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(7) ABSTRACT

A system and a method solve the estimation problem of
finding reflectance R and illumination L. The system and
method to solve a functional of the unknown illumination L
such that a minimum of the functional is assumed to yield a
good estimate of the illumination L. Having a good estimate
of the illumination L implies a good estimate of the reflec-
tance R. The functional uses a variational framework to
express requirements for the optimal solution. The require-
ments include: 1) that the illumination L is spatially smooth;
2) that the reflectance values are in the interval [0,1] —thus,
when decomposing the image S, the solution should satisfy
the constraint L>S; 3) that among all possible solutions, the
estimate of the illumination L should be as close as possible
to the image S, so that the contrast of the obtained R is
maximal; and 4) that the reflectance R complies with typical
natural image behavior (e.g., the reflectance is piece-wise
smooth).
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1
SYSTEM AND METHOD FOR IMAGE
ENHANCEMENT, DYNAMIC RANGE
COMPENSATION AND ILLUMINATION
CORRECTION

TECHNICAL FIELD

The technical field is enhancement of digital images.

BACKGROUND

The human visual system is typically able to adapt to
lighting variations across scenes, perceiving details in
regions with very different dynamic ranges. Most image
recording systems, however, fail this dynamic range com-
pression task. As a result, images produced by these image
recording systems are often of poor quality, compared to
images produced by human perception. Another task that is
often poorly performed by the image recording systems is
that of color constancy. Humans perceive color in a way that
is fairly independent of scene illumination, whereas the
image recording systems are strongly influenced by spectral
shifts.

The above problems can be stated mathematically by
describing a relationship between an acquired image S, a
reflectance of objects of the image R, and an illumination L
in a pixel-wise multiplication, or:

S=L‘R.

This expression means that at each point in the image S, the
color value is the multiplication of the reflectance value by
the illumination value. Given an image S, the problem to be
solved is removal of the effects of illumination and recovery
of the reflectance image. That is, given S, find both R and L.
However, calculation of both R and L is typically not
possible. The solution then, is to generate a methodology
that can estimate R and L.

Retinex theory deals with compensation for illumination
in images. The goal of the Retinex theory is to decompose
a given image S into the reflectance image R, and the
illumination image L, such that at each point (x,y) in the
image domain, S(x,y) equals the product of R(x,y) and
L(x,y). The benefits of such decomposition include the
possibility of removing illumination effects of back/front
lighting, enhancing photographs and other image capture
methods that include spatially varying illumination, such as
images that contain indoor and outdoor zones, and correct-
ing colors in images by removing illumination-induced color
shifts.

As noted above, recovering the illumination L. from a
given image S is known to be a mathematically ill-posed
problem, and known algorithms vary in the manner and
effectiveness of overcoming this limitation. The Retinex
approach provides the framework for one such method. The
Retinex methodology was motivated by Edward Land’s
research of the human visual system, which is described in
R. H. Land, “The Retinex Theory of Color Vision,” Sci.
Amer, Vol. 237, pp. 108-128 (1977).

The first Retinex algorithms were of the random walk
type. Subsequent Retinex algorithms used homomorphic
filtering. Yet another group of Retinex algorithms are based
on solving a Poisson equation.
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FIG. 1 is a block diagram of an algorithm 10 that is
representative of the general class of prior-art Retinex algo-
rithms. In FIG. 1, an input image S 11 is applied to a
logarithmetic module 12 to produce a logarithmetic version
13 of the input image S and its two components, illumination
L and reflectance R. That is, s=log S, I=log L, and r=log R,
and thereby, s=1+r. Using the logarithmetic version 13 of the
input images, an estimator module 14 computes an estimate
17 of the illumination, designated in FIG. 1 as 1*. The
estimate 17 (1*) is then combined with the logarithmetic
version 13 (s) at summer 18 to produce an estimate 19 of the
reflectance (designated r*). Finally, the estimate 19 (r*) is
converted from a logarithm to a number (antilogarithm)
corresponding to the logarithm at expander 20, to produce a
real number value as an estimate 21 of the reflectance
(designated as R*). Prior art Retinex algorithms usually
employ the same process as shown in FIG. 1.

The Retinex-based algorithms take several different
forms. One such form is the random walk algorithm, which
is a discrete time random process in which the “next pixel
position” is chosen randomly from neighbors of the current
pixel position. Random walk type Retinex algorithms are
variants of the following basic formulation: A large number
of walkers are initiated at random locations of the logarith-
metic version 13 (s), adopting a gray-value of their initial
position. An accumulator image A that has the same size as
s is initialized to zero. As a walker walks around, the walker
updates A by adding the value of the walker to each position
(x,y) that the walker visits. The illumination image is
obtained by normalizing the accumulator image A, i.e., the
value at each position of the accumulator image A is divided
by the number of walkers that visited that position.

