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1
METHOD AND APPARATUS FOR
DETERMINING SIMILARITY BETWEEN
SURFACES

RELATED APPLICATIONS

This Application is a National Phase of PCT Patent Appli-
cation No. PCT/IL2006/001451 having International filing
date of Dec. 17, 2006, which claims the benefit of U.S. Pro-
visional Patent Application No. 60/750,837 filed on Dec. 16,
2005. The contents of the above Applications are all incorpo-
rated herein by reference.

FIELD AND BACKGROUND OF THE
INVENTION

The present invention relates to automatic object recogni-
tion and, more particularly, but not exclusively to a method
and apparatus for determining similarity between surfaces,
e.g., for matching purposes.

Matching of surfaces has recently become an important
task of computer vision and is needed in a variety of applica-
tions, such as biometric, security and medical applications. In
security systems, for example, surface matching can be used
for face recognition, so as to grant or deny access to select
individuals, to alert when an individual is recognized, or to
track an individual as the individual travels amongst a plural-
ity of people. In like manner, home automation systems can
employ surface matching to distinguish among residents of a
home, so that the features of the system can be customized for
each resident. In medical applications, surface matching can
be employed for registration an image scan so as to provide a
basis for localizing or tracking a medical instrument with
respect to anatomical features or other elements in the image.

Humans have a remarkable ability to identify objects, such
as faces of individuals, in a rapid and seemingly effortless
fashion. It develops over several years of childhood and
results in the intelligence to recognize thousands of faces and
other objects throughout our lifetime. This skill is quite
robust, and allows humans to correctly identify others despite
changes in appearance, like aging, hairstyle, facial hair and
expression.

For decades, building automatic systems to duplicate
human face identification capability has been an attractive
goal for many academic researchers and commercial compa-
nies around the world. Various attempts in the past were
hampered by a lack of appropriate image acquisition means,
efficient identification algorithms with required accuracy, and
computation power to implement such algorithms.

In general, modern object recognition approaches can be
divided into two wide categories: 2D approaches, using only
image information (which can be either grayscale or color),
and 3D approaches, which incorporate three-dimensional
information as well.

While simpler in data acquisition (which permits real-time
surveillance applications, such as face recognition from a
video-taped crowd in pubic places), the 2D approach suffers
from sensitivity to illumination conditions and object orien-
tation. Since the image represents the light reflected from the
object’s surface at a single observation angle, different illu-
mination conditions can result in different images, which are
likely to be recognized as different objects.

The 3D approach provides face geometry information,
which is typically independent of viewpoint and lighting
conditions, and as such is complementary to the two-dimen-
sional image. Three-dimensional information carries the
actual geometry of the surface of the object, including depth
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information which allows easy segmentation of the surface
from the background. The fundamental question in the 3D
approach is how to efficiently yet accurately quantify the
similarity between a given reference surface (a model), and
some other surface (a probe), which is potentially a deformed
version of the model.

Typically, such quantification is achieved by calculating
the so-called “distance” between the model and the probe. It
is desired, typically, to capture the distinction of the intrinsic
properties of the model and probe (which are associated with
their metric structure), while ignoring the extrinsic properties
that describe the way the surfaces deform. A deformation that
preserves the intrinsic structure of the surface is referred to as
“an isometry”. In Euclidian spaces, for example, translation,
rotation and reflection of a body are isometrics, because they
are not associated with the structure of the body. In non-
Euclidian spaces, isometrics may also include bending of
surfaces.

U.S. Pat. No. 6,947,579, the contents of which are hereby
incorporated by reference discloses a three-dimensional face
recognition technique in which three-dimensional topo-
graphical data of a geometric body in a form of a triangulated
manifold is converted into a series of geodesic distances
between pairs of points of the manifold. A bending invariant
representation of the geometric body is then provided by
forming a low dimensional Euclidean representation of the
geodesic distances. The bending invariant representation is
suitable for matching the geometric body with other geomet-
ric bodies. The matching is performed by calculating the
distance between the respective geometric bodies, based on
the bending invariant representations thereof. The presence or
absence of a match is determined by thresholding the calcu-
lated distance.

The above approach is based on known algorithms such as
multidimensional scaling (MDS), dimensionality reduction
and texture mapping (see, e.g., A. Elad and R. Kimmel, “On
bending invariant signatures for surfaces,” IEEE Trans.
PAMI, 2003, 25(10):1285-1295; S. T. Roweis and L. K. Saul,
“Nonlinear Dimensionality Reduction by Locally Linear
Embedding,” Science, 2000, 290(5500):2323-2326; and G.
Zigelman and R. Kimmel and N. Kiryati, “Texture mapping
using surface flattening via multi-dimensional scaling,” IEEE
Trans. Visualization and computer graphics, 2002, 9(2):198-
207).

Also known are methods in which graph theory is
employed in the context of representation of discrete metric
spaces [N. Linial and E. London and Y. Rabinovich, “The
geometry of graphs and some its algorithmic applications,”
Combinatorica, 1995, 15(2):333-344]. A graph is embedded
in Euclidean space such that the distances between nodes in
the graph are close to the geometric distance of the vectors
representing the Euclidean space.

However, when dealing with abstract metric spaces like
graphs, or even points clouds with local distances, smooth-
ness of the underlying geometry can not be assumed, and the
embedding is a much harder problem. One of the caveats of
the Fuclidean embedding approach is the fact that such
approach introduces a metric distortion, because a Rieman-
nian surface cannot be perfectly represented in a finite-di-
mensional Euclidean space. One of the simplest examples is
the K, ; graph which cannot be embedded in Euclidean space
without distortion.

There is thus a widely recognized need for, and it would be
highly advantageous to have, a method and apparatus for
determining similarity between surfaces devoid of the above
limitations.
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SUMMARY OF THE INVENTION

According to one aspect of the present invention there is
provided a method of determining similarity between a non-
planar probe surface represented by a probe point-cloud and
a non-planar model surface represented by a model point-
cloud, the method comprises: calculating an extremal value
of an objective function describing embedding of the probe
surface into an embedding space having a non-constant sec-
tional curvature; and determining similarity between the
probe surface and the model surface based on the extremal
value.

According to another aspect of the present invention there
is provided a method of searching a library of non-planar
model surfaces for at least a partial match to a non-planar
probe surface, the non-planar probe surface being represented
by a probe point-cloud and each non-planar model surface
being represented by a model point-cloud, the method com-
prising, for each non-planar model surface, performing the
method of claim 1 so as to determine similarity between the
probe surface and the model surface, thereby determining the
presence or absence of at least a partial match.

According to further features in preferred embodiments of
the invention described below, the method further comprises
calculating a matrix of geodesic distances corresponding to
the probe point-cloud.

According to still further features in the described pre-
ferred embodiments the calculation of the extremal value
comprises multiresolution optimization.

According to still further features in the described pre-
ferred embodiments the method further comprises selecting a
subset of the probe point-cloud corresponding to a predeter-
mined patch of the probe surface, wherein the calculation of
the extremal value is based on the subset.

According to yet another aspect of the present invention
there is provided apparatus for determining similarity
between a non-planar probe surface represented by a probe
point-cloud and a non-planar model surface represented by a
model point-cloud, the method comprising: an extremal value
calculator, for calculating an extremal value of an objective
function describing embedding of the probe surface into an
embedding space having a non-constant sectional curvature;
and a similarity determinator operable to determine the simi-
larity between the probe surface and the model surface based
on the extremal value.

According to further features in preferred embodiments of
the invention described below, the apparatus further com-
prises a matrix calculator for calculating a matrix of geodesic
distances corresponding to the probe point-cloud.

According to still further features in the described pre-
ferred embodiments the geodesic distances are calculated
using the fast marching method.

According to still further features in the described pre-
ferred embodiments the extremal value calculator is operable
to employ multiresolution optimization.

According to still further features in the described pre-
ferred embodiments the apparatus further comprises a subset
selector for selecting a subset of the probe point-cloud corre-
sponding to a predetermined patch of the probe surface,
wherein the extremal value calculator is operable to use the
subset for calculating the extremal value.

According to still further features in the described pre-
ferred embodiments for each pair of points in the subset, the
difference between a geodesic distance characterizing the
pair in the point-cloud and a geodesic distance characterizing
the pair in the patch is higher than a predetermined threshold.
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According to still further features in the described pre-
ferred embodiments for each pair of points in the subset, the
sum of geodesic distances in the patch from each point in the
pair to a boundary of the patch is higher than a geodesic
distance characterizing the pair in the point-cloud.

According to still further features in the described pre-
ferred embodiments the objective function is selected so as to
allow calculation of a partial embedding distance between the
probe surface and the model surface.

According to still further features in the described pre-
ferred embodiments the objective function is selected so as to
allow calculation of a Gromov-Hausdorff distance between
the probe surface and the model surface.

According to still further features in the described pre-
ferred embodiments the embedding space is a two-dimen-
sional space.

According to still further features in the described pre-
ferred embodiments the embedding space is a polyhedral
approximation of the model surface.

According to still further features in the described pre-
ferred embodiments the polyhedral approximation comprises
a triangulated manifold.

According to still further features in the described pre-
ferred embodiments the method further comprises construct-
ing the polyhedral approximation from the model point-
cloud.

According to still further features in the described pre-
ferred embodiments the apparatus further comprises a poly-
hedron constructor for constructing the polyhedral approxi-
mation from the model point-cloud.

According to still further features in the described pre-
ferred embodiments the objective function comprises a sum
of'local distortions, each characterizing embedding of a pair
of points in the probe point-cloud into the embedding space.

According to still further features in the described pre-
ferred embodiments the sum is a weighted sum.

According to still further features in the described pre-
ferred embodiments at least a few of the local distortions in
the sum comprise a function of the difference between a first
geodesic distance defined in the probe surface and a second
geodesic distance, corresponding to the first geodesic dis-
tance and being defined in the embedding space.

According to still further features in the described pre-
ferred embodiments the first geodesic distance characterizes
a pair of points of the probe point-cloud and the second
geodesic distance characterizes images of the pair of points.

According to still further features in the described pre-
ferred embodiments the first geodesic distance characterizes
a pair of points of the embedding space and the second geo-
desic distance characterizes images of the pair of points.

According to still further features in the described pre-
ferred embodiments the first geodesic distance is a distance
between a first point of the probe point-cloud and an image of
a first point of the embedding space, and the second geodesic
distance is a distance between a second point of the embed-
ding space and an image of a second point of the probe
point-cloud.

According to still further features in the described pre-
ferred embodiments the calculation of the extremal value
comprises interpolating geodesic distances in the polyhedral
approximation of the model surface.

