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Abstract Many manifold learning procedures try to embed
a given feature data into a flat space of low dimensionality
while preserving as much as possible the metric in the nat-
ural feature space. The embedding process usually relies on
distances between neighboring features, mainly since dis-
tances between features that are far apart from each other
often provide an unreliable estimation of the true distance
on the feature manifold due to its non-convexity. Distortions
resulting from using long geodesics indiscriminately lead to
a known limitation of the Isomap algorithm when used to
map non-convex manifolds. Presented is a framework for
nonlinear dimensionality reduction that uses both local and
global distances in order to learn the intrinsic geometry of
flat manifolds with boundaries. The resulting algorithm fil-
ters out potentially problematic distances between distant
feature points based on the properties of the geodesics con-
necting those points and their relative distance to the bound-
ary of the feature manifold, thus avoiding an inherent limita-
tion of the Isomap algorithm. Since the proposed algorithm
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matches non-local structures, it is robust to strong noise. We
show experimental results demonstrating the advantages of
the proposed approach over conventional dimensionality re-
duction techniques, both global and local in nature.
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1 Introduction

Analysis of high-dimensional data is encountered in numer-
ous pattern recognition applications. In many cases, it ap-
pears that just a small number of dimensions is needed to
explain the high-dimensional data.

For example (Tenenbaum et al. 2000), consider a large
set of images with an underlying parameter space of a small
dimension. One example for such a manifold is the set of
all images of an object sampled at certain poses, after be-
ing centered. This manifold is represented by vectors of a
high dimension (e.g., the column stacked images), but is of a
much lower intrinsic dimensionality—the Euler angles rep-
resenting the pose of the object, are one such possible para-
metrization.

Dimensionality reduction methods such as principal
component analysis (PCA, see Duda et al. 2000) and mul-
tidimensional scaling (MDS, see Borg and Groenen 1997)
are often used to obtain a low dimensional representation of
the data, which is a commonly used preprocessing stage in
pattern recognition.

The principal components analysis algorithm linearly
projects the points to a low dimensional space by minimiz-
ing the least square fitting error. Multidimensional scaling
algorithms minimize the error in the pairwise distances be-
tween data points, and are intimately related to PCA (e.g.,
see Borg and Groenen 1997; Williams 2002).
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While methods such as PCA assume the existence of a
linear map between the data points and the parametrization
space, such a map often does not exist. Applying linear di-
mensionality reduction methods to data therefore results in
a distorted representation.

Nonlinear dimensionality reduction (NLDR) methods at-
tempt to describe a given high-dimensional set of points as
a low dimensional manifold by means of a nonlinear map
preserving certain properties of the data. This kind of analy-
sis has applications in numerous fields, such as color per-
ception, pathology tissue analysis (Coifman et al. 2005),
enhancement of MRI images (Diaz and Arencibia 2003),
shape recognition (Elad and Kimmel 2003), face recognition
(Bronstein et al. 2005), motion understanding (Pless 2003),
and biochemistry (Keller et al. 2005), to mention a few.

As the input data, we assume to be given N points in
the M-dimensional Euclidean space, {zi}Ni=1 ⊂ RM . The
points constitute vertices of a proximity graph with the set
of edges E; the points zi , zj are neighbors if (i, j) ∈ E.
The data points are further assumed to be samples of an m-
dimensional manifold M ⊂ RM , where typically m#M .
This manifold together with the geodesic metric dM defined
on M form a metric space. The manifold is represented by
a parametrization domain C using the smooth bijective map
ϕ : C ⊂Rm→M.

The goal of NLDR methods is to uncover the parame-
trization of M. More precisely, we are looking for a set
of points {xi ≈ ϕ−1(zi )}Ni=1 ⊂ C ⊂ Rm parameterizing the
data. We will try to compute the N × m matrix X repre-
senting the coordinates of the points in the parametrization
domain.

Many NLDR techniques attempt to find an m-dimens-
ional representation for the data, while preserving local
properties. For example, the locally linear embedding (LLE)
algorithm (Roweis and Saul 2000) tries to preserve the rep-
resentation of each data point as a linear combination of
its neighbors. The Laplacian eigenmap algorithm (Belkin
and Niyogi 2002) uses the Laplacian operator for selecting
low dimensionality coordinate functions based on its eigen-
functions. The resulting coordinate system maps neighbor-
ing points in M to neighboring points in Rm. The diffusion
map (Coifman et al. 2005) generalize this framework in the
context of analysis of diffusion processes, making it more
robust to non-uniform sampling density. The Hessian locally
linear embedding (HLLE, Grimes and Donoho 2003) tries
to use the proximity graph for finding coordinate functions
that have a minimal response to the Hessian operator of the
surface, obtaining a truly locally linear mapping.

Another class of algorithms preserves global properties,
like the geodesic distances dM(zi, zj ), approximated as
shortest paths on the proximity graph. The geodesic distance
dM(zi, zj ) is defined as

dM(zi, zj ) = min
c′(zi ,zj )

l(c′(zi, zj )),

where l(c′(zi , zj )) denotes the length of the curve c′(zi, zj ),
and minimization over all curves c′(zi , zj ) connecting zi

and zj is obtained by a geodesic

cM(zi, zj ) = argmin
c′(zi ,zj )

l(c′(zi, zj )).