By using many walkers with long paths, one can easily
verify that the accumulator value at each position converges
to a Gaussian average of that position’s neighbors.

Another type of Retinex algorithm uses homomorphic
filtering, where a low-pass filter is used to reconstruct 1 from
s. Homomorphic Retinex algorithms are based on the fact
that the reflectance image R corresponds to the sharp details
in the image (i.e., the edges), whereas the illumination L is
expected to be spatially smooth. Then, a reasonable guess
for 1 is 1*=LP{s}, where LP is a convolution with a wide
Gaussian kernel. Thus, the Retinex algorithm using homo-
morphic filtering actually applies the same process as the
random walk algorithms by a single direct convolution.

Since the illumination L is expected to be spatially
smooth, the derivative of the illumination L should be close
to zero. However, considering the assumption that the reflec-
tance R is piece-wise constant, the derivative of the reflec-
tance R should vanish almost everywhere, with high values
along edges of an image. Taking the derivative of the sum
s=Il+r and clipping out high derivative peaks, implies that the
clipped derivative signal corresponds only to the illumina-
tion L. Poisson equation-type Retinex algorithms that rely
on the Mondrian world model, use the above assumptions on
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the reflectance R as a piece-wise constant image. Applying
the Laplacian, and the following clipping operation:

T(As)=As where |As|<t
T(As)=0 otherwise,

yields the following Poisson equation
Al*=t(As)

A solution to the Poisson equation may involve an iterative
procedure that effectively inverts the Laplacian operator.
Improvements to the method involve extracting discontinui-
ties from the image gradient magnitude instead of the
Laplacian to provide better boundary conditions.

One solution involves use of an iterative algorithm having
a “reset” non-linearity that enforces the constraint 1=s. The
algorithm performs the interactive procedure.

L

B L+s L+ Dylh]
ek b e
where D,, is a translation operator, shifting the image s by the
n” element of a sequence of spirally decaying translation

vectors. Removing the max operation yields a simplified
version

. _ LDl
n+l = T

The above equation is a simple averaging operation that
smoothes the images. The non-linear (max) operation forces
the illumination image 1 to satisfy the constraint 1*=s.
Despite use of these algorithms, current image recoding
and image enhancement systems and methods cannot pro-
duce images that are of sufficient quality to be comparable
to images as perceived by the human vision system. Thus, an
improved method and system are required to better remove
illumination effects and to recover the reflectance image.

SUMMARY

A system and a method solve the estimation problem of
finding reflectance R and illumination L. The system and
method use a functional of the unknown illumination L such
that a minimum of the functional is assumed to yield a good
estimate of the illumination L. Having a good estimate of the
illumination L implies a good estimate of the reflectance R.

The functional uses a variational framework to express
requirements for the optimal solution. The requirements
include: 1) that the illumination L is spatially smooth; 2) that
the reflectance values are in the interval [0,1]—thus, when
decomposing the image S, the solution should satisfy the
constraint L>S; 3) that among all possible solutions, the
estimate of the illumination L should be as close as possible
to the image S, so that the contrast of the obtained R is
maximal; and 4) that the reflectance R complies with typical
natural image behavior (e.g., the reflectance is piece-wise
smooth).

The four requirements lead to a well-behaved optimiza-
tion problem having quadratic programming, which is
convex, with a single solution. The method and the system
use a numerical algorithm for the solution, where the algo-
rithm is based on a multi-resolution decomposition of the
image S.
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The method and the system are adaptable to different
image situations. In a first situation, given a color image in
the RGB color-space, applying the algorithm on the three
color channels separately produces color correction. An
alternative embodiment involves converting the input image
S into a chromatic-luminance color space. The algorithm is
then applied to the luminance alone, resulting in an image
that preserves the input colors, and improves the local
contrast.

A second situation accounts for the fact that although the
illumination L is assumed to be spatially smooth on a global
level, the assumption is sometimes wrong. This situation is
shown dramatically in FIG. 9, where the illumination L is
expected to have a sharp edge on the window boundaries. In
situations such as that shown by the example of FIG. 9,
allowing the illumination L to include sharp edges may be
enabled by forcing piece-wise smoothness on the illumina-
tion L, rather than assuming global smoothness.

A third situation does not use the assumption of piece-
wise smoothness for the reflectance R. Instead, a better
quality prior image S is used. The better prior S allows use
of multi-resolution and unisotropic considerations.

A fourth and final situation accounts for the fact that some
illumination effect is needed in order to give the human user
a natural feel of the recorded image. Thus, the method and
the system may include a process that partially returns the
illumination such that a final output image includes some
illumination, but with improved contrast.