According to still further features in the described pre-
ferred embodiments the extremal value calculator comprises
an interpolator for interpolating geodesic distances in the
polyhedral approximation of the model surface.
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According to still further features in the described pre-
ferred embodiments the extremal value is calculated by an
iterative procedure.

According to still further features in the described pre-
ferred embodiments the iterative procedure traverses the tri-
angulated manifold while ensuring that images of points in
the point-clouds are always in a plane of one triangle of the
triangulated manifold.

According to still further features in the described pre-
ferred embodiments a direction of the traverse is determined
by a procedure selected from the group consisting of the
steepest decent method, the fixed step gradient method, the
conjugate gradient method, the Newton method and any com-
bination thereof.

According to still further features in the described pre-
ferred embodiments the function of the difference between
the first geodesic distance and the second geodesic distance is
a non-linear function.

According to still further features in the described pre-
ferred embodiments the non-linear function comprises finite
norms of the local distortions.

According to still further features in the described pre-
ferred embodiments the non-linear function is constrained by
a constraint in an infinite norm representation.

According to still further features in the described pre-
ferred embodiments the method further comprises employing
penalty barrier method for de-constraining the non-linear
function.

According to still further features in the described pre-
ferred embodiments the probe surface and the model surface
represent faces.

The present invention successfully addresses the short-
comings of the presently known configurations by providing
a method and apparatus for determining similarity between
surfaces.

Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this invention
belongs. Although methods and materials similar or equiva-
lent to those described herein can be used in the practice or
testing of the present invention, suitable methods and mate-
rials are described below. In case of conflict, the patent speci-
fication, including definitions, will control. In addition, the
materials, methods, and examples are illustrative only and not
intended to be limiting.

Implementation of the method and system of the present
invention involves performing or completing selected tasks or
steps manually, automatically, or a combination thereof.
Moreover, according to actual instrumentation and equip-
ment of preferred embodiments of the method and system of
the present invention, several selected steps could be imple-
mented by hardware or by software on any operating system
of any firmware or a combination thereof. For example, as
hardware, selected steps of the invention could be imple-
mented as a chip ora circuit. As software, selected steps of the
invention could be implemented as a plurality of software
instructions being executed by a computer using any suitable
operating system. In any case, selected steps of the method
and system of the invention could be described as being
performed by a data processor, such as a computing platform
for executing a plurality of instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
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publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

The invention is herein described, by way of example only,
with reference to the accompanying drawings. With specific
reference now to the drawings in detail, it is stressed that the
particulars shown are by way of example and for purposes of
illustrative discussion of the preferred embodiments of the
present invention only, and are presented in the cause of
providing what is believed to be the most useful and readily
understood description of the principles and conceptual
aspects of the invention. In this regard, no attempt is made to
show structural details of the invention in more detail than is
necessary for a fundamental understanding of the invention,
the description taken with the drawings making apparent to
those skilled in the art how the several forms of the invention
may be embodied in practice.

In the drawings:

FIG. 1 is a flowchart diagram of a method suitable for
determining similarity between surfaces, according to vari-
ous exemplary embodiments of the present invention;

FIG. 2 is a schematic illustration of an apparatus for deter-
mining similarity between surfaces, according to various
exemplary embodiments of the present invention;

FIGS. 3a-b show a model surface (FIG. 3a) for which
sufficient geometrical information is given, and a probe sur-
face (FIG. 3b) for which the known geometrical information
is only partial;

FIGS. 4a-b show a model surface (FIG. 4a) and probe
surface (FI1G. 4b), where there is sufficient geometrical infor-
mation for both the model surface and the probe surface;

FIGS. 5a-c are schematic illustrations of a propagation
procedure, according to various exemplary embodiments of
the present invention;

FIG. 6 is a flowchart diagram of an algorithm for traversing
a triangulated manifold, according to various exemplary
embodiments of the present invention;

FIGS. 7a-d show example of data hierarchy construction
for multiresolution optimization, according to various exem-
plary embodiments of the present invention;

FIGS. 8a-b are schematic illustrations of a procedure for
finding a virtual “source” point characterized by predeter-
mined distances from triangle vertices according to various
exemplary embodiments of the present invention;

FIGS. 9a-b are schematic illustrations of partial embed-
dings of a planar patch into a plane, according to various
exemplary embodiments of the present invention.

FIGS. 10a-5 shows normalized distance between a densely
sampled unit sphere and spheres of different radii calculated
according to a preferred embodiment of the present invention
(top line), and using canonical form distances (bottom lines);

FIGS. 11a-c show the normalized distances for radii in the
range of 0.88 to 1.1, calculated according to a preferred
embodiment of the present invention with 50 points (FIG.
11a), and using the canonical form distances with 100 (FIG.
115) and 500 (FIG. 11a) points.

FIGS. 124a-f are schematic illustrations of six articulated
objects and approximate isometries used according to
embodiments of the present invention were applied for deter-
mining similarity;

FIGS. 13a-d show dissimilarity matrices obtained using
embodiments of the present invention (FIGS. 134-b) and
using canonical form distances (FIGS. 13¢-d);

FIGS. 14a-c show proximity pattern representing the dis-
similarity matrices of FIGS. 134, 13¢ and 134, respectively;

FIGS. 154a-f are schematic illustrations of six probe sur-
faces with partial geometrical information, used according to
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embodiments of the present invention for determining simi-
larity to the articulated objects of FIGS. 12a-f;

FIGS. 16a-d show model facial surfaces used according to
embodiments of the present invention in a face recognition
experiment;

FIGS. 17a-b show similarity matrices obtained using
embodiments of the present invention for model facial sur-
faces in the face recognition experiment; and

FIGS. 18a-b show local maps of objective function
describing embeddings of probe facial surfaces of two difter-
ent subjects into a model surface, according to embodiments
of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present embodiments comprise a method and appara-
tus which can be used for determining similarity between
surfaces. Specifically, but not exclusively, the present
embodiments can be used for matching a probe surface to a
model surface. For example, the present embodiments can be
used for searching a library of model surfaces for a model
surface which at least partially matches a probe surface.

The principles and operation of a method and apparatus
according to the present invention may be better understood
with reference to the drawings and accompanying descrip-
tions.

Before explaining at least one embodiment of the invention
in detail, it is to be understood that the invention is not limited
in its application to the details of construction and the
arrangement of the components set forth in the following
description or illustrated in the drawings. The invention is
capable of other embodiments or of being practiced or carried
out in various ways. Also, it is to be understood that the
phraseology and terminology employed herein is for the pur-
pose of description and should not be regarded as limiting.

Surface matching techniques which are based on embed-
dings a surface into an embedding space of high dimension-
ality introduce metric distortions which increase the match-
ing error. For example, in U.S. Pat. No. 6,947,579, the
surfaces to be matched are first embedded into a Euclidean
space of three or more dimensions to produce bending-invari-
ant canonical forms, and, subsequently, high-dimensional
moments are used to compare between the bending-invariant
canonical forms. Similar procedures have also been
employed by replacing the Euclidean space with a non-flat
space with a constant sectional curvature (e.g., a spherical or
hyperbolic space) for which the geodesic distances are
expressed analytically. However, in these techniques, the
errors arising from the embedding step limit the distinguish-
ing capability of the comparison. Such errors are inevitable
and typically cannot be neglected because, generally, the
surfaces of interest have intricate geometry which cannot be
isometrically embedded into a space with a zero or another
constant sectional curvature.

While conceiving the present invention it has been hypoth-
esized and while reducing the present invention to practice it
has been realized that similarity between non-planar surfaces
can be determined by embedding at least one of the surfaces
into an embedding space having a non-constant sectional
curvature.

The term “non-planar surface” is typically known as a
metric space (S, dg) induced by a smooth connected and
compact Riemannian 2-manifold S, characterized by a geo-
desic distance function dg(s,,s,) between every two points s,,
and s, on S. The value of d(s,,s,) is the length of the minimal
geodesic of S which passes through the points s, and s,.
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It is recognized, however, that practically only a sampled
version of the surface in known. Such a sampled surface is
represented by a point-cloud which is a set of points s;
(=1, . .., N), on the Riemannian 2-manifold, and which is
sufficient for describing the topology of the manifold. Being
represented as a discrete set of points, the sampled version of
the surface is characterized by a discrete set of geodesic
distances, rather than by a continuous function. Such a dis-
crete set of geodesic distances is conveniently described by an
NxN matrix D=(d(s;,8,))-

Thus, unless explicitly stated, the term “non-planar sur-
face” refers herein to a sampled surface represented by an
appropriate point-cloud. The term “surface” is used herein as
an abbreviation of the term “non-planar surface”.

The term “sectional curvature” is known in the art and
refers to a mathematical object which controls the rate of
geodesic deviation. The sectional curvature determines the
Riemannian curvature tensor R,,, .. For example, for two-
dimensional spaces, the sectional curvature K is related to
R,vpo Via R, 007K(E,08ov=8u0p ), Where g, is the metric
tensor of the space.

Referring now to the drawings, FIG. 1 is a flowchart dia-
gram of a method suitable for determining similarity between
surfaces, according to various exemplary embodiments ofthe
present invention.

It is to be understood that, unless otherwise defined, the
method steps described hereinbelow can be executed either
contemporaneously or sequentially in many combinations or
orders of execution. Specifically, the ordering of the flowchart
diagrams is not to be considered as limiting. For example, two
or more method steps, appearing in the following description
or in the flowchart diagrams in a particular order, can be
executed in a different order (e.g., a reverse order) or substan-
tially contemporaneously. Additionally, several method steps
described below are optional and may not be executed.

In various exemplary embodiments of the invention the
method determines the method determines similarity
between a reference surface, referred to herein as the model
surface S, and another surface referred to herein as the probe
surface Q. The method quantifies the similarity between the
surfaces, typically by assigning a similarity measure (S, Q)
to the pair of surfaces S and Q, so as to allow determining, for
example, whether or not Q is a deformed version of S. The
method of the present embodiments is particularly useful in
face recognition applications, in which case both S and Q are
facial surfaces. In these embodiments, the method can deter-
mine, for example, whether or not the two facial surfaces S
and Q represent two different expressions or posing angles of
the same person. Thus, low values of € can correspond to a
situation in which the facial surfaces S and Q represent the
same face, while high values of e can correspond to a situation
in which the facial surfaces S and Q represent different faces.
When there is more than one model surface, as, for example,
in the case of a library of facial surfaces, the method can be
executed a plurality of times, where in each execution the
method determines similarity between Q and a different facial
surface of the library.

