRE. The convergence acceleration properties of MPE and
RRE have been studied in [27, 30, 32, 34, 35] as these methods are applied to a linearly
generated vector sequence {xm}. When the matrix A in F(x) = Ax+b is diagonalizable, then
the xm are necessarily of the form xm = s +

∑p
i=1 viλm

i , where (λi,vi) are some or all of the
eigenpairs of A, with distinct nonzero eigenvalues. With λi ordered as |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ,
the following important asymptotic performance is achieved by both MPE and RRE when
|λk| > |λk+1|:

sn,k − s = O(λn
k+1) as n → ∞.

(This clearly shows that the sequence {sn,k}∞n=0 converges to s faster than the sequence {xm}.)
It can be shown that the same also holds for RRE when |λk| = |λk+1|.

This means that for large n, the fixed-point iterations reduce the contributions of the
smaller λi to the error sn,k − s, while MPE and RRE reduce the contributions of the k largest
λi, that is, of λ1, . . . , λk. The end result is, of course, that sn,k − s is smaller than each of
xn+i − s, i = 0, 1, . . . , k, when n is large.

Obviously, there is no way of letting n go to infinity in practice. It also follows from the
asymptotic results just mentioned that increasing k generally makes MPE and RRE converge
faster. However, we have no way of increasing k indefinitely either, because this would increase
the storage requirements and also increase the computational cost tremendously.

In case we are solving the system x = F(x) and the vectors xi are generated via the
fixed-point iterative procedure xn+1 = F(xn), we can employ a mode of application called
cycling or restarting in which n and k are held fixed. Here are the steps of this mode.

C0. Choose integers n, k, and an initial vector x0.
C1. Compute the vectors xi, 1 ≤ i ≤ n + k + 1 (via xn+1 = F(xn)), and save xn+i,

0 ≤ i ≤ k + 1.
C2. Apply MPE or RRE to the vectors xn+i, 0 ≤ i ≤ k + 1, precisely as described in

subsection (4.4), with end result sn,k.
C3. If sn,k satisfies accuracy test, stop.

Otherwise, set x0 = sn,k, and go to Step C1.
We will call each application of steps C1–C3 a cycle. We will also denote the sn,k that is

computed in the ith cycle s(i)
n,k.

A discussion of the error in this mode of usage—in the case of linear F(x), i.e., when
F(x) = Ax + b—is given in [31] and [32]. The relevant errors can be shown to have upper
bounds that are expressible in terms of Jacobi polynomials for certain types of spectra of the
matrix A, and these bounds turn out to be quite tight. They also indicate that, with even
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moderate n, s(i)
n,k can closely approximate the solution s with small k, resulting in small storage

requirements and few iterations. Another advantage of applying MPE and RRE in this mode
(that is, with n > 0) is that it prevents stagnation in the cases where methods such as the
generalized minimal residuals (GMRES) stagnate. (See the numerical examples in [31, 32].)
Numerical experiments confirm that this is indeed the case. Furthermore, this is the case for
nonlinear systems of equations as well, even though the analysis of [31, 32] does not apply to
this case in a straightforward manner.

The analysis of MPE and RRE as these are applied to nonlinear systems in the cycling
mode has been considered in the works [33, 34]. What can be said heuristically is that, when
k in the ith cycle is chosen to be ki, the degree of the minimal polynomial of the matrix F′(s)
with respect to ε0 = x0 − s, the sequence {s(i)

n,ki
}∞i=0 converges to s quadratically. However,

we must add that, since the ki can be as large as N and are not known exactly, this usage of
cycling is not useful practically for the large-scale problems we are interested in solving. In
other words, trying to achieve quadratic convergence from MPE and RRE via cycling may not
be realistic. With even moderate values of n and k, we may achieve linear but fast convergence
nevertheless. This turns out to be the case even when xn is far from the solution s.

4.7. Connection with Krylov subspace methods. When applied to linearly generated
sequences, MPE and RRE are very closely related to the method of Arnoldi [2] and to GMRES
[24], two well-known Krylov subspace methods. The following result is stated in [27].

Theorem 1. Consider the linear system (I−A)x = b. With x0 as the initial vector, let the
vector sequence {xn} be generated via xn+1 = Axn + b, and let sMPE

0,k and sRRE
0,k be obtained

from this sequence by applying, respectively, MPE and RRE. Also let the vectors sArnoldi
k and

sGMRES
k be the vectors obtained by applying, respectively, k steps of the method of Arnoldi

and GMRES to (I − A)x = b, with x0 as the starting vector. Then sMPE
0,k = sArnoldi

k and
sRRE
0,k = sGMRES

k .
We also recall that the method of Arnoldi becomes the method of conjugate gradients

when A is a Hermitian matrix.
It must be noted that the equivalence of MPE and RRE to the method of Arnoldi and

to GMRES is mathematical and not algorithmic. The algorithms (computational procedures)
are different.

