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Abstract— We present a new algorithm for nonlinear dimensional-
ity reduction that consistently uses global information, which enables
understanding the intrinsic geometry of non-convex manifolds. Com-
pared to methods that consider only local information, our method
appears to be more robust to noise. We demonstrate the performance
of our algorithm and compare it to state-of-the-art methods on
synthetic as well as real data.
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[. INTRODUCTION

Nonlinear Dimensionality Reduction (NLDR) is a general
name for algorithms that explain a given data set of high
dimensionality, in terms of a small number of variables or
coordinates. Such methods are used in a variety of pattern
recognition problems, including pathology tissue analysis [1],
motion understanding [2], lip reading [3], speech recognition
[4], enhancement of MRI images [5], and face recognition [6].

Most NLDR algorithms attempt to find a map from the
data to the coordinate system of given dimensionality that
represent the given data by minimizing some error measure.
Unlike classical dimensionality reduction methods such as
principal component analysis (PCA) [7], the map is non-
linear. The data are usually assumed to arise from a high-
dimensional manifold M, embedded into a Euclidean space
R™, The metric structure of the manifold is represented by the
geodesic distances § : M x M — R. In the discrete setting,
the data are represented as a graph whose vertices z1, ...,z
are finite samples of the manifold, and the connectivity matrix
A = (ai;), where a;; =1 if z; and z; are neighbors and zero
otherwise. NLDR algorithms usually approximate local (short)
distances on the data manifold by the Euclidean distances in
the embedding space, §;; = ||z; — z;||2, for 4,j such that
Qi = 1.

The goal is to find a set of coordinates X1, ..., X in a low-
dimensional space R (m < n) that describe the data. Most
NLDR methods minimize criteria that consider the relation-
ship of each point and its nearest neighbors. For example,
the locally linear embedding (LLE) algorithm [8] tries to
express each point as a linear combination of its neighbors.
The deviation of each point from this linear combination is
summed over and used as a penalty function. The coordinates
that minimize the penalty are then computed by solving an
eigenvalue problem.

The Laplacian eigenmaps algorithm [9] uses as intrin-
sic coordinate functions the minimal eigenfunctions of the

Laplace-Beltrami operator. This is done by constructing the
Laplacian matrix of the proximity graph, finding its lowest
d + 1 eigenvectors, and using eigenvectors 2..d + 1 as the
coordinates of the data points.

Diffusion maps have been recently proposed as an extension
of Laplacian eigenmaps, able to handle non-uniform sampling
of the manifold [1].

The Hessian eigenmaps algorithm [10], uses a different
error measure, claiming coordinate functions should be lo-
cally linear, and therefore have a small as possible quadratic
component. The algorithm therefore seeks functions which
minimize the Hessian, summed over the manifold. This algo-
rithm expresses the sum of the quadratic components of each
coordinate function, approximated at each point, as a function
to minimize, again resulting in an Eigenvalue problem, whose
first d + 1 minimizing vectors give us the desired coordinate
vectors.

The semidefinite embedding algorithm [11], takes a different
approach, trying to maximize the variance of the data set in
its new coordinates, while preserving short distances. This is
done by solving a semidefinite programming (SDP) problem,
with the preservation of local distances explicitly imposed as
constraints. Solving the resulting SDP problem, however, has
a high computational cost, despite attempts to lower it [12].

Isomap, unlike the local methods, tries to preserve a global
invariant — the geodesic distances on the data manifold.
Geodesics are approximated by assuming short Euclidean
distances to be equal to short geodesic ones, and propagating
distances from each point using the proximity graph. A mul-
tidimensional scaling (MDS) algorithm is then used to find
a set of coordinates whose Euclidean distances in a way .
While the approximation of the geodesics may be interrupted
by noise, if the manifold is sampled densely, the approximated
distances remain robust even when the amplitude of the noise
is large relative to the assumed neighborhood size. This allows
the algorithm to reconstruct the intrinsic representation of
the manifold, even when strong additive noise causes locally
acting methods to fail.