As stated, non-planar surfaces of the present embodiments
are represented by point-clouds. The point-cloud represent-
ing the model surface is a set of N points s; (j=1, . . ., N) which
is referred to herein as the model point-cloud, and point-cloud
representing the probe surface is a set of M points q;
(=1, ..., M) which is referred to herein as the probe point-
cloud. The dimensions N and M of the model and probe
point-cloud, respectively, can be equal or different. As dem-
onstrated in the Examples section that follows, the method of
the present embodiments is capable of determining similarity
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between non-planar surfaces even when the number of points
in the point cloud is relatively small, e.g., less than 200 points,
more preferably less than 100 points, say about 50 points.

The method begins at step 10 and, optionally and prefer-
ably continues to step 11, in which a subset of the probe
point-cloud is selected. The subset corresponds to a predeter-
mined patch Q' = Q of the probe surface. This embodiment is
useful when it is desired to determine similarity between the
patch Q' and the model surface S. The selection of subset can
be according to any criterion or set of criteria. For example, in
various exemplary embodiments of the invention the subset
includes only points for which the metric on Q' (expressed by
a proper matrix of geodesic distances) is consistent with the
metric on Q. A preferred technique for selecting the subset is
provided hereinunder. In the embodiments in which step 11 is
employed, the probe point-cloud is preferably redefined to
include only the points of the subset.

According to a preferred embodiment of the present inven-
tion the method continues to step 12 in which a matrix D,=
(dp(95q;)) of geodesic distances d, corresponding to the
probe point-cloud is calculated. Typically, the matrix Dg,
which corresponds to the model point-cloud, is already
known. In the event in which Dy is not known, step 12 pref-
erably comprises the calculation of Dg=(d(s;,s,)). The calcu-
lation of geodesic distance matrices is well known in the art.
In various exemplary embodiments of the invention the cal-
culation of Dgand/or D, is performed using the fast marching
method (FMM), found, e.g., in J. A. Sethian, “A fast marching
level set method for monotonically advancing fronts,” Proc.
Nat. Acad. Sci., 1996, 93(4): 1591-1595; and R. Kimmel and
J. A. Sethian “Computing geodesic on manifolds,” Proc. US
National Academy of Science, 1998, 95:8431-8435, the con-
tents of which are hereby incorporated by reference. FMM is
an efficient numerical method to compute a first-order
approximation of the geodesic distances. Given a set of points
{q;} on Q a distance map T(x, y) from these points to other
points on the surface is obtained as the solution of an Eikonal
equation, [|V|[=1; T(q,)=0. The FMM allows computing of the
distance map with an O(M log M) complexity. A similar
technique can be applied for the set {sj} of'S with complexity
of O(N log N).

The method continues to step 14 in which an extremal
value (a minimum or a maximum) of an objective function F
is calculated. The objective function F preferably describes
the embedding of the probe surface Q (or a patch thereof, Q")
into an embedding space, which preferably has a non-con-
stant sectional curvature. In other words, the present embodi-
ments contemplate any embedding space other than a spheri-
cal, hyperbolic and Euclidian space. According to a preferred
embodiment of the present invention the embedding space is
a two-dimensional space, i.e., the dimensionality of the
embedding space is preferably the same as the dimensionality
of the probe surface Q. As will be appreciated by one of
ordinary skill in the art, this corresponds to a zero co-dimen-
sion of Q in the embedding space. This is in sharp distinction
to other surface matching techniques in which the co-dimen-
sion of the probe surface in the embedding space is at least 1
and oftentimes 2 or more.

In various exemplary embodiments of the invention the
embedding space is a polyhedral approximation of the model
surface S. Thus, the embedding space can be a triangulated
manifold, a quadrangulated manifold or it can be expressed
using any other polygonal representation. For example, when
the embedding space is a triangulated manifold, it is associ-
ated with a triangulation set Ty, defined as T¢={(m,,,m,,,
m5), ..., (mNT,l,mNT,2,mNT,3)}, such that the model point-
cloud S is approximated as a polyhedron consisting of N,
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triangular faces, where the t-th face is described by the verti-
ces s, .8, .S, . lypically, such or similar polyhedral
approximation of the model surface S is already provided
before the method is executed. In other embodiments, e.g.,
when only a point-cloud of S is known, step 14 is preceded by
step 13 in which a polyhedral approximation is constructed
from the model point-cloud. This can be done in any tech-
nique known in the art, such as, but not limited to, a region-
growing algorithm, e.g., a ball-pivoting algorithm or the like.

Many types of objection functions are contemplated. Gen-
erally, the objective function F is selected so as to allow the
determination of the similarity between Q and S. Typically, F
is selected such that its extremal (e.g., minimal) value can
serve as a similarity measure €. For example, when the
embedding space is a polyhedral approximation of the model
surface, F can selected such that:

€(S,Q)=min F EQ. 1

where the minimization is performed over the arguments of
the objective function F.

In various exemplary embodiments of the invention the
arguments of the objective function is the set {s';} G=1, ...,
M), where §'; satisty s'=(q;,) and where y: Q—S is a map-
ping from Q to S. In other words, in these embodiments, the
arguments of the objective function are images in the model
surface of points from the probe point cloud. In other embodi-
ments, the arguments of the objective function is the set {q',}
(=1, ..., N), where q'; satisfy q'=¢(s,) and where ¢: S—=Q is
a mapping from S to Q. Alternatively, the arguments of the
objective function can be both sets {s',} and {s' }.

In the embodiments in which the arguments are images,
they do not necessarily coincide with points from the point-
cloud. According to a preferred embodiment of the present
invention the images are obtained by interpolating the respec-
tive point cloud. For example the s; do not necessarily coin-
cide with points from the model point-cloud. Thus, when F is
a function of {s',}, the images s', are interpolated in the poly-
hedral approximation of S. For example, when a triangulated
manifold is used, an image point s' can be identified using a
vector of barycentric coordinates (t, u, where t{1, ..., N}
is an index identifying the triangle fo which s' belongs, and
u=(u,, U,, Uy) is a barycentric 3-vector satisfying u,=0 and
u,+u,+u,=1. The BEuclidean displacement vector s' of the
point s' is related to the barycentric 3-vector via
s'=(u;8',, +U,8,, +Uss,, ., wheres', (i=1,2,3) arethe vertices
of triangle t.

The extremal value of F can be calculated using any
numerical optimization procedure known in the art. Typi-
cally, an iterative procedure is employed. The numerical opti-
mization procedure is preferably selected in accordance with
the type of the selected objective function. For example, when
the F comprises 1,-norms, the iterative procedure is prefer-
ably such that can efficiently locate extremal points of
1,-norm optimization problems. Representative examples of
numerical optimization procedure suitable for the present
embodiments include, without limitation, the fixed step gra-
dient method, the conjugate gradient method, the biconjugate
gradient method, the Newton method or any approximation
thereof including the truncated Newton method, one of the
variety of quasi-Newton methods, including BFGS and lim-
ited memory BFGS, the Chebyshev method, the minimal
residual method and any combination thereof. Preferred
expressions for the objective function F and preferred proce-
dures for calculating the extremal value of F are provided
hereinunder and exemplified in the Examples section that
follows.
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Once the extremal value of F is calculated, the method
continues to step 15 in which the similarity between the
surfaces is determined, based on the obtained extremal value.
This can be done, e.g., by subjecting the extremal value to a
thresholding procedure so as to determine whether or not the
two surfaces are similar. Alternatively, the level of similarity
between the surfaces can be determined, e.g., by assigning to
the two surface a similarity measure € as further detailed
hereinabove.

The method ends at step 16.

Reference is now made to FIG. 2 which is a schematic
illustration of an apparatus 20 for determining similarity
between probe surface Q and model surface S, according to
various exemplary embodiments of the present invention.
Apparatus 20 preferably designed and configured for execut-
ing selected steps of the method described herein. Apparatus
20 comprises a extremal value calculator 22, which calculates
the extremal value of the objective function F as explained
hereinabove and further detailed hereinunder. Apparatus 20
further comprises a similarity determinator 24 which, based
on extremal value, determines the similarity between the
surfaces Q and S, as further detailed hereinabove. According
to a preferred embodiment of the present invention apparatus
20 further comprises a matrix calculator 26 for calculating the
matrix D, and optionally the matrix Dy, as further detailed
hereinabove. Apparatus 20 can also comprise a subset selec-
tor 28 which selects a subset of the probe point-cloud corre-
sponding to the predetermined patch Q', as further detailed
hereinabove. Subset selector 28 preferably communicates
with extremal value calculator 22 such that the subset selected
by selector 28 is used for calculating the extremal value of F.
Preferably, apparatus 20 further comprises a polyhedron con-
structor 30 which constructs a polyhedral approximation
from the model point-cloud and feeds extremal value calcu-
lator 22 with the polyhedral approximation. Calculator 22
uses the polyhedral approximation as the embedding space as
further detailed hereinabove.

Following is a description of several types of objective
functions, according to various exemplary embodiments of
the present invention.

As stated, F is typically selected such that its extremal
value can serve as a similarity measure €. Thus, in one
embodiment, the objective function is selected such that € is
a partial embedding distance dpz(S, Q) between the probe
surface Q (or a patch Q' thereof) and the model surface S. The
partial embedding distance can be defined as:

1 EQ. 2
dpe(S, Q)= 5 inf Q-2

3 sup |do(g, q') — ds(¥(@), ¥ig ),

¥:0-5(q.q")eP

where P=QxQ is defined the set of all pairs of points for
which the metric on the patch Q' is consistent with the metric
on Q, P={(q.9): dp(q.9)=dy(q.9)}-

The selection e=d is particularly useful in situations in
which one or both surfaces are given only partially. Such
situation is illustrated in FIGS. 3a-b. Shown in FIGS. 3a-b is
a model surface S (FIG. 3a) for which sufficient geometrical
information is given, and a probe surface Q (FIG. 35) for
which the known geometrical information is only partial. It
was found by the present Inventors of the present invention
that e=d, is also suitable for the case in which sufficient
geometrical information is given for both surfaces. Such situ-
ation is illustrated in FIGS. 4a-b, showing sufficient geo-
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metrical information for both the model surface S (FIG. 4a)
and the probe surface Q (FIG. 45). In this embodiment, P=Qx
Q, and Equation 2 reduces to:

1 EQ. 3
dpelS. Q)= 5 inf disy. EQ
4008

where dis 1), defined as dis y=sup, ,«,ld(q,9)-ds(P(q),
P(q")l. As will can be understood from the above definition,
dis ¢ measures the distortion of the mapping { from Q to S.
If, for example, dis =0, the mapping \ is an isometry and the
surfaces S and Q are isometric. A preferred expression for the
objective function in the embodiment in which e=d,, is pro-
vided hereinunder.