Note. Another method which exploits previous descent directions in order to efficiently
minimize a cost function is the sequential subspace optimization (SESOP) [15] method. Also
aimed at solving nonlinear problems, this method extends the nonlinear conjugate gradients
method [21] and can be highly efficient for problems of a certain sparse structure. While this
method can be applied to the discretization of the functional S(X), along with additional
terms, using SESOP in this context raises several questions. First, S(X) is relatively costly
to compute and cannot be expressed in a relatively sparse manner as is often done in order
to use SESOP effectively [15]. Second, the discretization used in computing the gradient
of S(X) may not completely agree with that used to compute S(X). This can slow down
or halt convergence. We have experimented with SESOP and compared it to the methods
we suggest here. Specifically we have tried using SESOP with a truncated Newton, using
conjugate gradients for inverting the Hessian. We did not, however, find SESOP as efficient
for the problem of Beltrami-based denoising compared to the methods considered in this



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFICIENT BELTRAMI IMAGE FILTERING VIA VECTOR EXTRAPOLATION 871

paper, namely, constant step-size gradient descent with extrapolation. Other variations on
using SESOP for Beltrami-based image processing remain a topic for future work.

5. Experimental results. We have applied the MPE and the RRE to the problems de-
scribed in section 2 of this work. In this section, we proceed to demonstrate experimental
results of the Beltrami scale-space and restoration of color images processed by the explicit
and the MPE- and RRE-accelerated schemes, specifying the CPU runtime and the resulting
speedup. In all of the examples, an Intel Core 2 Duo 1.83 GHz processor with 2GB of RAM
was used. Although in each application we display results with respect to a single image, the
behavior exhibited is similar for other input data.

We recall that the sequence of vectors x1,x2, . . . that form the input for RRE are generated
according to

xn+1 = F(xn), n = 0, 1, . . . ,

where F(x) are those vector-valued functions that result from the finite-difference solution of
the relevant Beltrami equations discussed in section 2.

In our experiments, we apply the MPE and the RRE in the cycling mode. The MPE- and
RRE-accelerated schemes allow us to reduce the number of explicit iterations by at least a
factor of 10, in order to reach the same residual norm value. Experiments demonstrate that
the MPE and RRE schemes remain stable as the number of iterations increases.

Figure 1 (top row) depicts the scale-space behavior of the Beltrami color flow, obtained
using (3.2). At the bottom right, it shows the speedup obtained by using the RRE scheme
for the Beltrami-based scale-space analysis. The speed-up gain is up to 40, as can be seen in
the graph of the residual norm.

We have measured the approximation error of the accelerated sequence using l2-norm
values for the application of scale-space analysis. Comparison is done by running the explicit
scheme and the RRE scheme simultaneously. After each RRE iteration, we advance the
explicit sequence, starting from the previous result until it diverges from the RRE result.
l2-norm values indicate that the images obtained by the explicit and RRE techniques are
“numerically” the same. The maximum l2-norm relative error value observed during scale-
space evolution was 0.241%, with a mean value of 0.122% and a standard deviation of 0.058%.
The result for scale-space analysis is specifically important because of the obvious existence
of a continuum of global minimizers for the functional without fidelity terms. Indeed, every
constant-valued image is a global minimizer of S(X), while for scale-space analysis we wish
to follow a specific gradient descent process. In applications involving a fidelity term or a
deblurring term, the errors detected in the computed steady-state solution were even smaller.
These results validate numerically the convergence of the scheme. For these applications one
would be more interested in the algebraic error of the solution with respect to the steady-state
solution. A graph measuring the l2-norm of the algebraic error, relative to the energy of the
image, is shown in Figure 2 for both the MPE and the RRE methods, as well as for the explicit
scheme. The steady-state solution is approximated by the numerical solution using a small
step-size explicit scheme, as for natural images we do not have an analytical solution of (2.5).

5.1. Beltrami-based denoising. Figure 3 displays the restoration of an image from its
noisy version, corrupted by additive Gaussian noise, by applying (3.3). The speed-up factor
in this case is about 10.
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Figure 1. Top (left to right): RRE iterations 50, 150, 300, 450. Bottom left: Original picture. Bottom right:
Comparison of the residual norms versus CPU time. Parameters: β =

√
2000 " 44.72, ∆t = 0.0042/β2 .