Donoho and Grimes have pointed out [13] that isomap may
give distorted results in the case where the data is intrinsically
non-convex. The reason for this is that isomap assumes that the
shortest path connecting each two points is a line in intrinsic
coordinates. This is only correct if this path is included in
the manifold, which means by definition of convexity that
the manifold is intrinsically convex. This assumption comes



into play when finding the correct Euclidean representation.
The least squares MDS algorithm minimizes the Stress error
function[14],

X = argminz wgj (di (X) — 51‘]’)2 .

X i<

Here X = (x;;) is an N X m matrix whose rows are the
coordinate vectors in the new, low dimensional, Euclidean
space. d;; = ||x; — x,||2 is the Euclidean distance between
points X; and X; in the new coordinates in R™. The non-
negative weight w;; is usually taken to be 1 for all point pairs.

Note that the minimal path length between two points ¢ and
J in a sub-region of Euclidean space is equal to d;; if and only
if the line connecting points ¢ and j is included in the region.
It is this assumption that distorts the results of the Isomap
algorithm on non-convex manifolds. We suggest to avoid this
problem by avoiding the imitation of problematic geodesic
distances. An algorithm for detecting and avoiding these is
described in Section II. Its correctness is shown in Section
[I. Results on synthetic data, as well as an application for
eye tracking, are shown in Section IV.

II. TOPOLOGICALLY CONSTRAINED ISOMETRIC
EMBEDDING

Assuming the manifold is intrinsically flat, we suggest a
way to detect these geodesics. These geodesics’ influence can
then be avoided by setting the weight associated with their
end points to zero. We claim the correct geodesics under the
Euclidean manifold assumption are those that do not touch
the boundary of the manifold, as we discuss in Section III.
We therefore proceed as follows:

e Detect the boundary points of the manifold

o Detect geodesics which pass through boundary points

o Minimize a weighted Stress with the weights of boundary
touching geodesics set to zero, and the rest of the weights
set to one.

A. Detecting Boundary Points

Detection of boundary points of sampled manifolds and
surfaces is a well developed field and several algorithms have
been developed over the years (see for example [15], [16])
and can be used. We have tested for detection of the boundary
points two methods, based on the fact that for a d-manifold
M with boundary, a homeomorphism taking each point’s
neighborhood into a Euclidean subspace of dimension d exists
only for interior points, whereas boundary points are only
homeomorphic to partial regions of such a subspace. Both
methods look at the K nearest neighbors of each point, in
coordinates reconstructed from the distances using classical
multidimensional scaling (MDS).

The first method, given the local coordinates, attempts to
detect the boundary by assuming the point, along with two of
its neighbors form part of a curve along the boundary, and try
to determine whether or not it is a part of the boundary. The
algorithm goes as follows:

1 Consider the set of K nearest neighbors of point i.
Apply MDS to compute a local representation. Let
{z;}}£, be the d-dimensional local coordinates obtained
by this representation.

2 For each pair, j,k of neighbors of i, such that the angle
Az;z;7); is close enough to 7, we mark the pair as valid.
Let Z;zx, and (Z;Z)" denote the vector connecting the
points z; and z; and its rotation by 90° clockwise,
respectively. If we find a point z,, such that

(Zmzi,(ZjzK) ") - P

Hm””(;jizk)L” is close to 1, we label the pair 7, k as
satisfied.

3 If the fraction of satisfied valid pairs out of all valid pairs
is smaller than some threshold, we consider the point % to

be a boundary point.

The second method, more suitable for manifolds of higher
intrinsic dimensionality, tries to look at the direction normal to
the boundary. Moving in the normal direction, the density of
sampling points should drop to zero. We can check along each
direction denoted by the difference vector between the point 7
and one of its neighbors, 7. Assuming close to uniform density
of the points, one such neighboring point j should produce a
vector pointing close to the normal direction.

The algorithm, for each point, 7, is as follows:

1 Consider the set of K nearest neighbors of point i.
Apply MDS to compute a local representation. Let
{z;}X, be the d-dimensional local coordinates obtained
by this representation.