In another embodiment, the objective function is selected
such that € is a Gromov-Hausdorff distance dg.(S, Q)
between Q and S. For bounded metric spaces, the Gromov-
Hausdorff distance can be written as [N. J. Kalton and M. I.
Ostrovskii, “Distances between Banach spaces,” Forum
Math, 1999, 11(1):17-48; F. Mémoli and G. Sapiro, “A Theo-
retical and Computational Framework for Isometry Invariant
Recognition of Point Cloud Data,” Foundations of Computa-
tional Mathematics, 2005, 5(3):313-347]:

L. L . EQ. 4
der (S, Q) = 3 inf max{dise, disy, dis(e, ¥)},
G QS
@S0

where the distortion measure dis ¢,) characterizes the dif-
ference between ¢ and P!, or between 1\ and ¢~*. dis (¢, )
can be defined as:

dis(e, ¥) = Suglds(s, #(q) - dplg. 9()). (EQ. 5

qeQ

The selection €(S, Q)=d;.(S, Q) is particularly useful in
situations in which sufficient geometrical information is
given for both surfaces (e.g., the situation in FIGS. 4a-b). A
preferred expression for the objective function in the embodi-
ment in which e=d ;, is provided hereinunder.

It is to be understood that similarity measures other than
e=d,. and e=d;, are not excluded from the scope of the
present invention.

As will be appreciated by one ordinarily skilled in the art,
Equation 1 above describes a minimization problem in which
the images s'=1(q,) serve as optimization variables. This is
advantageous because there is no need to optimize over all
possible permutations of s, and q;.

In various exemplary embodiments of the invention the
objective function F comprises a sum of local distortions,
where at least a few of the local distortions characterize the
embedding of a pair of points in Q into the embedding space.
Preferably, but not obligatorily, the sum is a weighted sum. A
local distortion is a local function of a difference between two
geodesic distances. Thus, unlike the distortions dis , dis ¢
and dis(¢,), in which a supremum is taken on the respective
set(s) so as to globally characterize the mappings from one
surface to the other, the local distortion is defined to charac-
terize mapping of a specific geodesic path. More specifically,
alocal distortion is a local function of the difference between
a first geodesic distance defined in the probe surface and a
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corresponding second geodesic distance defined in the
embedding space. For example, when the embedding space is
an approximation of S, the local distortion is preferably
defined as n(dg—d,,), where n is preferably a non-linear func-
tion (e.g., the selection (x)=x correspond to the 1, norm and
the selection 1(x)=Ix| corresponds to the 1, norm), and dgand
d,, are geodesic distances between pair of points in S and Q,
respectively.

A preferred expression for the objective function F in the
embodiment in which e=d is:

Fists oo o sh) = ) wyn(ds(s], s7) = do(ai ), (EQ. 6

iJ

where w,; are the weights of the sum over i and j. When F is
expressed as a non-weighted sum, w,=1V1,j. The weights can
be set so as to select the subset which corresponds to the patch
Q'=Q. Specifically, w,;can be selected such that w, =1 for (q,,
q,) inthe subset, and 0 otherwise. According to the aforemen-
tioned notations, (q,, q,) is a pair of points in the point-cloud
of Q, while (s, s')=((q,), P(q,)) are the images of (q,, q,) as
mapped to S.

A preferred expression for the objective function F in the
embodiment in which e=d 5, is:

N (EQ. 7
L) =Y 1ldg(g], 4) - dslsi, s ) +
ij=1

F(sl oo S Sus qls e

M

2

n(ds(s}. 1) - dolae, g0) + Y n(ds(si, 5}) — do(ae, @),
k=1 ik

where i,j=1, 2, . . ., N are model point-cloud indices, k,I=1,
2,...,Mare probe point-cloud indices, and q';, q'; are images
in the probe surface of points of the model point-cloud, e.g.,
q'7~¢(s)). The images q',, q'; are preferably interpolated in a
similar way to the images s'; and s',, e.g., by identifying image
points using vectors of barycentric coordinates, as further
detailed hereinabove.

Equation 1, with the expressions of Equations 2 or 3 for the
objective function F, can be viewed as a minimization prob-
lem with in a finite norm 1,, where 1=p=c. It is to be under-
stood, however, that although practical considerations may
favor the choice of finite norms, it is not intended to limit the
scope of the present invention to finite norm representations.
Thus, Equation 1 can also be written as a minimization of
maximum distortion in an infinite norm (1.,) representation.
For example, when e=d .., F can be defined as

F= ma

max wilds(si. 57) — do(gi- g

With such selection for F, Equation 1 becomes the following
min-max 1 -norm constrained problem:

(EQ. 8)

{ni% e st |ds(s], s —dg(gi, gl = e,

! e=
st o=

with M+1 variables and at most M(M-1)/2 inequality con-
straints.

20

25

30

35

40

45

50

55

60

65

14

Similarly, for e=d, another objective function can be
defined such that the following min-max 1_.-norm constrained
problem is obtained:

ldo(gi» g7) —ds(Si, Sl < & (EQ. 9)

min & st |ds(sh. 57 - dolae. a0l < &
xl,qk,szo

Ids(si, 5t) — dolqu, gf] < &,

where j>i and I>k. Equations 9 have M+N+1 variables and at
most 0.5(M?+N2+MN-M-N) inequality constraints.

As stated, the extremal value of the objective function F can
be calculated by an iterative procedure. Thus, starting with
some initial values of the optimization variables of F, the
method proceeds by iteratively updating their locations on S
s0 as produce a decreasing sequence of function values. Fol-
lowing is a description of a preferred iterative procedure in the
embodiment in which the objective function has the form of
Equation 6, where the optimization variables are the image
points s', j=1, . . ., M. One of ordinary skills in the art,
provided with the details described herein would know how to
adjust the procedure for other types of objective functions,
e.g., the expression of Equation 7. When it is desired to solve
the constrained problems (e.g., Equations 8 or 9), the problem
is first de-constrained, for example, by employing a penalty-
barrier method [D. Bertsekas, “Nonlinear programming,”
published by Atlanta Scientific]. Once an unconstrained
problem is provided it can be solved similarly to the way
described below.

Lets',®=(1,% u,%) be the optimization variables at the k-th
iteration. According to the presently preferred embodiment of
the invention the method selects, at each iterative step, a set of
directions d,* and a step size o® such that the displacement
of u,® along d,® by a® decreases the value of F. For clarity
of presentation, the iteration index k will be omitted herein-
after. The directions d, can be selected using any method
known in the art. Representative examples include, without
limitation, the steepest decent method, the fixed step gradient
method, the conjugate gradient method, the Newton method
and any combination thereof. These methods are well known
in the art and are found in many textbooks (to this end see,
e.g., D. Bertsekas, supra).

The step size a is preferably a variable step size selected so
as to ensure a sufficient decrease of the objective function. In
various exemplary embodiments of the invention « is adap-
tively selected, at each iterative step. This can be done, for
example, be a procedure known as “the Armijo rule”. Accord-
ing to this procedure, beginning from an initial value a=c.,, o
is successively reduced by a factor  (0<p<1), until the fol-
lowing condition is fulfilled:

F(s}, oo 5 Sh) = F(sY, oo s 2 (EQ. 10)

—o'ozz Q‘TVK‘. F(sy oo Sy,
7

where o is a parameter satisfying 0<o<1, and s", represent the
points s'; displaced by a along d,. Typical values for the
parameters 3 and o are, without limitation, about 0.3 for o,
and about 0.5 for . The initial value a, is selected sufficiently
large (e.g., about one tenth of the diameter of the surface.
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As used herein the term “about” refers to +10%.

A similar rule can be applied when the update is performed
for a single point per iteration, yielding a block-coordinate
descent algorithm.

During the iterative procedure, the method preferably
traverses the triangulated manifold while ensuring that the
images s'; are always in a plane of one of the triangles. This
can be achieved by following a poly-linear path on the trian-
gulated manifold. Thus, a point u, on the manifold can be
updated by propagating along a straight line in the directiond,
until the first intersection with the triangle boundary and
proceeding along a line inside the triangle adjacent to the
intersected edge. This propagation procedure is continued
until the total length of the path is c.. A representative example
of such propagation procedure is illustrated in FIGS. 5a-c. In
FIG. 5a, a point u is displaced along direction d in a triangle
t=ABC until the edge BC of the triangle is reached. In FIG. 556
an adjacent triangle t'=BCD sharing edge BC with triangle tis
rotated about BC and the direction vector d is transformed to
the barycentric coordinates of triangle t' (d—d'). In FIG. 5¢
the final point u' is distant o from point u along a poly-linear
path. Thus, the barycentric representation of the image points
s' is preserved.

A preferred algorithm for traversing the manifold while
preserving the barycentric representation is illustrated in the
flowchart diagram of FIG. 6. The algorithm begins at step 50
and continues to step 51 in which a step size ., a propagation
direction d, and a point s'=(t, u) identified by a triangle t and
barycentric vector u are inputted. The algorithm proceeds to
step 52 in which a query barycentric vector u'=u+ad is com-
puted. The algorithm continues to decision step 53 in which it
determines whether or not u' is inside triangle t. If u' is inside
t, the algorithm continues to step 54 in which the query
barycentric vector is accepted and s' is updated to a new point
s'=(t, u') in t. From step 54 the algorithm continues to ending
step 60. Ifu' is outside t, the algorithm continues to step 55 in
which the algorithm finds a new step size o' for which the
vector u"=u+a'd lies on a boundary b of t. From step 56 the
algorithm continues to an additional decision step in which
the algorithm determines whether or not there exist a triangle
adjacent to t at b. If there is no such adjacent triangle, the
algorithm continues to step 57 in which s' is updated to a new
point s'=(t, u") in t. From step 57 the algorithm continues to
ending step 60. If there is a triangle t' adjacent to t at boundary
b, the algorithm continues to step 58 in which u" and d are
transformed to the barycentric coordinates of t'. Since u" is
located on b which is shared by tand t', its transformation can
readily be achieved using the same barycentric representation
in t' up to vertex numbering. The transformation of d to the
barycentric coordinates of t', is performed by rotating t about
b such that t and t' are coplanar, and finding a direction vector
d'inthe coordinate system of t', which defines the same planar
direction as d in t. The transformation of d is completed with
the replacement d'—d. -

Since at each iteration the Armijo rule produces a decreas-
ing sequence of step sizes, it is sufficient to compute the
displacement of s',’ by a1,d, and cache the entire path. As will
be appreciated by one of ordinary skill in the art this allows to
save path computations for subsequent smaller steps.

