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Abstract

Symmetry and self-similarity is the cornerstone of Na-
ture, exhibiting itself through the shapes of natural cre-
ations and ubiquitous laws of physics. Since many natural
objects are symmetric, the absence of symmetry can often
be an indication of some anomaly or abnormal behavior.
Therefore, detection of asymmetries is important in numer-
ous practical applications, including crystallography, med-
ical imaging, and face recognition, to mention a few. Con-
versely, the assumption of underlying shape symmetry can
facilitate solutions to many problems in shape reconstruc-
tion and analysis. Traditionally, symmetries are described
as extrinsic geometric properties of the shape. While being
adequate for rigid shapes, such a description is inappropri-
ate for non-rigid ones. Extrinsic symmetry can be broken as
a result of shape deformations, while its intrinsic symmetry
is preserved. In this paper, we pose the problem of finding
intrinsic symmetries of non-rigid shapes and propose an ef-
ficient method for their computation.

1. Introduction

“Symmetry, as wide or as narrow as you may define its
meaning, is one idea by which man through the ages has
tried to comprehend the created order, beauty, and perfec-
tion” [29]. These words of Hermann Weyl, one of the great-
est twentieth century mathematician, reflect the importance
symmetry has in all aspects of our life. Symmetry, referred
to in some contexts as self-similarity or invariance is the
cornerstone of Nature, exhibiting itself through the shapes
of natural creations we see every day as well as through less
evident yet omnipresent laws of physics.

The interest in symmetries of shapes dates back to the
dawn of the human civilization. Early evidences that our
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Figure 1. Symmetric or not? Visualization of the difference be-
tween extrinsic and intrinsic symmetry: extrinsically symmetric
shape is also intrinsically symmetric (left), however, an isometry
of the shape is intrinsically symmetric but extrinsically asymmet-
ric (right).

predecessors attributed importance to symmetries can be
found in many cultural heritages, ranging from monumental
architecture of the Egyptian pyramids to traditional ancient
Greek decorations. Johannes Kepler was among the first
who attempted to give a geometric formulation to symme-
tries in his treatise On the six-cornered snowflake [15] in
as early as 1611. A few centuries later, the study of sym-
metric shapes became a cornerstone of crystallography. Fi-
nally, symmetries of more complicated higher-dimensional
objects underlie modern physics theories about the nature
of matter, space and time.

Since many natural objects are symmetric, symmetry
breaking can often be an indication of some anomaly or
abnormal behavior. Therefore, detection of asymmetries
arises in numerous practical problems, among which med-
ical applications are probably the first to come in mind.
For example, detection of tumors in medical images can be
based on deviations from otherwise symmetric body organs
and tissues [18]. Facial symmetry is important in craniofa-
cial plastic surgery [13], since symmetric facial features are
often associated with beauty and aesthetics [20]. Further-
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more, facial asymmetry can also be an indication of vari-
ous syndromes and disorders [12]. Conversely, the assump-
tion of symmetry can be used as a prior knowledge in many
problems. It may facilitate, for example, the reconstruction
of surfaces [27], face detection, recognition and feature ex-
traction [24, 26].

In pattern recognition and computer vision literature,
there exists a significant number of papers dedicated to find-
ing symmetries in images [19], two-dimensional [30, 2, 1]
and three-dimensional shapes [28, 14, 22]. A wide spectrum
of methods employed for this purpose includes approaches
based on dual spaces [7], genetic algorithms [11], moments
calculation [5], pair matching [17, 6], and local shape de-
scriptors [31].

Traditionally, symmetries are considered as extrinsic ge-
ometric properties of shapes, i.e., related to the way the
shape is represented in the Euclidean space. Though ade-
quate for rigid shapes, such a point of view is inappropriate
for non-rigid or deformable ones. Due to the deformations
such shapes can undergo, the extrinsic symmetries may be
lost, while intrinsically the shape still remains symmetric.
Considering as an example the human body in Figure 1
(left). Extrinsic bilateral symmetry of the body is broken
when the body assumes different postures. Yet, from the
point of view of intrinsic geometry, the new shape remains
almost identical; as such a deformation does not signifi-
cantly change its metric structure. In this sense, intrinsic
symmetries are a superset of the extrinsic ones. Consider-
ing intrinsic rather than extrinsic symmetries allows us to
characterize the object self-similarity that is invariant to de-
formations. If we resort to our previous medical illustra-
tion, we can detect tumors as irregular, non-symmetric ob-
jects, no matter how the tissues and the symmetric organs
surrounding them are bent.