The Semidefinite embedding (Weinberger and Saul 2004)
algorithm maximizes the variance in the data set while keep-
ing the local distances unchanged, thereby approximately
preserving geodesic distances in the manifold. The prob-
lem is formulated and solved as a semidefinite programming
(SDP, Ben-Tal and Nemirovski 2001) problem, under con-
straints reflecting invariance to translation and local isom-
etry of the manifold to Euclidean space. Yet, the computa-
tional cost for solving an SDP problem is O(N6) (see Ben-
Tal and Nemirovski 2001, for details), which is prohibitive
even in medium-scale problems. Attempts to overcome it
by using landmarks (Weinberger et al. 2005) still incur high
computational complexity.

Brand (2005) describes an algorithm which utilizes
global distances in order to numerically stabilize and robus-
tify local embedding techniques, but the approach presented
is still mostly local in nature, assuming that a few randomly
selected longer acting connections are enough to prevent
the weaknesses of local techniques while still keeping their
attractive computational time.

Finally, the Isomap algorithm (Schwartz et al. 1989;
Tenenbaum et al. 2000) considers both local and global
invariants—the lengths of geodesics between points on the
manifold. Short geodesic distances are assumed to be equal
to Euclidean distances, and longer ones are approximated
as shortest paths length on the proximity graph, using stan-
dard graph search methods like Dijkstra’s algorithm (Dijk-
stra 1959; Cormen et al. 1990). The resulting distance mea-
sure, δij = δ(zi , zj ), approximates dM(zi , zj ) under certain
assumptions, as shown by Bernstein et al. (2001). Isomap
then uses multidimensional scaling, attempting to find an m-
dimensional Euclidean representation of the data, such that
the Euclidean distances between points are as close as possi-
ble to the corresponding geodesic ones. For example, using
the L2 criterion (referred to as stress),

X∗ = argmin
X∈RN×m

∑

i<j

(dij (X)− δij )
2,

where dij (X) = ‖xi − xj‖2 is the Euclidean distance be-
tween points xi and xj in Rm. Instead of Dijkstra’s al-
gorithm, higher accuracy algorithms such as fast march-
ing methods (Kimmel and Sethian 1998) can be used when
dealing with surfaces, resulting in a more accurate mapping
(Zigelman et al. 2002; Elad and Kimmel 2003).

The main advantage of Isomap is that it uses global geo-
metric invariants, which are relatively less sensitive to mea-
surement noise, compared to local ones. Yet, its underlying
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assumption is that M is isometric to C ⊂ Rm with the geo-
desic metric dC , induced by the Riemannian structure of C .
This metric is different in general from the metric of Rm re-
stricted to C , referred to as the restricted metric and denoted
by dRm |C . That is, Isomap assumes δ(zi , zj ) = dRm(xi ,xj )

for all i, j = 1, . . . ,N . If C is convex, the restricted metric
dRm |C coincides with the geodesic metric dC and Isomap
succeeds in recovering the parametrization of M. Other-
wise, C has no longer the Euclidean geometry and no iso-
metric map of the dataset to Rm can be found. The convex-
ity assumption of C appears to be too restrictive, as many
data manifolds have complicated topology. Indeed, Grimes
and Donoho (2002) showed examples of data for which C is
not convex, and pointed out that Isomap fails in such cases.
Lack of convexity may stem from the structure of the data
themselves or from incomplete measurements. In any case,
non-convex data is sufficiently common so as to hinder the
use of the Isomap algorithm. A note about intrinsic convex-
ity of the manifold: If an isometric embedding of the mani-
fold into Euclidean space results in a convex region, another
isometric embedding cannot result in a non-convex region.
This result is implicit in the discussion made by Grimes and
Donoho (2002), and can be shown by noting that between
each two points in Rm exists a single curve with the same
length as the line connecting them.

1.1 Contribution

In this paper, we claim that even when violating the con-
vexity assumption, one could still use non-local distances in
order to stabilize and robustify the flattening procedure. We
do that by detecting and ignoring geodesic distances which
may be inconsistent with the underlying convexity assump-
tion.

Our approach, hereinafter referred to as the topologically
constrained isometric embedding (TCIE), allows handling
flat data manifolds with arbitrary boundaries and “holes”
that may often occur when sampling natural phenomena.
A rough sketch of the approach has been presented in a
conference paper (Rosman et al. 2006). Here, we provide
a better picture of it, in terms of the algorithms used, proofs
of their validity, and comparison to existing techniques. We
further present additional examples, include one for which a
ground truth parameter space is known and where our algo-
rithm manages to handle such non-convex data. We note that
while our approach bears some resemblance to methods for
robustifying Isomap against topological noise such as the
approach presented by Choi and Choi (2007), which deals
with pointwise noise and its effect on the topology of the
embedded manifold, our paper tackles a more fundamental
limitation of the Isomap algorithm apparent even in an ideal
noise-less setting.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the algorithm and prove that it rejects incon-
sistent geodesics. Section 3 discusses the numerical imple-
mentation of the algorithm and suggests ways to speed up
its convergence. In Sect. 4, we demonstrate our approach
on synthetic data. Proofs of supporting propositions are pre-
sented in the Appendix.