In various exemplary embodiments of the invention the
calculation of extremal value comprises multiresolution opti-
mization. The advantage of multiresolution optimization is
that it can reduce or eliminate effects of convergence to a local
extremum. An additional advantage of multiresolution opti-
mization is a significant speedup of convergence.

Thus, according to a preferred embodiment of the present
invention the optimization problem (e.g., minimization of F)
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is converted to a hierarchy of optimization problems. The
initial optimization problem is a coarse version of the prob-
lem which contains a small number of variables (image
points, in the above example). The coarse level solution is
interpolated to the next resolution level, and is used as an
initialization for the optimization at that level. The process is
repeated until the desired resolution is obtained. Such a mul-
tiresolution optimization facilitates the initiation of the itera-
tion, because small local extrema tend to disappear at coarse
resolution levels, thus reducing the risk of local convergence.

The main components of the multiresolution scheme are
the hierarchy of data which defines optimization problems at
different resolution levels and the interpolation procedure,
which allows to pass from coarse level to a finer one. For-
mally, let Qy, ©Qyp, € ... ©Q,,=Q, be an L-level hierar-
chy of data. The points on the (I-1)st resolution level are
obtained by removing part of the points on the 1-th level. The
corresponding distance matrices D, . . ., D, =D, are created
as sub-matrices of D,.

Such a hierarchy can be constructed, for example, is the
farthest point sampling (FPS) strategy [Eldar et al., “The
farthest point strategy for progressive image sampling”, IEEE
Trans. Image Processing, 1997, 6(9):1305-1315]. As the
coarsest resolution level Q,,,, M, points can be selected either
randomly or according to a predetermined criterion. For
example, in face recognition applications, it is usually easy to
roughly locate points such as the nose and the eyes. At the
next resolution level, new points are added, preferably in the
following manner: q,,,, is preferably selected as the most
distant point from Q,,, and so on. Generally, a sequence of
new points g,z,, can be added according to q,,~arg
max, o Ao (4115 - - - Qagaa1 })- Taking the first M, points
from the sequence produced in this manner, one obtains Q, .
FIGS. 7a-d show example of data hierarchy construction for
multiresolution optimization, where FIGS. 7a-c show three
resolution levels constructed using the farthest point sam-
pling algorithm, and FIG. 74 shows geodesic distances from
the coarsest grid points.

Assume that at the 1-th resolution level, Q,,=(q;, - - -, dag)
were embedded into the model surface S using the iterative
minimization algorithm described above. As a result, a set of
images (Q,,)={S, - - - » 8,,'} on the polyhedron approxima-
tion of S was obtained. At the next resolution level, a larger set
Qay,, 1s embedded into S, by solving the minimization prob-
lem for Y(Q,y, J={Sss - - - 844, '}- The initialization for the first
M, points is readily available from the solution at the previous
level. The initial locations for the remaining points s',(i=M +
1,M+2,...,M,,,) are preferably interpolated. For example,
s'; can be initialized with such a point on the polyhedron
approximation that the geodesic distances from it to the

points s'; . . . , s', are as close as possible to the geodesic
1 1

distances fromq,to q, .. ., q,,. Formally, s', can be expressed

as:

My

s =argmin ) (ds(s, s}) — dp(gi, g)*.
e

(EQ. 11)

Practically, the minimum can be found by exhaustively
searchingoverall s, s,, ..., Sy, Or even a coarser subset of the
model point-cloud. This is because the complexity of such a
search is negligible compared to the complexity of the itera-
tive minimization process.

Following is a description of a preferred procedure for
interpolating the geodesic distances d(s';, s',) on the polyhe-
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dron approximation of the model surface S, according to a
preferred embodiment of the present invention. Although the
geodesic distance between two arbitrary points s', and s', is
generally unavailable, each point lies inside a triangle with
vertices on the grid. Let s, s,, s; and s, ., s,, 5. be the vertices
of the triangles t, and t, enclosing s', and s',, respectively.
Using the barycentric representation described above, the
arbitrary points s', and s', are identified as (t,, u,) and (t,, u,),
respectively, where u, and u, are the corresponding barycen-
tric 3-vectors. B B

Note that the mutual geodesic distances dy(s,, s;), 1,)'=1, 2,
3 are known, because they are geodesic distances between
points of the model point-cloud. In one embodiment, the
geodesic distance d(s',, s', ) is approximated as the average of
the above mutual geodesic distances:

i EQ. 12)
ds(sl 5h) = 5 ) dssiv 5).
i=1

By the triangle inequality, the approximation error of such
selection has the order of the radius of the largest triangle in
the polyhedron.

In another embodiment, the average is replaced by a
weighted sum, where the weights are chosen according to
proximity of u, and u,, to each of the enclosing triangle ver-
tices. Such approximation makes the interpolant d(s' , s',) a
smooth function of u, and u,. The computational complexity
of this procedure is relatively low.

In an additional embodiment, two interpolation steps are
employed. In a first such interpolation step an approximation
to the geodesic distances dy(s',, s,,) between the arbitrary
point s', and each of the three vertices s, of t,. The computa-
tion of each of these distances can be regarded as the problem
of finding an approximation to d(s',,, s,.) given d(s;, s;.). The
solution of this problem is preferably obtained by the follow-
ing numerical procedure which is referred to herein as “the
three-point geodesic distance approximation”.

As a starting point, consider the particular case wheres', is
one of the polyhedron vertices. In this case, the distances
d,=d(s;, s'y) fori=1, 2, 3 can be obtained from the matrix Dy.
It will be assumed without loss of generality that the triangle

S,, 5o, 85 lies in Mwith s, at the origin and s, on the horizontal
axis, denoting by x,=(0, 0)7, x,=(x,, 0)” and x,=(x, y5)” the
planar coordinates of the corresponding vertices. As will be
appreciated by one ordinarily skilled in the art, the original
triangle can always be brought to this canonical coordinate
system by a simple pre-computed transformation. Thus, the
actual vertex coordinates s, in a triangle are not required by
the procedure.

Assume that there exists a (virtual) source point X,=(X,,
$,)7 in the plane of the triangle, whose Buclidean distance
fromx, is d,. FIGS. 8a-b illustrate a procedure for finding such
virtual “source” point. When the surface S is planar (FIG. 8a),
there exists such a point consistent with the data, and it can be
found by computing the intersection of three circles of radii d,
centered at the corresponding triangle vertices X,.

This gives rise to the following system of quadratic equa-
tions:

22, 52 72
£o™+Po"=d,

Fo-x2P+7"=d5”

(Fo=x3)"+(Pomy3)’=d5>.

(EQ. 13)
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Once X, is determined, the Euclidean distance |[X,—x||
serves as the approximation to the geodesic distance d ((X,X).
In the above particular case, the two coincide.

When the surface has non-zero Gaussian curvature (FIG.
8b), only an approximate source X, can be found, yet every
pair of circles typically intersects at two distinct points.
According to a preferred embodiment of the present invention
the virtual source is found by a weighted least-squares solu-
tion of Equations 13, e.g.:

foX.d,w)=argmin, /(v X.d,w), (EQ. 14)

where

3 , (EQ. 15)
003 X, ds ) = )" willlag - x| = a2Y,
i=1

X=(X1, X5, X3), d=(d,?, d,7, 4,57, and w=(w,, w,, w;)  is a
vector of weights controlling the influence of each of the
vertices (The vector w and its components w,, w, and w;,
should not be confused with the set of weights
{W,}i-1 ... ar@ppearing in Equation 6 above). A preferred
procedure for selecting the weights is provided hereinafter.
The least-squares solution can be performed by any way
known in the art, such as, but not limited to, using Newton
steps. In the embodiment in which Newton steps are
employed, the gradient g and the Hessian matrix H of 1(x,; X,
d,w) with respect to x, are given by B

g:4(wa-x—X-w®f) (EQ. 16)

3
H=40"f 148 wilxo - x)x0 — ;)
i=1

where (Dxo=x[P-d?, and wOF(w.f,. wafa. wafs)
denotes the element-wise (Hadamard) product. When the
vertices X, are not collinear, which normally happens in a
valid triangulation, the Hessian is full rank for w,=0. When
one of the weights, say wj, is zero, the first two equations of
Equations 13 are satisfied and hence the first terms of fvanish.
Consequently, the first term in the Hessian is zero, whereas
the second term is a sum of two outer products of linearly
independent vectors, which is full rank. When only one
weight, say w, is non-zero, the Hessian assumes the form
H=8w,(x,—X,)(¥%,-X, )7, which is a rank one matrix. Since in
this case the solution %X, admits only the first equation of
Equations 13, the minimum of 1(x;X,d,w) is achieved on the
circle described by the said equation, and the null vector of H
corresponds to the tangential direction, in which the function
does not change.

The initialization is preferably achieved as follows. First,
simultaneous solutions of different pairs of equations from
Equations 13 are found, resulting in at most six different
points. Then, the minimization procedure is initialized by the
one yielding the smallest value of 1. Solution of a pair of
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quadratic equations has an analytic expression. For example,
the first two equations yield

EQ. 17)

22,2
di —ds + x5

2x,

S = £V} -5,

Xo =

wherever two, one, or none of the solutions exist. Since by its
virtue such an initialization is sufficiently close to the optimal
X, convergence is achieved in about two or three iterations.

Lemma 1. Let the vertices x; be non-collinear and let w
contain at least two non-zero weights. Then, the first-order
derivatives of X,(X,d,w) with respect to d and w are given by:

J, =V, Fol=-G H!

TV o =-GH ™, (EQ. 18)
where QW:Z@T and gd:zigT are given by

G, ~4F(x1 7-X)

G4 Wxol =), (EQ. 19)

W and F are, respectively, diagonal matrices containing the
elements of w and f on the diagonal, and 1=(1, 1, 1)*.

For the proof of lemma 1, see the Appendix section that
follows.