5.2. Beltrami-based deblurring. In the next example the original image was blurred by
a Gaussian kernel, as shown in Figure 4 (top left). The image was restored using (3.4). A
significant speedup is obtained in this case, as seen in Figure 4 (bottom).

5.3. Denoising three-dimensional (3D) images. Another application for the Beltrami
flow is denoising of 3D images, such as volume images found in medical applications, or
denoising of movie sequences. In Figure 5 we show an example of denoising of a medical CT
image taken from the Stanford Volume Data Archive [19], originally obtained by the University
of North Carolina. While the data, being a gray-level image, can be processed more efficiently
using various methods such as operator-splitting schemes [43] or multigrid schemes, perhaps
in combination with extrapolation techniques [5], we will not go into detailing usage of such
methods so as to avoid deviating from the main topic of this paper.

5.4. Robustness to the choice of parameters. A natural question regarding accelerations
of nonlinear processes is how the speedup obtained depends on both parameters of the flow and
the parameter of the extrapolation algorithm. In practice, the MPE and the RRE algorithms
seem to be quite robust to various choices of these parameters involved. For example, for
relatively small time steps, such as those warranted by the CFL condition, one can find,
in practice, an optimal value of k, the length of the cycle. In our experiments, increasing
n, the number of preconditioning iterations, did not result in an increasing speedup for the
parameters we have tested. For larger time steps, slightly before instability sets in, however,
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Figure 2. l2-norm error between the sequences generated using the explicit scheme without acceleration and
the explicit scheme accelerated by MPE and RRE, with respect to the steady-state solution. The acceleration
used k = 6, n = 0, which gave the fastest convergence. Parameters: β =

√
200 ≈ 14.14, ∆t = 0.1.

it is harder to determine a clear trend in the speedup obtained as a function of n and k. We
note that the speedup is still clearly apparent, as can be seen in Figure 6. Looking at the
speedup obtained as a function of λ and β, we have noticed that the speedup is relatively
stable with respect to changes in β and decreases as λ becomes larger. The speedup remains
significant for relevant values of λ, as can be seen in Figure 7.

6. Concluding remarks. Due to its anisotropic nature and nonseparability, there is no
implicit scheme or operator–splitting-based numerical scheme for the PDE characterizing the
Beltrami flow in color. This flow is usually performed by means of explicit schemes. Low
computational efficiency limits their use in practical applications. We accelerated the conver-
gence of the explicit scheme using vector extrapolation methods. Experiments of denoising
and deblurring of color images based on RRE have demonstrated the efficiency of the method.
This makes vector extrapolation methods useful and attractive to the Beltrami filter and
potentially to other image processing applications.
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Figure 3. Beltrami-based denoising. Top left: Noisy image. Middle: Denoised image obtained by the
RRE (901 iterations). Right: Denoised image obtained by the explicit scheme (11541 iterations). Bottom:
Comparison of the residual norms versus CPU time. Parameters: β =

√
1000 ≈ 31.63, λ = 0.02, ∆t =

0.0021/β2.
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Figure 4. Beltrami-based deblurring. Top left: Blurred image. Middle: Deblurred image obtained by the
RRE scheme (1301 iterations). Right: Deblurred image obtained by the explicit scheme (196608 iterations).
Bottom: Comparison of the residual norms versus CPU time. Parameters: β =

√
2000 " 44.72, ∆t =

0.0021/β2, λ = 0.03.
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Figure 5. Beltrami-based denoising of a 3D image. Left: A comparison of the explicit and RRE-accelerated
Beltrami schemes. Middle: A slice from the original volume image. Right: The same slice, denoised using the
accelerated Beltrami flow. Parameters: β = 0.1, ∆t = 0.02, λ = 1.5. Slice images taken from the Stanford
Volume Data Archive [19], originally obtained by the University of North Carolina.
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Figure 6. The speedup obtained for various values of n, the number of preconditioning iterations before
each cycle, and k, the cycle length. Left: The speedup obtained for a denoising problem such as the one shown
in Figure 3, with dt = 0.0042/β2 . Right: The speedup for the same evolution with dt = 0.1. Parameters:
β =

√
150 ≈ 12.25, λ = 0.1.
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Figure 7. The speedup obtained for various values of λ, the fidelity factor. Left: The speedup obtained for
dt = 0.005. Right: The speedup for the same evolution with dt = 0.1. Parameters: β = 10, n = 0, k = 5.
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