2 Topologically Constrained Isometric Embedding

In order to construct an isometric embedding, the Isomap al-
gorithm assumes that C is a convex subset of Rm, and relies
on the assumption of an isometry between (C, dC ) and M in
order to find the map from M to the metric space (C, dC ) by
means of MDS (the stress in the solution will be zero). This
assumption is valid because dC = dRm |C×C if C is convex.
In case C is non-convex, however, there may exist pairs of
points for which dC += dRm |C×C . We call such pairs inconsis-
tent. An example of an inconsistent pair is shown in Fig. 1.
We denote the set of all consistent pairs by

P = {(i, j) : dC (xi ,xj ) = dRm |C×C (xi ,xj )}⊆ IN × IN .

where IN = {1, . . . ,N}. In the TCIE algorithm, we find a
subset P̄ ⊆ P of pairs of points that can be consistently rep-
resented by an MDS problem. The algorithm is as follows

1: Compute the N ×N matrix of geodesic distances ! =
(δij ).

2: Detect the boundary points ∂M of the data manifold.
3: Detect a subset of consistent distances according to ei-

ther

P̄1 = {(i, j) : cM(zi , zj )∩ ∂M = ∅},

(criterion 1), where cM(zi , zj ) is the geodesic connect-
ing zi and zj , or (criterion 2)

P̄2 = {(i, j) : dM(zi , zj )≤ dM(zj , ∂M)

+ dM(zi , ∂M)},

Fig. 1 Example of two points z1 and z2, for which the straight line
connecting the points after embedding into R2 is shorter than the geo-
desic cM(z1, z2) (solid black curve), due to non-convexity
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where dM(z, ∂M) = infz′∈∂M dM(z, z′) denotes the
distance of z from the boundary of M.

4: Solve the MDS problem for consistent pairs only,

X∗ = argmin
X

∑

i=0,i<j

wij (dij (X)− δij )
2,

where wij = 1 if (i, j) ∈ P̄ and wij = 0 otherwise.
The choice of ignoring inconsistent pairs identified by ei-

ther P̄1 or P̄2 can be generalized, for example, to smoother
weight functions. The three main steps of the algorithm are
(i) detection of boundary points, (ii) detection of a set of con-
sistent geodesics, (iii) solution of a weighted MDS problem.
In the sequel we will detail each of these steps.

2.1 Detection of Boundary Points

Step 2 in the TCIE algorithm involves detection of bound-
ary points in multidimensional data. There exist many algo-
rithms for the detection of boundaries in point clouds. Most
of the related papers focus on practical applications for sur-
face processing and modeling (see for example Boult and
Kender 1986; Gopi 2002; Freedman 2002; Belton and Lichti
2007), though some algorithms emerged from the field of
numerical solution for PDEs (Haque and Dilts 2007), or
metric geometry (Chazal et al. 2007), while other techniques
for boundary detection and local dimensionality estimation
were motivated by perceptual research (Guy and Medioni
1997; Tong et al. 2004). Most of these methods are lim-
ited by design to specific intrinsic and extrinsic dimensions
(m and M respectively), although some methods are more
easily adaptable to higher dimensional data (see for exam-
ple Mordohai and Medioni 2005; Chazal et al. 2007). We
show here a few methods for solving this generic prob-
lem and refer the reader to existing literature for a broader
overview.

One approach for boundary detection on high dimen-
sional manifolds is based on the observation that each
boundary point in an m-dimensional Riemannian mani-
fold is locally homeomorphic to a half-space of Rm, where
the boundary point is mapped to the hyperplane bordering
the half-space in Rm. An example of two such neighbor-
hoods is shown for a two-dimensional manifold (surface) in
Fig. 2.

We therefore expect the boundary point to have all its
neighbors on one side of a single hyperplane in an m-
dimensional mapping of its neighborhood. Multidimen-
sional scaling of the neighborhood distances matrix can be
used to obtain such a mapping.

Looking at the normal direction to this hyperplane, the
mean of the neighboring points should be far from the
boundary point. The first boundary detection method we
present follows this line of thought.

Fig. 2 An example of two neighborhoods of points in M, one of
which is close to the boundary ∂M. In the example, N = 20000, and
each neighborhood was chosen to include the 500 nearest neighbors of
a point on the manifold

1: for i = 1, . . . ,N do
2: Find the set N (i) of the K nearest neighbors of the

point i.
3: Apply MDS to the K ×K matrix !K = (δk,l∈N (i))

and obtain a set of local coordinates x′1, . . . ,x′K ∈
Rm, where x′1 denotes the mapping of point i.

4: Compute µ(i) = 1
|N (i)|

∑
j∈N (i) xi , the mean of the

neighbors of x1. |N (i)| denotes the cardinality of
N (i).

5: Set d1(i) to be the distance between x′1 and µ(i),
normalized by the average distance between points
in x′1, . . . ,x′K .

6: if d1(i) is larger than some threshold τa then
7: Label point i as boundary.
8: end if
9: end for

The described method is similar to that of Belton and
Lichti (2007), where each coordinate is normalized sepa-
rately, based on the standard deviation of points along the
tangent space direction. Since our neighborhoods are cho-
sen according to a uniform metric, we only normalized with
respect to the neighbourhood diameter.