Having the approximant of the virtual source X,(X,d,w)
and its first-order derivatives, the three-point geodesic dis-
tance approximant d cand it derivatives can be calculated from
the following equations:

A2 (5 X,d wy=r-%o(X d,w)|P, (£Q.20)
Vs (54, w)=2(3=50)

VA2 0X,d W)=, (£5-)

VAR A (EQ.21)

When s' =(t,, u,) is given in normalized barycentric coor-
dinates (u,+u,+u,=1), x can be expressed as x=X
U,=U, X, +U,X,+U;X 3, Where X is a pre-computed matrix defin-
ing the geometry of the triangle t,. Hence, the present
embodiments successfully provide a tool for calculating the
approximate  geodesic  distance  dJ3(s',s',)  given
d=(d*(s,,5",),d*(52,8',),d>(s5,8',)" and a vector of weights
w. The derivatives of d;> with respect to u,, are obtained using
the chain rule, V,d =XV d 2(Xu).

Following is a preferred procedure for calculating the
weights vector w. According to a preferred embodiment of
the present invention the weights w are proportional to u,, the
barycentric coordinates of s',. Since inside the triangle u,>0,
the weights are preferably set to some positive values inside
the triangle. When s', is located on the edge s,s5, u;=0 and w,
is preferably set to zero. This cancels the influence of the
vertex s, in the least squares problem. Hence, the same ver-
tices participate with the same weights when a; is computed
both from the triangle s, s,, s; and the adjacent triangle s,, s5,
5., yielding a continuous transition of d¢ across the edge.

In various exemplary embodiments of the invention a C*
continuity ford.? is enforced such that a change ofu,, by a unit
yector Au_ and a change ofu, by a unit vector. Au, displace the
point x inside the triangles t, and t, by the same Euclidean
distance. Since barycentric coordinates are defined up to
scale, C! continuity can be enforced by selecting an appro-
priate scaling for u, and u,.
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Since the least-squares problem (Equation 14) is under-
determined when one of the weights is set to zero and gener-
ally yields two distinct solution, the solution is preferably
selected consistent with the case when the weight is slightly
larger than zero. In practice, the second inconsistent solution
can be avoided by setting the weight to some small positive
constant € rather than strictly to zero. At the triangle vertices,
two weights vanish, which makes the least squares problem
under-determined. In this case, however, there is no need for
the least squares solution, since the geodesic distances
between the triangle edges to s, are known.

The approximate geodesic distance from s', to s', is pref-
erably calculated in two steps. In a first step, a triplet of
approximate geodesic distances d(s',, s,) from §', to s,, i'=1,
2, 3, is calculated using the expression d 2(s',,s,)=d(u,;X,
d,,w=u,) where X is a matrix with the canonical coordinates
of’s,, 785, 85, and d,~(ds’(5,.8,),d57(52,8,).d°(53,8,))". In a
second step, the approximate geodesic distance dy(s',, s',)
from s', to s', is calculated by operating in the triangle t,.
dy(s',.s',) is calculated using the expression d(s',,s',)=dg

ub;X',a, w=u,), where (AiAis a vector of distances defined as
=(d*(s,,5,),d57(5,,557), (5, 55.))7, and X' is a matrix with
the canonical coordinates of s, s, 5.

Using the chain rule, it is straightforward to show that the

derivatives of d 2(s's',) with respect to u,, and u, are given by

Vub‘}sz(s @S ’b):Vua‘}sz(ub;X & )+, A5 (0 X d )

Vi 570 )=V A1V 87N @)V s (4, X,
uy),
where V,, d,2=V,, d 2(u,;X,d,,u,)+V, d 21, :X,d,u,).

Follow‘ing is aadescription of a procedure for selecting the
subset which corresponds to the patch Q' =Q, according to a
preferred embodiment of the present invention. The proce-
dure can be used for executing method step 11 (see FIG. 1).
The procedure can also be used by subset selector 28 of
apparatus 20. As stated, the subset preferably includes only
points for which the metric on Q' is consistent with the metric
on Q. Specifically, geodesics of' Q that pass through points not
in Q' may give rise to inconsistent distances and are prefer-
ably removed from the subset.

Formally, index pairs (1,j))e{1,2, ..., M'}x{1,2,...,M'}
for which d(q;, q;)=d 5 (q;, q;) are excluded from the subset,
where M' is the size of the point-cloud representing the patch
Q'. Typically, the point-cloud of Q' is already known (this is a
common situation, for example, in face recognition, where
one has the full probe surface but wishes to deliberately
remove some parts of it). In this case the pairs of points
satisfying 1d(q,, q,)-d,4q,, 9)I1=0 where d is a predeter-
mined parameter, are preferably excluded. When the point-
cloud of Q' is not known, the minimal geodesics may change
due to the change in the boundary of Q. In this case pairs of for
which |d,(q;, 3QN)+d,(q;, 3Q)I<d,4q,,q;), where 3Q' is the
boundary of Q' are preferably excluded.

FIGS. 94-b are schematic illustrations of particular situa-
tions in which a planar patch is partially embedded of in a
plane. FIG. 9a illustrates the partial embedding after the
exclusion of inconsistent distances. The solid line in FIG. 9a
corresponds to an inconsistent distance between two points
that is preferably excluded from the subset, and the dashed
line corresponds to the consistent geodesic distance between
the two points. FIG. 9, illustrates the embedding result when
the inconsistent distances are not excluded.

Additional objects, advantages, and novel features of the
present invention will become apparent to one ordinarily
skilled in the art upon examination of the following examples
and appendix, which are not intended to be limiting. Addi-

(EQ. 21)



US 8,280,150 B2

21

tionally, each of the various embodiments and aspects of the
present invention as delineated hereinabove and as claimed in
the claims section below finds experimental and theoretical
support in the following examples and appendix.

EXAMPLES

Reference is now made to the following examples, which
together with the above descriptions, illustrate the invention
in a non limiting fashion.

Example 1

Partial Embedding Distance Between Spherical
Patches

Embodiments ofthe present invention have been employed
for the purpose of determining similarity between a unit two-
dimensional sphere sampled at 3200 points, and spheres with
radii ranging from 0.5 to 2.5 sampled at a smaller number of
points according to the farthest point sampling strategy with
a random seed. Ten random samplings were used for each
radius. The similarity measures used in the present example
were the 1,-norm partial embedding distance, d,.%, using
M=100 points, and the 1,.-norm partial embedding distance,
d, 5, using 100, 250 and 500 points. The partial embedding
distances were computed according to a preferred embodi-
ment of the present invention using the multi-resolution mini-
mization algorithm.

As areference, a canonical form distance d - [see U.S. Pat.
No. 6,947,579 and Elad et al., supra] sampled at M=100, 200,
250, 300 and 500 points was also calculated.

FIGS. 10a-b show the normalized distances as a function
of'the sphere radius. Shown in FIGS. 10a-5 is the calculation
of d,,” (top line of FIG. 104), d,; (top line of FIG. 105) and
the five calculations of d - canonical form distance (bottom
lines of FIGS. 104 and 105). The numbers on the plots stand
for the number of points used for distance computation.

FIGS. 11a-c show the normalized distances for radii in the
range of 0.88 to 1.1, calculated using d,.> with 50 points
(FIG. 11a), and using d . with 100 (FIG. 115) and 500 (FIG.
11a) points. Also indicated in FIGS. 11a-c are intervals of
sphere radii that fall below the sensitivity threshold of the
distance measure are indicated. The grayed areas in FIGS.
11a-c represent the variance of the distance computed for the
ten different samplings of the spheres. This variance makes
spheres within a certain interval of radii around R=1 indistin-
guishable by the distance function.

The partial embedding distance appears to be extremely
sensitive to the geometry of the surfaces. A change as small as
0.1% in the spherical patch radius (from 1.000 to 0.999)
increases d,.;> by a value exceeding the variance due to sam-
pling. Similar results are achieved using the 1,-norm partial
embedding distance, d,,' and slightly inferior with the
1,,-norm partial embedding distance, d,.>. For comparison,
with the same number of points (100), d.~ was unable to
discern between spheres differing in radius by more than
10%. Increasing the number of points to 500 makes d -
sensitive to radius differences of about 2.64%, which is still
one order of magnitude below the sensitivity of the similarity
measure of the present embodiments. It is therefore demon-
strated that the present embodiments are capable of accu-
rately determining similarity between surfaces.

The objective function (Equation 6) and its gradient imple-
mented in C were evaluated in about 40 ms on a Pentium® IV
PC for M=100 points. The entire computation of d, using
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non-optimized MATLAB® software and a C code took was
completed in about 10-60 seconds.

Example 2

Gromov-Hausdorff Distance Between Isometric
Surfaces

Embodiments of the present invention have been employed
for calculating similarity measure between surfaces and their
approximate isometrics for different articulated objects. The
surfaces were represented by polyhedral meshes obtained by
triangulation.

FIGS. 12a-f, illustrate the articulated objects used in the
present example. Shown in FIGS. 12a-f are illustration of
human (FIG. 12a), dog (FIG. 125), giraffe (FIG. 12¢), croco-
dile (FIG. 12d), paper (FIG. 12¢) and spider (FIG. 12f), and
their approximate isometries. Also shown in FIGS. 12a-f are
the parameters of the corresponding polyhedral approxima-
tion (number of vertices, faces and edges) for each surface.

The similarity measures used in the present example were
the 1,-norm Gromov-Hausdorff distance, d,”, and the
1.-norm Gromov-Hausdorft distance, d ;. The embedding
spaces consisted of the full-density meshes and the probe
surfaces were meshes sampled at M=N=50 points. Optimiza-
tion was performed in accordance with preferred embodi-
ments of the present invention using the multi-resolution
scheme. Geodesic distances were computed using the fast
marching method for triangulated domains.

As a reference, the canonical form distance was computed
between the surfaces, by comparing a full-density canonical
form to canonical forms sampled at M=100, 250 and 600
points as well as to full-density canonical forms. Moment
signatures and the iterative closest point algorithm were used
to compare between the canonical forms.

FIGS. 13a-d show dissimilarity matrices obtained using
dg,” (F1G.13a),d ;,, (F1G. 13b),d . with M=600 (FIG. 13¢)
and full-density d . (FIG. 13d) as the similarity measure. As
shown the present embodiments successfully recognize all
the objects using d,;;,> as well as d,,, although the sampling
included a relatively small number of points (M=N=50). On
the other hand, the best result of d -~ with full-density canoni-
cal forms and iterative closest point yielded about 11% equal
error rate.

FIGS. 14a-c show proximity pattern representing the dis-
similarities between the objects using d ;;,* (FIG. 14a), d
with M=600 (FIG. 145) and full-density d . (FIG. 14¢) as the
similarity measure. Each point in FIGS. 14a-c represents an
object, and an Euclidean distance between two points repre-
sents dissimilarity between the corresponding objects. As
shown the clusters obtained using embodiments of the present
invention (FIG. 14a) are significantly tighter as compared to
the clusters obtained using d .. The objects dog and paper
exhibit larger intra-cluster dissimilarities, which we attribute
to larger deviations from isometricity.