Using the four requirements enumerated above, the varia-
tional framework and the algorithm provide a novel solution
to the problem of estimating illumination. The variational
framework and the algorithm may be applied in many image
recording situations, including in digital cameras as an
automatic illumination compensation module, aimed at
improving image reproduction quality, and in scanners and
printers, as a special effect that improves the visual quality
of a scanned/printed image.

DESCRIPTION OF THE DRAWINGS

The detailed description will refer to the following
drawings, in which like numbers refer to like objects, and in
which:

FIG. 1 is a diagram of a prior art algorithm for estimating
illumination;

FIG. 2 is a block diagram of an improved algorithm for
decomposing an image;

FIG. 3 is a diagram of a system that uses the improved
algorithm of FIG. 2;

FIG. 4 is a flowchart showing a process according to the
algorithm of FIG. 2;

FIG. 5 is a flowchart of a sub-routine of the process of
FIG. 4,

FIG. 6 is a flowchart of a further sub-routine of FIG. 4;

FIG. 7 is a block diagram of an alternate improved
algorithm;

FIG. 8 is a block diagram of yet another alternate
improved algorithm; and

FIG. 9 is an image triplet showing the effects of illumi-
nation on an image.
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DETAILED DESCRIPTION

The human visual system is typically able to adapt to
lighting variations across scenes (for example, shadows,
strong illumination source), perceiving details in regions
with very different dynamic ranges. Most image recording
systems (e.g., cameras), however, fail this dynamic range
compression task. As a result, images produced by these
image recording systems are often of poor quality, compared
to images produced by human perception. Another task that
is often poorly performed by the image recording systems is
that of color constancy. Humans perceive color in a way that
is fairly independent of scene illumination, whereas the
images recording systems are strongly influenced by spectral
shifts.

The above problems can be mathematically formulated by
describing a relationship between an acquired image S, a
reflectance R of objects of the image, and an illumination L
in a pixel-wise multiplication, or:

S=L-R.

This expression means that at each point in the image S, the
color value is the multiplication of the reflectance value by
the illumination value. The effect of this relationship can be
seen by a simple experiment. A person or other object in a
room is placed near a window (or other light source) during
daylight such that a strong light source (i.e., bright daylight)
illuminates part of an image S to be recorded. Thus, the
illumination is strong through the window and weak inside
the room. A photograph is then taken, and the recorded
image S is decomposed into reflectance R and illumination
L. The person can barely be seen in the image S and the
illumination L, but can be seen in the reflectance R.

Given an image S, the problem to be solved is removal of
the effects of illumination and recovery of the reflectance
image. That is, given S, find both R and L. However,
calculation of either R or L is typically not possible. The
solution then, is to generate a methodology that can estimate
R and L.

FIG. 2 is a block diagram of an improved algorithm 100
that may be used to estimate the illumination L. and the
reflectance R. In FIG. 2, an image S 101 is input to a
logarithm module 102 to produce a logarithm s 103 of the
image S 101 and its two components, illumination L and
reflectance R. That is, s=log S, 1=log L, and r=log R, and
thereby, s=l+r. Using the logarithm s 103, an image pro-
cessing module 104 uses a Projected Normal Steepest
Descent or similar algorithm, with multi-resolution
processing, to compute an estimate 107 of the illumination,
designated in FIG. 2 as 1*. The estimate 107 (1*) is then
combined with the output 103 (s) at summer 108 to produce
an estimate 109 of the reflectance (designated r*). Finally,
the estimate 109 (r*) is converted from a logarithm to its
corresponding base number value at exponential module
110, to produce a number value as an estimate 111 of the
reflectance (designated as R¥).

FIG. 3 is a block diagram of a representative component
(a digital camera) 112 that uses the system and the method
described herein. The component 112 includes an image
capture device 114 that captures an image. The image
capture device may include lenses, a CCD array, and other
sub-components. An image converter 115 may be an
optional subcomponent used for pre-processing of the cap-
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tured image. An image processor 116 may include the
necessary processing software and algorithms to enhance the
captured image according to the methods and systems
described herein. The component 112 may include an image
memory 117 that stores captured images, both before and
after processing by the image processor 116. Finally, a
display device 118, which may be a liquid crystal display
device, for example, provides a visual display for a user of
the component 112.

To arrive at the solution to the problem of estimating R
and I, a method and a system for applying the method
begins by formulating the estimation problem of finding R
and L from S as an optimization problem. That is, a
functional of one of the unknowns (either L or R) is provided
such that a minimum of the functional yields the desired
result. The formulation uses a variational framework to
express requirements from the optimal solution. The frame-
work embodies the following requirements:

1. The illumination L is spatially smooth.

2. The reflectance R is restricted to the unit interval, which
adds the constraint L=S. Since the log function is
monotone, 1=s.