The second algorithm is similarly motivated, yet is more
heuristic in nature. Directions are selected according to
neighboring points, this avoiding the need to artificially
determine the normal direction, or using the mean of the
points, which may be sensitive to sampling. Assuming that
for an interior point, for all directions, the distribution
of projected points is homogeneous, the algorithm tries
to detect directions for which the projection of the sam-
pled neighboring points has a single-sided distribution. This
scheme uses neighboring points in order to determine direc-
tions of projection, voting among possible directions in or-
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der to obtain a more robust classification. This may be done
as follows,

1: for i = 1, . . . ,N do
2: Find the set N (i) of the K nearest neighbors of the

point i.
3: Apply MDS to the K × K matrix !K = (δkl∈N (i))

and obtain a set of local coordinates x′1, . . . ,x′K ∈
Rm.

4: for j = 1, . . . ,K do

5: If
|{x∈N (i):〈x′i−x′j ,x−x′i 〉>0}|
|{x∈N (i):〈x′i−x′j ,x−x′i 〉≤0}| ≤ τc mark j as

candidate.
6: end for
7: if the number of candidate points is larger than τd

then
8: Label point i as boundary.
9: end if

10: end for

Another property, which may be useful in boundary de-
tection is the fact that a small neighborhood around an
interior point should be isotropic in shape and sampling,
whereas it should be anisotropic for a boundary point, as
seen in the example in Fig. 2. Belton and Lichti (2007), how-
ever, claim that directly using this property in an algorithm
would be too sensitive to non-uniform sampling.

In our experiments, the proposed algorithms 2 and 3 per-
formed similarly on noisy data. Other boundary detection al-
gorithms can be used as well. We expect a voting mechanism
(Tong et al. 2004) to be quite beneficial for robust detection
of the boundaries. For manifolds with a large intrinsic di-
mensionality, dense sampling is usually required for reliable
boundary detection.

2.2 Detection of Inconsistent Geodesics

An important part of the TCIE algorithm is the detection of
inconsistent pairs. We find all point pairs adhering to consis-
tency criteria (1) or (2), which include all inconsistent pairs,
as we shall prove.

The first consistency criterion requires us to check
whether geodesics touch the boundary. Once we have de-
tected the boundary points, we use a modification of the
Dijkstra algorithm (Dijkstra 1959), as summarized below,
using a notation similar to the one used by Cormen et al.
(1990).

1: for zu ∈M \ {zs} do
2: d(zs , zu)←∞
3: end for
4: d(zs , zs)← 0
5: Let Q be a queue of remaining vertices, sorted accord-

ing to current distance to zs . Let S be the set of all ver-
tices whose distance to zs has already been fixed by the
algorithm. Set wij ← 1 for all point pairs i, j .

6: while Q += ∅ do
7: Let zu be the minimum distance vertex stored in Q.
8: Add zu to S.
9:

10: for zv ∈Nu do
11: if d(zs , zv) > d(zs , zu) + dRM (zu, zv) then
12: d(zs , zv)← d(zs , zu) + dRM (zu, zv)

13: if wsu = 0 or (zu ∈ ∂M and d(zs , zu) > 0) then
14: wsv = 0
15: else
16: wsv = 1
17: end if
18: end if
19: end for
20: end while

Note that the second condition in line 13 of the algo-
rithm protects paths with only a boundary end point from
being removed. This way we eliminate only geodesics for
which the point of intersection with the boundary is a mid-
point. Similar modifications can be made to the Bellman-
Ford and Floyd algorithms, or other dynamic programming
algorithms (for example, Kimmel and Sethian 1998). We
note that for the criterion defining P̄2, detection of incon-
sistent geodesics is done simply by comparing the relevant
geodesic distances.

In describing the algorithm, we assume a continuous
case, in which the manifold is sampled with some given den-
sity. We make the same assumptions on the sampling den-
sity and uniformity made by Bernstein et al. (2001), who
proved the convergence of the graph distances approxima-
tion, used by the Isomap algorithm (Schwartz et al. 1989;
Tenenbaum et al. 2000), to the geodesic distances on the
manifold. Also note that the requirement of a positive den-
sity function prevents problems that may occur in geodesics
approximated by a graph when the surface is sampled in a
regular pattern (as is the case with a Cartesian grid covering
Rm). In our case, there is also the question of whether or not
we remove too many geodesics. The answer is related to the
topology of the manifold.

In the continuous setting, our algorithm approximates an
isometry ϕ−1 between M with the geodesic metric δ and
C ⊂ Rm with the geodesic metric dC . In the case where C
is a convex region, geodesics connecting points in C are al-
ways straight lines, and the geodesic metric is identical to
the restricted Euclidean metric. When C is no longer a con-
vex region, P̄1 restricts our choice of point pairs, selecting
only consistent distances, as shown by the following propo-
sition.

Proposition 1 Let M be a manifold, isometric to C ⊆ Rm,
and cM(·.·) denote geodesics in M. Then P̄1 = {(i, j) :
cM(zi , zj )∩ ∂M = ∅}⊆ P .
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Therefore, for every geodesic in M which was not de-
tected as touching the boundary, the image under ϕ−1 is a
line, which is approximated correctly by the MDS proce-
dure.