2 For each point j € {1..K} consider the direction z;z;.
This direction is normal to a hyperplane set at z;. Check
if the ratio of the number of points on each side of the
hyperplane is larger than a certain threshold.

3 If the fraction of large ratio directions is above a certain
threshold, mark point 7 as a boundary point.

After detecting the boundary points, we determine which
geodesics pass through boundary points. Note that when
propagating the distances from a point on the proximity
graph, a dynamic programming algorithm is often used. The
detection of geodesics which pass close to the boundary can
be incorporated into such dynamic programming algorithms.
We demonstrate this for the Dijkstra ([17], see also [18] )
algorithm, but it can be done for other dynamic programming
weighted shortest paths algorithms such as those by Bellman
and Ford, or Floyd.

For example, the Dijkstra algorithm is modified as follows:
While extending the shortest path from source ¢ to point j,
towards point j’s neighbors: For each neighbor k of point j,
check if the shortest path from i to point k is longer than the
route through j. If so, update the path length to the shorter
path, as is done in the Dijkstra algorithm, but in addition, mark
the newly updated path as a geodesic to be removed from the



MDS, provided that,

i The path from ¢ to j is a path marked to be removed, or
it 7 is a boundary point, and the path from ¢ to k through j
travels through more than one point.

The restriction on the addition of points is meant to prevent
paths that end in a boundary point, but do not touch the
boundary and continue, from being removed.

Geodesics marked for removal have their point pair given
weight w;; = 0 in the weighted Stress function. All other
point pairs are given a weight of one.

We note that this removal of geodesics should allow non-
convex manifolds to be analyzed correctly, as is shown in
Section III, but this is assuming the manifold is intrinsically
flat. In the more general case, this is not sufficient. A possible
sufficient rule would be to remove geodesics connecting points
i and j such that d(x;,x;) < d(x;,0M) + d(x;, 0M), where
OM is the boundary of the manifold to be analyzed. This
rule, however, is too restrictive and may be improved upon in
certain cases.

B. Minimizing the Stress Function

When minimizing the Stress function one has to consider
both the speed of convergence and the prospects of converging
to a local minimum.

The least squares Stress function is non-convex and as such,
its convergence may converge to local minima, far from the
global minimum. In order to get a good convergence, we use
as an initial solution the solution obtained by classical scaling.
Classical scaling tries to minimize the Strain function [14],

X = argmin|JT (D(X) - A)J||3.
X

The classical scaling solution has been used before [19] as
initialization for the fully weighted Stress functional. Although
this does not guarantee convergence, in practice, for intrinsi-
cally flat examples we’ve experimented with, the algorithm
converged to the global minimum.

We then use the SMACOF algorithm [14] to find the optimal
solution for the weighted Stress function. The SMACOF algo-
rithm can be shown to be equivalent to a gradient descent step
with a constant step side. Unlike constant step gradient descent
for nonlinear functions, SMACOF iterations are proven to
converge (see [14]). To further accelerate the convergence, we
have used a multiscale framework, and for convergence at each
scale we have used vector extrapolation methods.

Multiscale methods have been used before for accelerating
the SMACOF algorithm[20]. When minimizing the weighted
Stress function, it is important to correctly perform the re-
striction to a coarser grid. We use the farthest point sampling
algorithm to select the representatives of each grid, but add
more points from the boundaries, to allow correct interpolation
of the fine grid using the coarse grid elements. We solve the
problem at each grid, starting from the coarsest level, and use
the coarse grid solution to interpolate the starting position of
the finer grid elements before allowing it to converge. Each
element grid is linearly interpolated using the coordinates of

its nearest coarse grid neighbors. The interpolation weights
are determined using a least squares fitting problem with
regularization made to ensure all nearest neighbors are used
if possible. At each grid, after interpolating the coordinates of
the elements, the SMACOF algorithm is used to minimize the
Stress function, before moving to the next grid. In order to
accelerate the convergence, vector extrapolation methods are
used on the iteration vectors.