The discriminative power of d %, d;;, and d . was quan-
tified using a separability measure a defined as:

min d(Spi, Smy)
. i f,m¥n
TEmn maxd(Syi, Sp) |’
i

(EQ. 22)

where S, denotes the ith instance of the nth object, and d is the
Euclidean distance between the corresponding points. o
expresses the “worst-case” ratio between the inter-cluster and
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the intra-cluster distances. Thus, higher values of o corre-
spond to higher discriminative power between the objects. It
was found that the embodiments of the present invention were
superior to the reference method. For example, for d,;;,” the
separability measure was 0=3.47, while for d . the separa-
bility measure was 0=0.58.

Increasing the number of points from 100 to 600 in d
increases the computational complexity with small or no
benefit in accuracy. Starting from about 250 points, the use of
iterative closest point in the computation of the canonical
form distance gives negligible accuracy improvement com-
pared to the faster moment signature comparison. It is there-
fore concluded that in the present experiment, the discrimi-
native power of the canonical form distance is essentially
limited by metric distortion introduced by the embedding of
the surface into a three-dimensional Euclidian space.

Example 3

Partial Embedding Distance Between Isometric
Surfaces

Embodiments ofthe present invention have been employed
for calculating similarity measure between model surfaces
and probe surfaces for which the known geometrical infor-
mation is only partial. The model surfaces were the polyhe-
dral meshes of Example 2, see FIGS. 12a-f, and the probe
surfaces are illustrated in FIGS. 15a-f. The solid parts of the
surfaces represent the known geometrical information of the
probe surfaces.

The similarity measures used in the present example were
the 1,- and I..-norms partial embedding distances, d,,> and
dp, respectively. The embedding spaces consisted of the
full-density meshes and the probe surfaces were meshes
sampled at M=N=50 points. Optimization was performed in
accordance with preferred embodiments of the present inven-
tion using the multi-resolution scheme. The objective func-
tion and its gradient were implemented in C.

Perfect matching was achieved by both similarity mea-
sures, yielding separability measure a of 1.62 and 1.29 for
dp;” and d ., respectively.

Example 4
Face Recognition Experiment

Embodiments of the present invention have been applied to
a toy face recognition problem of 20 faces taken from the
Notre Dame database [Chang et al., “Face recognition using
2D and 3D facial data,” ACM Workshop on Multimodal User
Authentication, 2003, pages 25-32; Flynn et al., “Assessment
of time dependency in face recognition: an initial study,”
Audio- and Video-Based Biometric Person Authentication,
2003, pages 44-51].

As models, four different faces were used. Each model
contained approximately 4000 points and was represented
using global parameterization. As probes, faces of the same
subjects with different facial expressions were used (four
probes per subject). The probes were cropped using geodesic
mask [Bronstein et al., “Three-dimensional face recogni-
tion,” Intl. J. Computer Vision, 2005, 64(1):5-30] (leaving the
nose and the forehead region) and subsampled using farthest
point sampling to 53 points.

The similarity measures used in the present example were
the 1,- and I..-norms partial embedding distances, d,,> and
dpz, respectively. All distances were computed numerically
using a version of parametric fast marching method. For 53
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points, the computation time of the objective function and its
gradient is about 20 ms on a Pentium® IV PC.

FIGS. 16a-d show four model facial surfaces, referred to
below as models 1-4, respectively.

FIGS. 17a-b present the similarity matrix using d, (FIG.
17a) and d,,;> (FIG. 175). The bars on the right hand side of
FIGS. 17a-b are on logarithmic scale. In both cases a perfect
discrimination between different subjects was achieved with
equal error rate which is consistent with zero, although the
sampling included a relatively small number of points (53). It
is noted that such discrimination ability cannot be achieved
using the canonical form approach even when thousands of
sample points are used.

FIGS. 18a-b show local maps of the objective function as
calculated for two different subjects into a model surface.
Shown in FIGS. 18a-b are the embedding of subject 1, probe
4 into model 1 (FIG. 18a), and the embedding of subject 2,
probe 4 into model 1 (FIG. 185).

The bar on the right hand side of FIGS. 18a-5 depicts local
values F(k) of the objective function at point k: F(k)=max;|d
(Us4,)-d5(qz,9,)!. F(k) describes the contribution of the k-th
point to the objective function. As shown, the objective func-
tion is significantly higher when a probe of a different subject
is embedded into the model surface.

APPENDIX

Reference is now made to the following appendix, which
together with the above descriptions, illustrates the invention
in anon limiting fashion. Various embodiments and aspects of
the present invention as delineated hereinabove and as
claimed in the claims section below find theoretical support in
the following appendix.

Mathematical Definitions and Notations

The term “r-covering” when used in connection to a par-
ticular continuous space S, refers to a continuous subset S”
<8 such that:

s=|)Bsts. (EQ AD

£

where B(s,,r)={s€S: d4(s,so)<r} is an open ball of radius r
centered at s, in S. The space (8, d¢l ") has a restricted metric
dgls" obtained by restricting the metric dg to the subset
S™dgls™=d(s, sHVs,s'ES".

The term “bounded continuous surface” refers to a con-
tinuous surface S for which sup, s dg(s, ') is finite. S is
referred to as a “compact surface” if each of its open covers
has a finite sub-cover. If S is compact it is necessary bounded.

The term “e-isometry” refers to a mapping ¢: S—Q, for
which for every qg€Q there exists s&S such that d,(q, ¢
(s)=e.

The term “e-isometric spaces” refers to spaces for which
there exists an e-isometry.

An image ¢(S) of a space S in a space Q is referred to as an
“e-Hausdorff approximation” of S in Q if the mapping ¢:
S—Q is an e-isometry.

Properties of the Gromov-Hausdorff Distance
The Gromov-Hausdortf distance d;, (Equation 4) enjoys

the following properties which make it useful for determining
similarities between surfaces.
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The Gromov-Hausdorff distance is a finite metric on the
space M of is continuous compact surfaces, in which a point
is defined as an equivalence class of a continuous surface and
its isometries. In other words, d;, satisfies the following
axioms: (1) dg (S, Q)=0; (i1) d;5(S, Q) if and only if S and
Q are isometric; (iil) dgz(S, Q)=dz(Q, S); and (iv) d(R,
Q)=dgy(R, S)+dgx(S, Q), also known as the triangle
inequality, where S, Q and R are continuous surfaces.

Another property of the Gromov-Hausdorff distance is the
near-isometric similarity, which can be formulated as fol-
lows: (1) if d5(S, Q)=e, where S, Q are continuous surfaces,
then there exists a 2e-Hausdorff approximation of S in Q. The
converse version of the near-isometric similarity can be for-
mulated as follows: (ii) if there exists an e-Hausdorff approxi-
mation of S in Q, then d (S, Q)=2e.

An additional property of the Gromov-Hausdorff distance
is sampling consistency which can be formulated as follows:
Given Q" an r-covering of a continuous surface Q and S an
r'-covering of a continuous surface S, 1d;z(S, Q)-dz{(S",
QNI=r+r'.

Thus, the Gromov-Hausdorff distance between sampled
versions of two surfaces is close to the Gromov-Hausdorff
distance between the original surfaces, and the discrepancy
vanishes as the sample radius decreases.

The above properties of the Gromov-Hausdorft distance
are known in the art and their proofs are found in many
publications (to this end see, e.g., F. Mémoli and G. Sapiro,
“A theoretical and computational framework for isometry
invariant recognition of point cloud data,” University of Min-
nesota, IMA preprint 2004; and 1. Borg and P. Groenen,
“Modern multidimensional scaling—theory and applica-
tions,” Springer-Verlag, Berlin Heidelberg New York, 1997].

Properties of the Partial Embedding Distance

The partial embedding distance d . (Equations 2-3) of the
present embodiments enjoys several properties which make it
useful for determining similarities between surfaces. Intu-
itively, d . measures the metric distortion obtained trying to
embed the probe surface Q into the model surface S in the
“most isometric” way. d . can be considered as a part of the
Gromov-Hausdorff distance d 5.

As will be proven below, although d .. is not a metric per se
it satisfies some of the metric axioms: (i) positive definiteness,
dp(S,Q)=0; (ii) minimality d,-(S,Q)=0 if and only if Q is
isometrically embeddable into S; (iii) and a non-symmetric
version the triangle inequality dz(S,Q)=d,.(S,R)+dpx(R,
Q), where S, Q and R are continuous surfaces.

The positive definiteness property follows directly from
the definition of d - since dis P=q.

The proof of the minimality property is as follows. If Q is
isometrically embeddable into S, there exists a mapping :
Q—=S with dis =0, which proves the first direction of this
property. For the second direction, if d-(S,Q)=0 then there
exists a sequence of mappings {1y : Q—S} satisfying dis
P, =1/n. Fix a countable dense set Q' = Q. Using the Cantor
diagonalization procedure, a subsequence {1, } can be cho-
sen such that for every q'€Q' the sequence J:wnlc(q')} con-
verges in S, where Q'=Q is a fixed countable dense set.
Assume, without loss of generality, that such a sequence is
{1} itself. A mapping 1: Q'—S can then be defined as the
point-wise limit of {y,}, namely }(q")=lim, ., (q") for
every q'€Q. Since Ids(y,(q"). $,.(q)-dp(q". q)I=dis
Y, —0, it follows that:

ds(p(g") (@) =him,, . ds(W,(g") (g N =d (9" q") (EQ. A2)
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for all g, q'€Q'". Thus,  is a distance-preserving embedding
of Q' into S. Since Q' is dense, § can be extended to a
distance-preserving embedding of the entire Q into S (see, for
example, Proposition 1.5.9 in Burago et al., “A course in
metric geometry,” American Mathematical Society, 2001).

The proof of the triangle inequality property is as follows.
Let dpz(R, Q)=9, and d (S, R)=8,. Then, there exist two
sequences of mappings {¢,,; Q—R} and {y,: R—S}, satis-
fying dis ¢,,=28,+1/n and dis 1,,=28,+1/n. Denote by {T,:
Q—8} the sequence of the compositions T,=,,00,,. Invoking
the triangle inequality for real numbers, one obtains:

lds(&(g). £(q)) — dplg. gl < (EQ. A3

ds (& (@), &n(q')) = dr(9n (@), @n(g ] +
|dr(@n(g), ¢n(q)) = dp(g, 4] <

2
disgy + disyy, < 2(81 +62) + e

for all q, q'€Q". This proves the triangle inequality property
because dis C,=2(3,+d,+1/n) and d (S, Q)=9d,+J,. Q.E.D

Another property of d, is the near-isometric similarity,
which can be formulated as follows: if there exist an e-Haus-
dorffapproximation of a continuous surface S in a continuous
surface Q then d (S, Q)=2e. This property follows straight-
forwardly from the fact that d (S, Q)=d;,(S, Q). It can be
shown that the converse version of this property also applies.