In the case where C is no longer a subset of a Euclidean
space, but rather part of a manifold C′ endowed with another
metric, we claim that selecting only point pairs from P̄2 still
leaves us only with consistent pairs.

Proposition 2 For C and C′ as described above,

P̄2 = {(i, j) : dM(zi , zj )≤ dM(zj , ∂M) + dM(zi , ∂M)}
⊆ P.

Proofs of Propositions 1 and 2 are given in the Appendix.
Note that for a parametrization manifold C′ with an arbi-

trary Riemannian metric, the MDS procedure would not be
able to give us the correct mapping. This would require the
use of a more general procedure, as done by Bronstein et al.
(2006a). Criterion 2 may still be useful in cases where the
metric on C′ is close to Euclidean, and yet we only want to
use geodesics which do not leave C .

2.3 Weighted LS-MDS

The final stage of our approach is solving the MDS problem
for the subset P̄i , i ∈ {1,2} of distances. One way to include
only consistent point pairs in the optimization is to use the
weighted stress,

X∗ = argmin
X

∑

i=0,i<j

wij (dij (X)− δij )
2,

where wij = 1 if (i, j) ∈ P̄ and wij = 0 otherwise. This al-
lows us, by choosing the right weights, to minimize the error
only for consistent geodesics.

The geodesics that were not marked as inconsistent have
their weights set to one. We also allow a positive weight for
short geodesics, in order to keep the connectivity of the man-
ifold, even at boundary points. All other geodesics have their
weights set to zero. We then use the Scaling by Majorizing
a Complicated Function (SMACOF) algorithm, as detailed
in Sect. 3.1, to minimize the weighted stress.

We note that the correctness of these conditions depends
on the assumption that our manifold is isometric to a subre-
gion of an Euclidean space, similarly to the underlying as-
sumption of Isomap.

3 Implementation Considerations

For determining the shortest paths we used the Dijkstra algo-
rithm implementation supplied by Tenenbaum et al. (2000),

with the Isomap code, to which the detection of geodesics
touching boundary points was added. The remaining com-
ponents of the TCIE algorithm were implemented in MAT-
LAB. In practice, the Dijkstra algorithm takes less than 10%
of the total running time for 2000 points, with asymptotic
complexity of O(N2 logN). Solving the MDS optimization
problem consumes most of the time (although O(N2) per
iteration). The boundary detection takes O(N2), but with
much smaller constants. We note that while the number of
SMACOF iterations is not invariant to the number of sam-
ples, in practice it rises slowly with increase of N , depend-
ing on the topology of the manifold and the noise level.

3.1 The SMACOF Algorithm

We now turn to the problem of minimizing the weighted
stress function,

s(X) =
∑

i<j

wij (dij (X)− δij )
2,

which known as the least-squares MDS, or LS-MDS, prob-
lem. Trying to solve the LS-MDS problem, we consider the
gradient of s(X) with respect to X, which can be written
(Borg and Groenen 1997) as

∇s(X) = 2VX− 2B(X)X,

where V and B are matrices whose elements are given by

(V)ij =
{
−wij , if i += j,
∑

k +=i wik, if i = j,

and

(B)ij =






−wij δij d
−1
ij (X), if i += j and dij (X) += 0,

0, if i += j and dij (X) = 0,

−∑
k +=i bik, if i = j.

In order to minimize the stress function, the following iter-
ative scheme was proposed by Guttman (1968); de Leeuw
(1977, 1984, 1988). From the first-order optimality condi-
tion, one obtains the iteration equation

X(k+1) = V†B(X(k))X(k). (1)

Iteratively performing the transformation (1) converges to a
local minimum of the stress cost function. This process is
known as the SMACOF algorithm (see e.g. Borg and Groe-
nen 1997). It can be shown to be equivalent to a weighted
gradient descent with constant step size (Bronstein et al.
2006b).

A remarkable property of the SMACOF algorithm is that
it guarantees a monotonously decreasing sequence of stress
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values, which is uncommon when constant-step gradient de-
scent is used. This property is shown by developing the iter-
ation formula (1) using a technique known as iterative ma-
jorization. At the same time, the convergence of the SMA-
COF algorithm is slow, and a large number of iterations may
be required for high accuracy, depending on the size of the
data set and the metric used.

3.2 Numerical Properties and Convergence

The LS-MDS optimization problem is a non-convex one,
and as such convex optimization methods might converge
to local minima (Trosset and Mathar 1997). In our experi-
ments, we have seen that removing more distances from the
stress function caused the problem to be liable to local con-
vergence. Such local minima appear as a fold over, or a flip
in the obtained mapping. In general, the number of remain-
ing weights depends on the surface topology, as well as the
number of sampled points in the surface.1

We reduce the risk of local convergence by starting from
a classical scaling (as mentioned by Kearsley et al. 1998;
Aharon and Kimmel 2006) or unweighted least squares scal-
ing solution. This allows the algorithm to avoid some of
the local minima. Although the solutions found by classi-
cal scaling and LS-MDS may differ, under the assumption
of correct distance approximation, the solutions are likely
to have a similar structure. Another possible benefit of us-
ing classical scaling prior to least square scaling is to use
the recursive subspaces property of the classical MDS in or-
der to approximately determine the intrinsic dimension of
the manifold prior to its exact embedding. The estimated
dimension can be used both in the weighted least-squares
mapping stage and for the detection of boundary points. The
validity of such an approximation for non-convex manifolds
is beyond the scope of this paper and is deferred to future
work.