Unfortunately, while extrinsic symmetry computation is
a well-established subject, very little effort has so far been
devoted to intrinsic symmetries. Similarity of non-rigid
shapes was considered in recent papers of Elad and Kimmel
[8], Mémoli and Sapiro [21], and Bronstein et al. [3]. Yet,
none of these papers deals with self-similarity and symme-
try. In this paper, we address the problem of finding intrin-
sic symmetries of non-rigid shapes. We define criteria of
global and local asymmetry and present a practical method
for their computation. The rest of this paper is organized
as follows. In Section 2 we define intrinsic and extrinsic
symmetries. Section 3 is devoted to a numerical scheme for
symmetry computation.Experimental results are presented
in Section 4. Section 5 concludes the paper.

2. Extrinsic and intrinsic symmetries
We model a non-rigid shape X as a two-dimensional

smooth compact connected and complete Riemannian sur-
face (possibly with boundary) embedded intoR3. The man-

ifold can be considered as a metric space with the geodesic
metric dX : X×X → Rmeasuring the lengths of the short-
est paths on X , where the length structure is induced by the
Euclidean metric dR3 . Another metric, with which X can
be equipped, is the restricted Euclidean metric dR3 |X . We
broadly refer to properties described in terms of the met-
ric dX as to the intrinsic geometry of X , and to properties
associated with dR3 |X as the extrinsic geometry.

A transformation g : X → R3 preserving the extrinsic
geometry of a shape X is called a congruence, and X and
g(X) are called congruent. If in addition g(X) = X , such
a g is called a self-congruence or an extrinsic symmetry of
X . Extrinsic symmetries form a group with the function
composition,

ESym(X) = {g : X
1:1→X : dR3 |X = dR3 |X ◦ (g × g)},

which we call the extrinsic symmetry group of X .
ESym(X) contains a subset of rotation and reflection trans-
formations in R3, to which the shape X is invariant.

Analogously, a transformation g : X → R3 preserving
the intrinsic geometry of a shape X is called an isometry,
and the shapes X and g(X) are referred to as isometric. An
isometry mapping X onto itself is called a self-isometry or
an intrinsic symmetry of X . Like their extrinsic counter-
parts, intrinsic symmetries form the intrinsic symmetry or
the isometry group

ISym(X) = {g : X→X : dX = dX ◦ (g × g)}. (1)

The intrinsic symmetry group is invariant to isometries of
the shape. Since every extrinsic symmetry is also an intrin-
sic symmetry, ESym(X) is a subset of ISym(X). This fact
is visualized in Figure 1, showing that an extrinsically sym-
metric shape is also intrinsically symmetric, yet an intrin-
sically symmetric shape might be extrinsically asymmetric.
In the sequel, we will focus our attention on intrinsic sym-
metries only, to which we will refer simply as to “symme-
tries”.

We denote by F(X) the space of all mappings g : X →
X (not necessarily bijective), and define a metric on F(X)
as

dF(X)(f, g) = max
x∈X

dX(f(x), g(x)) (2)

for all f, g ∈ F(X) (note that the maximum is always
achieved, since X is a compact space). We refer to the set

BF(X)(g, r) = {f ∈ F(X) : dF(X)(g, f) ≤ r} (3)

as to the closed metric ball of radius r centered at g (as a
matter of notation, we will omit r referring to a ball of some
unspecified radius). A ball forms a closed neighborhood of
g. We also associate the distortion

dis(g) = max
x,x′∈X

|dX(x, x′)− dX(g(x), g(x′))| (4)



with every mapping g ∈ F(X). In this context, the distor-
tion is a function dis : F → R measuring how dX differs
from dX ◦ (g × g).

In these terms, an intrinsic symmetry can be defined as
a mapping g ∈ F(X) having dis(g) = 0, which is a global
minimum of dis. Moreover, it can be shown that intrinsic
symmetries are also local minima of the distortion, in the
sense that for every g ∈ ISym(X), there exists a sufficiently
small neighborhood BF(X)(g) ⊂ F(X), such that any f ∈
BF(X)(g) has dis(f) ≥ dis(g).

2.1. Approximate symmetries

In real applications, due to acquisition and representa-
tion inaccuracies, perfect symmetry rarely exists. Non-
symmetric shapes have a trivial intrinsic symmetry group,
containing only the identity mapping id(x) = x. However,
while not symmetric in the strict sense, a shape can still be
approximately symmetric. An intuitive way to understand
the difference between the two definitions, is by thinking
of a non-symmetric shape as obtained by applying a defor-
mation to some other symmetric shape. Such a deformation
may break the symmetries of the shape: if previously a sym-
metry was a self-isometry, we now have mappings which
have non-zero distortion.