An additional property of d . is the sampling consistency:
given Q" an r'-covering of a continuous surface Q and S an
r'-covering of a continuous surface S, d (S, Q)-r=d,.(S",
QN=d,(S, Q)+r'. The proof of the sampling consistency
property is presented below and is divided into two separate
statements: (1) dpx(S, Q)-r=d,x(S, Q)=dx(S, Q); and (ii)
dps(S, Q=dpp(S7, Q)=dps(S, Q)4

The right side of inequality (i) is straightforward, since

sup,, o !?o(9.9)-ds(W(g)w(g))1Ssup, ,eoldp
(2.9)-ds(W( @@

The left side of inequality (i) can be shown by invoking the
triangle inequality property which yields d,(S,Q)=dx(S,
QN+dpx(Q7,Q). It remains to show that d5(Q",Q)=r. Let the
mapping}: Q—Q" be defined in the following way: for q€Q’,
P(q)=q, and for qEQ\QP(q)=argmin ,'d,(q, q). It is
noted that the minimum exists because Q" can be replaced by
its finite sub-covering. From the fact that " is an r-covering,
it follows that dg(q,.lp(q))ér. Letq;, q, be two points in Q; if
both q, and q are in (', thel} 1do(qy, 92)=-dp((q), $(q2)
I=0. If both q; and q, are in Q" invoking the triangle inequal-
ity one obtains Idy(qy. qx)=dp(P(qy), P(A))I=dp(q,
P(q))+d (4, Y(9,))=2r. Similarly, when only q, is in Q’,

|dQ(qls qz)—dg(w(ql), )(qz))I=r. Hence, dis Y=r.
The left side of inequality (ii) is straightforward. To show

the right side of inequality (ii), let 1 be a mapping 1p: Q—S.
A new mapping \: Q—>S""is defined in the following way:

(EQ. A4)

. ¥l wpes” EQ. A5
V(@ = argminds (s, y(g)  else.
xeS’J
Since S”'is an r'-covering of S,
SUP,, gepldo(9.9)-ds(W(@) ) (9) | Esup, sepldy
(g.9)-ds(p(@)p(g)1+27" (EQ. A6)

for all , and consequently dpx(S™, Q)=dpx(S, Q)+r'. Q.E.D.
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A further property of d - is referred to as the partial match-
ing property, and is formulated as follows: given Q' an r-cov-
ering of a continuous surface Q, dz(Q", Q)=0. The proof of
this property follows directly from the fact that Q" is a sub-
space of Q with a restricted metric dl,"(q, q')=d(q, q') for
all q, q' in Q". Thus, there exists a trivial isometric embedding
of Q" into Q. It is noted that by virtue of this property (unlike
the corresponding property of the Gromov-Hausdorff dis-
tance d ;;(Q, Q")=r), d,x can be used for partial matching of
surfaces.

Proof of Lemma 1

The proof oflemma 1 is presented below for the derivation
of J,, (Equation 18). One of ordinary skill in the art would
know how to derive J ;according to the similar principles. The
proof of lemma 1 starts with the derivative with respect to w.
By Equation 14, X, is a local minimum of 1(x,;X,d,w), hence,
where g stands for the gradient V. 1. Adding an infinitesimal
perturbation to w results in g(Xq;X,d,w+dw)=0, yet there
exists an infinitesimal perturbation dX, such that
g(Xy+dxy; X,d,w+dw)=0. From the first-order Taylor expan-
sion, it follows that:

G(Eo+dEg, X d wrdw)=g(Ro, X, d, w)+H

Fo: X dw)dio+ G, (o X d wdw, (EQ. A9)

where H is given in Equation 16. Substituting g(X,;X,d,w)=0
and neglecting second-order terms, the following equation is
obtained:

Hd% G, Tdw=0. (EQ. A8)

Since for non-collinear x, and at most one zero weight the
Hessian is invertible,

dt,=-H'G,Tdw (EQ. A9)

J,, can then be straightforwardly obtained from Equation
A9.QED

It is appreciated that certain features of the invention,
which are, for clarity, described in the context of separate
embodiments; may also be provided in combination in a
single embodiment. Conversely, various features of the
invention, which are, for brevity, described in the context of'a
single embodiment, may also be provided separately or in any
suitable subcombination.

Although the invention has been described in conjunction
with specific embodiments thereof, it is evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, it is intended to embrace
all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims. All
publications, patents and patent applications mentioned in
this specification are herein incorporated in their entirety by
reference into the specification, to the same extent as if each
individual publication, patent or patent application was spe-
cifically and individually indicated to be incorporated herein
by reference. In addition, citation or identification of any
reference in this application shall not be construed as an
admission that such reference is available as prior art to the
present invention.

What is claimed is:

1. A method of determining similarity between a non-
planar probe surface represented by a probe point-cloud and
a non-planar model surface represented by a model point-
cloud, the surfaces representing physical objects, the method
comprising:
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calculating a matrix of geodesic distances characterizing
said non-planar model surface represented by said
model point-cloud;

embedding said probe surface into an embedding space

having a non-constant sectional curvature, wherein said
embedding space is a polyhedral approximation of the
model surface;
defining an objective function based on said embedding
space adapted to map either said probe surface onto said
model surface or said model surface onto said probe
surface; and wherein said objective function is selected
so as to allow calculation of at least one of: a partial
embedding distance between the probe surface and the
model surface; and a Gromov-Hausdorff distance
between the probe surface and the model surface;

calculating an extremal value of said objective function by
an iterative process, said iterative process comprising
starting with a plurality of initial values of the optimiza-
tion variables of the objective function, and iteratively
updating the locations on said model surface so as to
produce a decreasing sequence of function values;
wherein said iterative process is selected from the group
consisting of the steepest descent method, the fixed step
gradient method, the conjugate gradient method, the
Newton method, coordinate-wise descent and any com-
bination thereof; and

determining similarity between the probe surface and the

model surface based on said extremal value.

2. A method of searching a library of non-planar model
surfaces for at least a partial match to a non-planar probe
surface, the non-planar probe surface being represented by a
probe point-cloud and each non-planar model surface being
represented by a model point-cloud, the method comprising,
for each non-planar model surface, performing the method of
claim 1 so as to determine similarity between the probe sur-
face and said model surface, thereby determining the pres-
ence or absence of at least a partial match.

3. The method of claim 1, wherein said calculation of said
extremal value comprises multiresolution optimization.

4. The method of claim 1, further comprising selecting a
subset of the probe point-cloud corresponding to a predeter-
mined patch of the probe surface, wherein said calculation of
said extremal value is based on said subset.

5. The method of claim 4, wherein said geodesic distances
are calculated using the fast marching method.

6. The method of claim 1, further comprising constructing
said polyhedral approximation from the model point-cloud.

7. The method of claim 1, wherein said objective function
comprises a sum of local distortions, each characterizing
embedding of a pair of points in the probe point-cloud into
said embedding space.

8. The method of claim 7, wherein said sum is a weighted
sum.

9. The method of claim 7, wherein a plurality of said local
distortions in said sum comprise a function of the difference
between a first geodesic distance defined in the probe surface
and a second geodesic distance, corresponding to said first
geodesic distance and being defined in said embedding space.

10. The method of claim 9, wherein said first geodesic
distance characterizes a pair of points of the probe point-
cloud and said second geodesic distance characterizes images
of said pair of points.

11. The method of claim 9, wherein said first geodesic
distance characterizes a pair of points of the embedding space
and said second geodesic distance characterizes images of
said pair of points.



US 8,280,150 B2

29

12. The method of claim 9, wherein said first geodesic
distance is a distance between a first point of the probe point-
cloud and an image of a first point of said embedding space,
and said second geodesic distance is a distance between a
second point of said embedding space and an image of a
second point of the probe point-cloud.

13. The method of claim 1, wherein said probe surface and
said model surface represent faces.

14. Apparatus for determining similarity between a non-
planar probe surface represented by a probe point-cloud and
a non-planar model surface represented by a model point-
cloud, the apparatus comprising:

a extremal value calculator, for calculating a extremal

value of an objective function describing embedding of

said probe surface into an embedding space having a

non-constant sectional curvature according to a method

comprising:

defining an objective function based on said embedding
space adapted to map either said probe surface onto
said model surface or said model surface onto said
probe surface; and wherein said objective function is
selected so as to allow calculation of at least one of: a
partial embedding distance between the probe surface
and the model surface; and a Gromov-Hausdorff dis-
tance between the probe surface and the model sur-
face, and

calculating an extremal value of said objective function
by an iterative process, said iterative process compris-
ing starting with a plurality of initial values of the
optimization variables of the objective function, and
iteratively updating the locations on said model sur-
face so as to produce a decreasing sequence of func-
tion values; wherein said iterative process is selected
from the group consisting of the steepest descent
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method, the fixed step gradient method, the conjugate
gradient method, the Newton method, coordinate-
wise descent and any combination thereof;

a matrix calculator for calculating a matrix of geodesic
distances corresponding to the probe point-cloud,
wherein said embedding space is a polyhedral approxi-
mation of the model surface; and

a similarity determinator operable to determine the simi-
larity between the probe surface and the model surface
based on said extremal value.

15. The apparatus of claim 14, wherein said extremal value
calculator is operable to employ multiresolution optimiza-
tion.

16. The apparatus of claim 14, further comprising a subset
selector for selecting a subset of the probe point-cloud corre-
sponding to a predetermined patch of the probe surface,
wherein said extremal value calculator is operable to use said
subset for calculating said extremal value.

17. The apparatus of claim 14, further comprising a poly-
hedron constructor for constructing said polyhedral approxi-
mation from the model point-cloud.

18. The apparatus of claim 14, wherein said objective func-
tion comprises a sum of local distortions, each characterizing
embedding of a pair of points in the probe point-cloud into
said embedding space.

19. The apparatus of claim 18, wherein at least a plurality
of'said local distortions in said sum comprise a function of the
difference between a first geodesic distance defined in the
probe surface and a second geodesic distance, corresponding
to said first geodesic distance and being defined in said
embedding space.

20. The apparatus of claim 14, wherein said geodesic dis-
tances are calculated using the fast marching method.
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