Using the unweighted LS-MDS problem to avoid lo-
cal minima, and then gradually changing the problem into
the weighted one has the flavor of graduated non-convexity
(Blake and Zisserman 1987). Using such a gradual approach
for changing between the full and weighted MDS problems
did not seem to significantly improve robustness to local
convergence in our experiments, and ways of better utiliz-
ing such an approach remain a subject for future research.

3.3 Convergence Acceleration by Vector Extrapolation
Methods and Multiresolution

To speed up the convergence of the SMACOF iterations,
we employ vector extrapolation, as described in Rosman et

1Typically, in our experiments W contained between 6% to 18%
nonzero weights.

al. (2008). Vector extrapolation methods use a sequence of
solutions at subsequent iterations of the optimization algo-
rithm and extrapolate the limit of the iterations sequence.
While these algorithms were derived assuming a linear iter-
ative scheme, in practice, they work well also for nonlinear
schemes, such as some processes in computational fluid dy-
namics (Sidi 1991). For further details, we refer to works
by Cabay and Jackson (1976), Mes̆ina (1977), Eddy (1979)
and Smith et al. (1987), as well as to a technical report where
vector extrapolation acceleration of multidimensional scal-
ing is detailed (Rosman et al. 2008).

The main idea of vector extrapolation is, given a se-
quence of solutions X(k) from iterations k = 0,1, . . . , to
approximate the limit limk→∞X(k), which should coincide
with the optimal solution X∗. The extrapolation X̂(k) is con-
structed as an affine combination of the last K + 1 iterates,
X(k) . . .X(k+K)

X̂(k) =
K∑

j=0

γj X(k+j);
K∑

j=0

γj = 1.

The coefficients γj can be determined in various ways. In
the reduced rank extrapolation (RRE) method, which is the
extrapolation method used in the present study, γj are ob-
tained by the solution of the minimization problem,

min
γ0,...,γK

∥∥∥∥∥

K∑

j=0

γj&X(k+j)

∥∥∥∥∥, s.t.
K∑

j=0

γj = 1,

where &X(k) = X(k+1) − X(k). This minimization can be
shown to seek for a solution minimizing the residual in the
linear case.

An efficient implementation of the RRE and minimal
polynomial extrapolation (MPE) algorithms is described by
Sidi (1991). The algorithm proceeds as follows:

1: Choose the integers k and n, and input the vectors
xn,xn+1, . . . ,xn+k.

2: Form the N × k + 1 matrix U(n)
k whose k + 1 columns

are &X(k+j), j = 0, . . . , k.
3: Solve the overdetermined linear system U(n)

k γ = 0,
where γ = [γ0,γ1, . . . ,γk]T, by least squares, subject
to the constraint

∑k
i=0 γi = 1 (RRE).

4: Compute the vector sn,k = ∑k
i=0 γixn+i as approxima-

tion to limi→∞ xi = s.

After obtaining sn,k , we use it as an initial solution for
additional iterations of the SMACOF algorithm, followed
by extrapolation, and so forth. This is known as cycling, and
is a commonly used technique for extrapolating nonlinear
sequences (Smith et al. 1987).

Another way to accelerate the solution of the MDS
problem is using multiresolution (MR) methods (see e.g.
Chalmers 1996; Platt 2004; de Silva and Tenenbaum 2004;
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Bronstein et al. 2006b; Brandes and Pich 2007). The main
idea is to subsequently approximate the solution by solving
the MDS problem at different resolution levels.

At each level, we work with a grid consisting of points
with indices ΩL ⊂ ΩL−1 ⊂ · · · ⊂ Ω0 = {1, . . . ,N}, such
that |Ωl | = Nl . At the lth level, the data is represented as
an Nl ×Nl matrix !l , obtained by extracting the rows and
columns of !0 = !, corresponding to the indices Ωl . The
solution X∗l of the MDS problem on the lth level is trans-
ferred to the next level l− 1 using an interpolation operator
P l−1

l , which can be represented as an Nl−1 ×Nl matrix.

1: Construct the hierarchy of grids Ω0, . . . ,ΩL and inter-
polation operators P 0

1 , . . . ,P L−1
L .

2: Start with some initial X(0)
L at the coarsest grid, and l =

L.
3: for l = L,L− 1, . . . ,0 do
4: Solve the lth level MDS problem

X∗l = argmin
Xl∈RNl×m

∑

i,j∈Ωl

wij (dij (Xl )− δij )
2

using SMACOF iterations initialized with X
(0)
l .

5: Interpolate the solution to the next resolution level,
X(0)

l−1 = P l−1
l (X∗l ).

6: end for

We use a modification of the farthest point sampling
(FPS) (Gonzalez 1985; Hochbaum and Shmoys 1985; Eldar
et al. 1997) strategy to construct the grids, in which we add
more points from the boundaries, to allow correct interpola-
tion of the fine grid using the coarse grid elements. We use
linear interpolation with weights obtained by solving a least
squares fitting problem, with a regularization term ensuring
all available nearest neighbors are used.