Vector extrapolation methods, such as Minimal Polyno-
mial Extrapolation and Reduced Rank Extrapolation take a
series of iterate vectors derived by some iteration scheme,
and extrapolate the limit solution of this series. While these
algorithms were derived assuming a linear iterative scheme,
in practice they work well enough for nonlinear equations,
such as those found in computational fluid dynamics[21].
The methods we have experimented with are the Minimal
Polynomial Extrapolation (MPE) algorithm, and the Reduced
Rank Extrapolation method (RRE) algorithm. An overview
of these algorithms is given here, as these algorithms were
previously described in details [22], [23], [24]. In describing
these algorithms we use the following notation: Let {x; };—o be
a series of iteration vectors resulting from an iterative process.
We denote ul?) = xU+1) — x() and v = w0+ — ) in
the following description of these methods. The matrices U
and V are matrices whose columns are the vectors {u(®} and
{v(} respectively, for a certain sequence of iterations.

1) Minimal Polynomial Extrapolation (MPE): This method
computes the minimal polynomial P(A\) of A such that
P(A)ug = 0. As shown by [24], the coefficients of this
polynomial can be computed from a linear equation in {u?},
The resulting polynomial can then be used to extrapolate the
solution to the iterative process. In practice, the solution of
the extrapolation is defined as

k
Sn,k = E Vi Xn+j
j=0

Where the coefficients «y; are defined as
G
Vi = k

> i0 Ci

Where the vector ¢ is obtained by solving
Un,k:c = —Up+tk

2) Reduced Rank Extrapolation method (RRE): Again,
looking at a linear iteration scheme, since v(7) = (A— I)uy ),
assuming we have NV iteration vectors, and if the matrix V is
of full rank, we could write

I-A)*'=-Uv™'

The Reduced Rank Extrapolation method instead solves the
equation system

S

x4+ U¢
0 = u®4+ve

but does so with smaller matrices U, V, of size N X k.



We have used in our algorithm the RRE method, although
in practice, for the SMACOF algorithm, both the MPE and the
RRE algorithm gave comparable results, giving us a speed-up
of at least times 3. A comparison of the convergence with
and without vector extrapolation and multiscale methods is
shown in Figure 1. The Stress values shown are taken from
the convergence on the problem shown in Figure 3, with 1200
points.

III. CORRECTNESS OF THE ALGORITHM

The correctness of the Isomap algorithm has been shown
for case of convex manifolds by Bernstein et. al [25]. More
specifically, they prove the graph distance converges to the
geodesic distance. They assume, however, that these distances
should be line distances in the Euclidean subspace Isomap
maps. This is true provided this region is convex. If the region
is non-convex, the shortest paths connecting points may have
to curve around the boundary of the region. We therefore show
we detect (and remove) all paths for which the line distance
should be different from the geodesic distance.

We assume the manifold we wish to map is a smooth,
compact, connected, manifold M’, isometric to a non-convex
continuous subset M of R? The set M is a subset of a
strongly geodesically convex set, C (for example, we can
choose C = conv(M), the convex hull of M). Since geodesics
in C that stay in the interior of M are the same in both
manifolds, a shortest path between the points in M is also a
unique geodesic. These geodesics are approximated correctly
according to [25].

The geodesics in C that pass outside of M are removed
from the set of distances processed by the MDS procedure
in the proposed algorithm. This is shown by the following
proposition:

Proposition 1: Let C’ be a compact manifold isometric to
a convex region in a Euclidean space and M’ a submanifold
of C. For any geodesic ger(p,q) in C' which is not restricted
to M’, the shortest path between p,q in M’ will touch the
boundary of M’, and is thus ignored by the MDS procedure
in the proposed topologically constrained isometric embedding
algorithm.

Proof: Consider the shortest path from p to ¢, where
p,q € int(M), and int(M) is the interior of M. We consider
the case where this geodesic in C passes partially outside of
M. We also assume that this geodesic enters and exits only
once the region of C\ M. If a geodesic enters and leaves C\ M
more than once, we can restrict the analysis to a subsection
of the geodesic.