We call a map g ∈ F(X) with dis(g) ≤ ε an ε-self-
isometry, and, by analogy with symmetries, define the in-
trinsic ε-symmetries of X as the set of ε-self-isometries
which are local minima of dis on F(X),

ISym(X, ε) = (5){
g ∈ F(X) : ε ≥ dis(g) = min

f∈BF(X)(g)
dis(f)

}
.

Note that unlike symmetries, ε-symmetries are not closed
under function composition and therefore do not form a
group.

Also note that in practice, ε is unknown a priori, and
choosing different values of ε results in different structure of
ISym(X, ε). Experiments show that choosing ε to be twice
the sampling radius of discrete shapes produces meaningful
results.

In order to quantify how a point on X contributes to the
global shape asymmetry, we define the local shape asym-
metry,

asym(X, x) = (6)
max
x′∈X

|dX(x, x′)− dX(g∗(x), g∗(x′))|

measuring the distortion of g∗ at a point x. Points with large
local asymmetry are responsible for symmetry breaking.

The global assymetry,with relation to g∗, can be written
as,

asym(X) = max
x∈X

asym(X, x). (7)

In practice, the use of an Lp version of the distortion in lieu
of its L∞ counterpart appears to be more robust to noise.

3. Computation of intrinsic symmetries
For practical computation of symmetries, the surface X

has to be discretized and sampled at N points, constitut-
ing an r-covering (i.e., X =

⋃N
n=1 BX(xn, r), where BX

denotes a closed metric ball on X). We denote this sam-
pling by Xr = {x1, ..., xN} ⊆ X . A good sampling of the
surface can be achieved using the farthest point sampling
algorithm [8, 9, 23, 25], which guarantees that Xr is also
r-separated, i.e. dX(xi, xj) ≥ r for any i 6= j. The ex-
trinsic geometry of X is approximated by a triangular mesh
X̂ built upon the vertices Xr. In order to approximate the
intrinsic geometry, we use the fast marching method [16],
which produces a first-order approximation for the geodesic
distances between Xr on X̂ .

Our goal is to approximate (7) and (6) on the discrete
shape, or in other words, find such a mapping that has min-
imum distortion among all the non-trivial local minima of
dis. In general, this is an NP-hard problem involving combi-
natorial optimization [21]. In [3], Bronstein et al. proposed
a relaxation for problems of this type by means of continu-
ous optimization on the triangular mesh X̂ , in the spirit of
the multidimensional scaling (MDS) problem. Their frame-
work is referred to as generalized MDS (GMDS).

Here, we adopt this approach and actually approxi-
mate (7) and (6) on F(X̂) rather than F(Xr). The method
proposed here consists of two stages: first, an initialization
is found by computing the non-trivial minimum-distortion
discrete mapping on a sub-sampling of the shape. Next, the
initialization is refined by means of GMDS, which finds a
local minimizer of the distortion.

3.1. Coarse initialization

Given Xr, we sub-sample it with a larger radius R, pro-
ducing a sparser sampling XR ⊂ Xr containing M ¿ N
points. We denote by F(XR) the set of all mappings
π : XR → XR (permutations on the discrete set XR),
which can be represented as M -tuples π = (π1, ..., πM ) ∈
{1, ...,M}M . Without loss of generality, we set π1 =
(1, 2, ...,M) to be the identity map.

Finding the global minimum on F(XR) \ {π1} poten-
tially requires computing the distortion of O(MM ) map-
pings. However, the search space can be reduced by ruling
out mappings that are unlikely to have low distortion. We
observe that in order for π to be a good candidate for an
approximate symmetry, the intrinsic properties of the sur-
face, such as the behavior of the metric dX around every xi

should be similar to those around xπi . In order to quantify
this behavior, for each xi ∈ XR we compute the histogram
hi = hist({d̂ij : d̂ij ≤ ρ}) of the approximate geodesic



distances in a ρ-ball centered xi (in our implementation, the
parameter ρ was set to ∞).