The multiresolution scheme can be further accelerated
by applying vector extrapolation methods at each resolu-
tion level. In our experiments we used the RRE method, giv-
ing us a three-fold speedup beyond a simple multiresolution
scheme.

4 Results

In order to assess the performance of the proposed approach,
a few experiments were performed. In the first experiment,
we used the Swiss roll surface with a large rectangular hole,
sampled at 1200 points. Flattening was performed for points
sampled on the manifold with additive i.i.d. Gaussian noise
in each coordinate of each point. Two instances of the sur-
face with different noise variances are shown in Fig. 4.

We compare the proposed algorithm to Isomap, LLE,
Laplacian eigenmaps, diffusion maps and Hessian LLE, in

Fig. 3 Convergence (in terms of stress value) of basic SMACOF (top,
dashed gray), SMACOF with RRE (top, black), SMACOF with mul-
tiresolution acceleration (bottom, dashed gray), and SMACOF with
both RRE and multiscale (bottom, black), as a function of approximate
CPU time, in seconds. Convergence at each scale was stopped at the
same relative change of the stress value

Fig. 4 (Color online) Left to right: Swiss roll surface contaminated by
Gaussian noise with σ = 5 and σ = 12.5. Detected boundary points
are shown as red crosses

Figs. 5 and 6.2 Our algorithm finds a representation of
the manifold with relatively small distortion. Adding i.i.d.
Gaussian noise to the coordinates of the sampled points, our
method remains accurate compared to other popular algo-
rithms that exhibit large distortions. This can be seen, for
example, for 1200 points, with σ = 5,12.5, in Fig. 6, where
for comparison, diam(M) ≈ 2500. The algorithm was al-
lowed to converge until the relative change in the weighted

2We used the same number of neighboring points (12) in all algorithms.
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Fig. 5 (Color online) Embedding of the Swiss roll contaminated by Gaussian noise with σ = 5, as produced by LLE, Laplacian eigenmaps,
Hessian LLE, diffusion maps, Isomap, and our algorithm. Detected boundary points are shown as red crosses

Fig. 6 (Color online) Embedding of the Swiss roll contaminated by Gaussian noise with σ = 12.5, as produced by LLE, Laplacian eigenmaps,
Hessian LLE, diffusion maps, Isomap, and our algorithm. Detected boundary points are shown as red crosses

Fig. 7 (Color online)
Embedding of the Swiss roll
contaminated by Gaussian noise
with σ = 12.5, as produced by
our algorithm, where 0%, 10%,
20% and 30% of the points had
their boundary label flipped.
Detected boundary points are
shown as red crosses

stress was below some threshold. Tests with higher noise
levels were also performed, with similar results. This in-
cludes noise levels at which the boundary detection quality
deteriorated. Using multiscale further reduces the computa-
tional cost of the solution by a factor of two, for the problem
shown in the example. We note that the speedup depends on
both the manifold topology and metric, as well as the prob-
lem size. The reduction in computational effort was typical
for all the problems we tested, up to 2550 points. Compu-
tation time, was about a few minutes, from two minutes
for 1200 points, to about 6 on 2550 points, on an AMD
Opteron™ running at 2600 MHz. A sample stress plot, ob-
tained using SMACOF, with and without the multiresolution
scheme and extrapolation, is shown in Fig. 3.

We note the relevant question of whether or not the algo-
rithm performs well even when non-uniform and noisy sam-
pling of the manifold results in false positive detection of
boundary points, as may occur in real-life applications. An-
other experiment was meant to check specifically this point
of sensitivity to misclassified boundary and interior points.
In this experiment an increasing percentage of the points’ la-
beling (boundary or interior) was flipped. This did not, how-
ever, significantly affect the mapping of the surface, as can
be seen in Fig. 7.

In the next experiment we map a set of rendered images
of the Stanford bunny. For this set of images we have a
known natural parametrization, given by the set of locations
of the cameras used to render the object. The images were
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Fig. 8 (Color online) A manifold mapped using L2 distances between
2550 images rendered from various viewpoints of the Stanford bunny.
Left to right: (a) the mapping obtained by TCIE for the view points
(using 12-nearest neighbors neighborhoods), (b) the mapping obtained
by TCIE when a hole was formed in the set of view angles, (c) the

mapping obtained by Isomap for the partial manifold, and (d) the par-
tial set of the two Euler angles that parameterize the viewpoints. Red
points mark the detected boundary points. The normalized stress ob-
tained by TCIE was 1.9, compared to 1027.9 obtained by Isomap

compared using an L2 metric. The mapping resulting from
TCIE and Isomap, as well as the distribution of the camera
centers, are shown in Fig. 8. A hole was cut in the middle
of the manifold of viewing angles, in order to test the ef-
fect of non-convexity on the resulting mappings. While the
mapping is topologically equivalent to a subregion of the un-
derlying parametrization space of Euler angle coordinates,
the metric used depends on the albedo and the surface nor-
mal at each viewpoint and the projection shape, and as such,
it is reasonable to expect only a local isometry transform-
ing the Euler angles coordinates to the mapping obtained by
our algorithm. We note, however, that the mapping obtained
by TCIE does not inflate the hole as the one obtained by
Isomap.