Assume the shortest path connecting p,q in M does not
touch the boundary of M. By the choice of p and ¢, the
shortest path restricted to M between p and ¢ is not a straight
line (the line connecting p and ¢ is not included in M). As
long as it does not touch the boundary, we can shorten the
length of the geodesic, by replacing sections of it with straight
segments. That is, we replace a curved section between points
p’ and ¢’ by a straight line, as shown in Figure ??.

Original Swiss-roll

o =0.05

Fig. 2. On the left: Swiss hole surface without noise. On the right: A Swiss
hole contaminated by Gaussian noise with 0 = 0.015 and o = 0.05, and the
spiral surface. Detected boundary points are shown in red.

The length of the curve becomes smaller and it is bounded
from below by the length d(p,q). We can only achieve this
length by passing through C \ M, using a straight line — this
geodesic is unique since C’ is strongly geodesically convex.
Thus, we can always find a shorter curve as long as our
geodesic does not touch a boundary point, in contradiction
to the definition of a geodesic. Therefore the shortest path has
to touch the boundary. Since the isometry to M’ is bijective,
the shortest path must touch the boundary in the embedded
space as well. Therefore, we detect it when calculating the
shortest path and remove it from the minimization by setting
to zero the appropriate weight. |

IV. EXAMPLES AND APPLICATIONS

We have used the algorithm on several synthetic examples,
as well as in image analysis tasks. For example, we have
taken a Swiss roll surface with a rectangular hole cut into it.
We’ve checked the reconstruction of the intrinsic coordinates
obtained using our algorithm, as well as using several other,
locally acting, algorithms, after subjecting the surface coordi-
nates to various levels of Gaussian additive noise. The original
surfaces, embedded in three dimensional space are shown in
Figure 2. The resulting mapping created by several algorithms
as well as ours is shown for the noiseless case and a case
with strong noise in Figures 3,4. This example demonstrates
the robustness of the algorithm with respect to noise under the
assumption of Euclidean isometry.

Although in the case of real-life data analysis the data
may not be isometric to a Euclidean manifold under a rea-
sonable choice of distances between data points, in practice
our algorithm can be applied to image manifolds analysis.
Specifically, we tried to map the gaze direction of a person
from a sequence of grayscale images. Assuming the facial pose
and expressions do not change dramatically, images of the
area of the eyes form a manifold which can be parameterized
by the location of the pupil on the eye ball. Similar to
previous image manifold experiments [26], we have used
Euclidean distances between the row-stacked image vectors
as the extrinsic distance measure. In order to minimize the
effect of head movement, a simple block matching was used,
and the same facial region was compared. We then used our
algorithm to produce a mapping of the image manifold. The
resulting two dimensional plot of the intrinsic coordinates of
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Embedding of the swiss roll (without noise), as produced by
LLE, Laplacian eigenmaps, Hessian LLE, diffusion maps, Isomap, and our
algorithm. Detected boundary points are shown as red pluses.
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Fig. 4. Embedding of a 2D manifold contaminated by Gaussian noise with
o = 0.05, as produced by LLE, Laplacian eigenmaps, Hessian LLE, diffusion
maps, Isomap, and our algorithm. Detected boundary points are shown as red



Fig. 5. The intrinsic coordinates of the image manifold of the eyes area with
different gaze directions, as mapped by our algorithm.

the data points, as well as sampled images is shown in Figure
5.

V. CONCLUSION

We have demonstrated a new algorithm for nonlinear di-
mensionality reduction. We have shown its robustness to noise
on synthetic examples in comparison to local methods, and
demonstrated its usefulness on real image data. Future work
may include the use of multigrid methods (see for example
[20]), as well as improvements to allow handling of larger data
sets. In addition, the boundary detection algorithms currently
used may be replaced with or compared to other algorithms.
More specifically, with respect to image manifolds analysis,
we would like to use different distance measures between
images [3], as well as trying to weaken the flat isometry
assumption, which is rarely accurate real-life data.
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