Using the vectors hi as local descriptors of the points in
XR, we compute the dissimilarity of two points xi, xj ∈
XR. Our practice shows that a straightforward use of the
Euclidean distance ‖hi−hj‖2 between the descriptors may
be inaccurate due to binning errors. To account for distances
between the bins, we use the weighted histogram distance,
d(hi, hj) =

√
(hi − hj)TA(hi − hj), where Amn are the

distances between the bins m and n. For each point xi in
XR, we construct a set Ci ⊂ {1, ..., M} of indices of K
points having the most similar descriptors. K is selected to
be a small number, typically significantly smaller than M .
We define the reduced search space Finit = C1×C2× ...×
CM . Mappings copying any xi to xπi

/∈ Ci are excluded
from the search space. Since i /∈ Ci, the identity mapping
is also excluded from Finit.

Even though the coarse sample size M and the number
of initial matches for every point are relatively small, Finit

has still O(KM ) mappings, making an exhaustive search
prohibitively expensive. However, we can select a reason-
ably good mapping from Finit using the following hierar-
chical greedy algorithm, which is similar in its spirit to the
technique presented in [10] for improving convergence of
ICP-based extrinsic surface alignment.

1. Pairing: For each pair (i, j) ∈ {1, ..., M}2, choose
the best pair (m,n) ∈ Ci × Cj minimizing the distor-

tion
∣∣∣d̂ij − d̂mn

∣∣∣. This establishes a two-point corre-
spondence (i, j) 7→ (m, n). The outcome of this step
is the set of O(M2) two-point correspondences E2,
which we sort in increasing order of distortion.

2. Merging: The pairs are merged into four-point corre-
spondences. Taking the first two-point correspondence
e ∈ E2, we find another two-point correspondence
having a disjoint domain and minimizing the distor-
tion of the obtained four-point correspondence. We
remove all correspondences sharing the same domain
from E2 and continue until E2 becomes empty. The
merging continues hierarchically, producing E2k from
Ek, stopping typically at E8 or E16.

3. Completion: We select the minimum distortion cor-
respondence (i1, ..., ik) 7→ (πi1 , ..., πik

) from the
last produced Ek, and complete it to a full M -
point correspondence by adding the missing indices
{ik+1, ..., iM} = {1, ..., M}\{i1, ..., ik} and their im-
ages πik+1 , ..., πiM

. For each added point j, we select

πj = arg min
πj∈{1,...,M}

max
i∈{i1,...,ik}

∣∣∣d̂ij − d̂πi,πj

∣∣∣ .

Return the found mapping πmin and its distortion εmin.

Since the algorithm never backtracks, it may produce a sub-
optimal mapping πmin. However, practice shows that if
some good pairs are found at Step 1, the algorithm tends
to produce a very good estimate for the minimum distortion
mapping on Finit.

A guaranteed global minimum on Finit can be computed
by using a branch and bound algorithm, similar to [10]. The
idea of the algorithm is based on the fact that if a good es-
timate for πmin is found using the greedy matching, a large
set of mappings in Finit can be eliminated efficiently. The
algorithm is initialized by πmin and εmin found by greedy
matching, and proceeds as following.

1. Given a correspondence of k − 1 feature points
(1, ..., k − 1) 7→ (π1, ..., πk−1), we would like to es-
tablish k 7→ πk.

2. Prune: For each potential correspondence πk ∈ Ck,
evaluate maxi=1,...,k |d̂ik−d̂πi,πk

|. If the obtained dis-
tortion is larger than εmin, discard the potential corre-
spondence.

3. Branch: For each remaining πk, recursively invoke
Step 1 with (1, ..., k) 7→ (π1, ..., πk).

4. Bound: If k = M , compute the distortion dis (π). If
dis (π) < εmin, set εmin = dis (π) and πmin = π.

3.2. Local refinement

The second stage of our approach is a local refinement.
The greedy algorithm followed by the optional branch and
bound global minimization finds the minimum distortion
non-trivial mapping πmin : XR → XR. We use πmin as a
coarse-grid initialization for a multiresolution optimization
scheme used to solve the GMDS problem.

We optimize over the images x′i = g(xi),

min
{x′1,...,x′N}⊂F(X̂)

max
i,j=1,...,N

∣∣∣d̂ij − d̂X(x′i, x
′
j)

∣∣∣ , (8)

where the distance terms d̂X(x′i, x
′
j) between arbitrary

points on the mesh are found using the interpolation tech-
nique described in [4]. The local minimizer of (8), denoted
by {x∗1, ..., x∗N}, is found by means of convex optimization.
A guaranteed convergence to a non-trivial solution (i.e., a
solution distinct from the identity map) can be obtained by
constraining the maximum distance in F(X̂) between πmin

and g in the GMDS problem.
The global asymmetry is computed as

asym(X̂) = max
i,j=1,...,N

∣∣∣d̂ij − d̂X(x∗i , x
∗
j )

∣∣∣ ,

and the local asymmetry as

asym(X̂, xi) = max
j=1,...,N

∣∣∣d̂ij − d̂X(x∗j , xi)
∣∣∣ .