We also note that some of the boundary point detections
are indeed false and yet, the mapping obtained is quite rea-
sonable. An explanation for this behavior is that in the pres-
ence of false positive boundary points, the algorithm simply
relies on a more limited, yet non-local, support of distances
for each point. The short distances still used, and a reason-
able initialization obtained using the full weights (same as
Isomap) allow us to obtain a less distorted mapping. Such
behavior of the algorithm is further explored in Fig. 7.

Finally, another application in which Isomap has been
found useful is texture mapping (Zigelman et al. 2002). We
demonstrate the usefulness of the modified weights sug-
gested by our approach in Fig. 9. In this experiment, 500
landmark points (de Silva and Tenenbaum 2002) were em-
bedded, and used to map 2266 surface points.

For other example applications of the proposed algo-
rithm, the reader is referred to the technical report (Rosman
et al. 2009).

5 Conclusions

We presented a new framework for nonlinear dimension-
ality reduction, applicable to flat data manifolds with non-
convex boundaries and non-trivial topology. We showed that
by a careful selection of the geodesics we can robustly flat-
ten non-convex manifolds. Since the proposed method uses
global information it is less sensitive to noise than meth-
ods that use local distances between the data points, as con-
firmed in our experiments. The optimization scheme used
by one approach benefits from vector extrapolation methods
and multiresolution optimization.

In future work, we intend to generalize our results to non-
Euclidean spaces. We would like to improve its computa-
tional efficiency using multigrid methods (Bronstein et al.
2006b). Another issue we intend to explore is the robustness
to changes in the sampling density of the manifold. Finally,
we note that the main limitation of the proposed algorithm
is its memory complexity and sensitivity to local minima,
and we are currently investigating ways to overcome these
limitations.
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Fig. 9 Texture mapping obtained using the weights suggested by
TCIE and using uniform weights (as suggested by Isomap). Geodes-
ics are computed by the fast marching method. Using the weights sug-
gested by TCIE significantly reduces the mapping distortions. Each

row shows the same surface both with and without a large hole cut in
the surface. The upper row shows the mapped surface, using two tex-
tures, and the lower row shows the parametrization domain, obtained
using TCIE and using uniform weights respectively

Appendix

Proof of Proposition 1 Let (i, j) ∈ P̄1. To prove the propo-
sition, it is sufficient to show that the pair of points (i, j) is
consistent, i.e., (i, j) ∈ P . Let cM(zi , zj ) be the geodesic
connecting zi and zj in M, and let cC (xi ,xj ) be its image
under ϕ−1 in C . Since cM(zi , zj )∩ ∂M = ∅ and because of
the isometry, cC (xi ,xj ) ⊂ int(C), where int(C) denotes the
interior of C .

Assume that (i, j) is inconsistent. This implies that
dC (xi ,xj ) += dRm(xi ,xj ). Because of the way the geodesic
metric is defined, dC (xi ,xj ) > dRm(xi ,xj ). The uniqueness
of cRm(xi ,xj ) states that cC (xi ,xj ) cannot be a straight
line (there exists a single straight line connecting each
two points in Euclidean geometry). Therefore, there exits
a point x ∈ cC (xi ,xj ), in whose proximity cC (xi ,xj ) is not
a straight line.

Since cC (xi ,xj )⊂ int(C), and int(C) is an open set, there
exists a Euclidean ball Bε(x) with the Euclidean metric dRm

around x of radius ε > 0. Let us take two points on the seg-
ment of the geodesic within the ball, x′,x′′ ∈ cC (xi ,xj ) ∩
Bε(x), as illustrated in Fig. 10. The geodesic cC (x′,x′′) co-
incides with the segment of cC (xi ,xj ) between x′,x′′. Yet,
this segment is not a straight line, therefore we can shorten
the geodesic by replacing this segment with cRm(x′,x′′), in

Fig. 10 An illustrations of points x, x′, x′′ used in the proof of Propo-
sition 1

contradiction to the fact that cC (x1,x2) is a geodesic. There-
fore, (i, j) ∈ P .

In the more general case, where (M, dM) is not isomet-
ric to a subregion of a Euclidean space, the criterion defining
P̄2 ensures that if the manifold is isometric to a subregion C
of a space C′ with Riemannian metric, we only select geo-
desics for which the geodesic metric and the metric of C′
restricted to C identify. This is the case assumed by Propo-
sition 2. !
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Proof of Proposition 2 Assume we have a pair of points for
which the geodesic and the restricted metric on C are not the
same, (i, j) /∈ P . Clearly,

dC (xi ,xj ) > dC′(xi ,xj ), (2)

because of the way the geodesic metric is defined. On the
other hand observe that the geodesic connecting the two
points in C is not equal to the geodesic connecting them
in C′. Specifically, the geodesic in C′ must cross the bound-
ary of C (otherwise the distances would be equal). This re-
sults in the inequality

dC′(xi ,xj ) > dC (xi , ∂C) + dC (xj , ∂C).

Where the segments connecting xi and xi to ∂C are inside
int(C). Here we assume there is only one excursion outside
of C . Combining Inequality (2), we obtain

dC (xi ,xj ) > dC (xi , ∂C) + dC (xj , ∂C),

and therefore (i, j) /∈ P̄2. !
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