4. Results
4.1. Symmetry detection

In order to assess the accuracy of our method, we per-
formed an experiment of intrinsic symmetry detection on
a data set of four different non-rigid shapes (dog, giraffe,
man and crocodile). Each shape appeared in three instances:
extrinsically symmetric (serving as a reference), intrinsi-
cally symmetric but not extrinsically symmetric (obtained
by means of a near-isometric deformation of the reference
shapes) and asymmetric (obtained by local non-isometric
deformation). The local asymmetric features included en-
larged ear of the dog, elongated leg of the giraffe, cropped
hand of the man and enlarged foot of the crocodile.

Figure 2 visualizes our intrinsic symmetry detection
method. The color represents the local measure of asymme-
try (asym(X̂, xi)). The numbers represent the global mea-
sure of asymmetry (asym(X̂)). In most cases, we were able
to identify symmetric shapes and correctly detect the sym-
metry breaking features (marked with arrows in Figure 2).

4.2. Visualization of the space of symmetries

Extrinsic symmetries of a shape form a sub-group of the
isometry group of R3, and thus its members can be eas-
ily parametrized (for example, in case of a rotational sym-
metry, such parameters can be a unit direction vector and
an angle). This allows a simple description of the extrin-
sic symmetry group. Unfortunately, such a straightforward
parametrization is generally unavailable for intrinsic sym-
metries, and even less for their approximate counterparts.
Information about the intrinsic symmetries of a shape can
be inferred from the structure of the space F(X) and the
associated distortion dis : F(X) → R. Despite the very
high dimensionality of F(X), its metric structure can be
approximately visualized the as a configuration of points
in the Euclidean space, where each point represents a map
g ∈ F(X), while the Euclidean distance between each pair
of points approximates dF(X). Such a representation can be
straightforwardly created using MDS techniques.

An approximation of the distortion function is obtained
by projecting the values of dis(g) onto corresponding points
in the representation space. The level sets of the approx-
imate distortion function reveal the structure of the intrin-
sic symmetry group, exhibiting a pattern of local minima.
Clearly pronounced local minima correspond each to a dif-
ferent symmetry.

Figure 3 visualizes the structure of the approximate sym-
metries space F(X) of a shape obtained by isometrically
folding a planar patch. Such a shape has eight intrinsic sym-
metries which are described by a dihedral group D4 (as op-
posed to only one extrinsic symmetry obtained by reflection
with respect to a diagonal). Eight local minima, correspond-
ing to the dihedral symmetries can be clearly distinguished.

5. Conclusions
We formulated the problem of detecting symmetries of

non-rigid shapes. Our measure of symmetry relies on the
intrinsic geometry of the shape, which allows to find sym-
metries that are insensitive to bending and deformation. We
presented a practical approach for the numerical computa-
tion of intrinsic symmetries based on the GMDS method.
Experimental results demonstrate the accuracy of our ap-
proach.
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[25] G. Peyré and L. Cohen. Geodesic Remeshing Using Front
Propagation. International Journal of Computer Vision,
69(1):145–156, 2006. 3

[26] D. Reisfeld and Y. Yeshurun. Robust detection of facial fea-
tures by generalized symmetry. International Conference on
Pattern Recognition (ICPR), 1:117–120, 1992. 2

[27] I. Shimshoni, Y. Moses, and M. Lindernbaumplr. Shape re-
construction of 3D bilaterally symmetric surfaces. Interna-
tional Conference on Image Analysis and Processing (ICIP),
page 76, 1999. 2

[28] C. Sun and J. Sherrah. 3D symmetry detection using the
extended gaussian image. IEEE Trans. PAMI, 19(2):164–
168, 1997. 2

[29] H. Weyl. Symmetry. Princeton University Press, 1983. 1
[30] J. Wolter, T. Woo, and R. Volz. Optimal algorithms for sym-

metry detection in two and three dimensions. The Visual
Computer, 1:37–48, 1985. 2

[31] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a contin-
uous feature. IEEE Trans. PAMI, 17(12):1154–1166, 1995.
2