3. Setting 1=Const, where Const is any constant above the
maximal value of s, yields a trivial solution that satis-
fies the two previous requirements. Thus, a requirement
is added such that the illumination image 1 is close to
the intensity image s, i.e., the value of 1 minimizes a
penalty term of the form dist (1), e.g., the L, norm
(I-s)*.

4. The reflectance image s=1-r can be assumed to have a
high prior probability. One of the simplest prior func-
tions used for natural images assigns high probability to
spatially smooth images.

5. The illumination continues smoothly as a constant
beyond the image boundaries. This is an artificial
assumption required for boundary conditions that
would have minor effect on the final results.

Collecting all the above requirements into one expression
yields the following penalty functional:
¢9)

Minimize:

Flll = f(|v1|2 +al—sP +BVU-s))dxdy
O

Subject to: 1Zs and <V1,E)>=0 on 4L,

®
where 2 is the support of the image, dQ is the image

boundary, and o is the normal to the boundary. o and f§ are
free non-negative real parameters. In the functional F[1], the
first penalty term (|V1]*) forces spatial smoothness on the
illumination image. This choice of smoothness penalty is
natural, keeping in mind that minimizing [ (|V1[*)dxdy trans-
lates into the Euler-Lagrange (EL) equation Al=0. The
steepest descent solution to the first penalty term is a
Gaussian smoothing operation with increasing variance of
the initial condition. As mentioned in the previous section,
several authors proposed Gaussian smoothing of s for the
illumination reconstruction.

The second penalty term (l-s)* forces a proximity
between 1 and s. The difference between these images is
exactly r, which means that the norm of r should be small
(ie., R tends to white). This term is weighted by the free
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parameter o.. The main objective of this term is a regular-
ization of the problem that makes the second penalty term
better conditioned. Notice that, in addition, the solution 1 is
forced to be 1Zs.

The third penalty term is motivated by the Bayesian prior
probability theory and encourages the reflectance image r to
be a “visually pleasing image.” In practice, this prior prob-
ability expression forces r to be spatially smooth. The third
penalty term is weighted by the free parameter . More
complicated Bayesian expressions may be used allowing
sharp edges, textures, 1/fbehavior, etc. As long as this
expression is purely quadratic, the above minimization
problem remains fairly simple.

The above-defined problem has a Quadratic Programming
(QP) form. The necessary and sufficient conditions for the
minimization problem are obtained with the Euler-Lagrange
equations:

@

AF
—r =0:—Al+w(l—s)—,3A(1—5)}

Yix,y)e Q{

and [>sorl=s

The differential equation does not have to hold when 1=s.

The minimization problem is QP with respect to the
unknown image 1. A Projected Normalized Steepest Descent
(PNSD) algorithm, accelerated by a multi-resolution
technique, is used to solve this minimization problem.

The PNSD algorithm requires the application of a Nor-
malized Steepest Descent (NSD) iteration that minimizes the
functional F[1], followed by a projection onto the con-
straints. A NSD iteration has the format:

I=l s -uysp G

where 1; and I,_, are the illumination images at step j and j-1,
respectively, G is the gradient of F[1], and py, is the
optimal line-search step size. For Equation (2), the gradient
of F[1] is given by:

G=V1I_+a-pA)I_1-5),

and yep 1S given by:

[l

D = T alGP + L+ BIVGE)

Using integration by parts, [|[VG|*=—] GAG up to the bound-
ary conditions.

An alternative approach is the Steepest Descent (SD)
algorithm, where ty¢, is replaced by a constant value g,
such that:

0 2
Hsp € ( " T (1 +ﬁ)A+w1}]

where A,,,,.{ A} refers to the greatest eigenvalue of the linear
operator A. This alternative method saves computations at
the expense of a slightly slower convergence.

Finally, projecting onto the constraint 1=s is done by
l;=max(l;, s). In practice, G can be calculated by:

G=G+a(l;_1-5)-B(G4~Gp)
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where

Gy 2 Al g,
Gp 2 Asy
Similarly, tysp 1S given by:

Ha

HNSD = i + (L + Pt

where

The Laplacian may be approximated by a linear convolution
with the kernel k; , »

0 10
1—41],

0 10

Kiap =

and the integrations are approximated by summations:
f|c;|2 x> Gln,m)
f|VG|2=—fGAG

x =)D, Gln G+ Kpap)ln, m)

where G[m, n]=G(mAx, nAy). In order to accommodate the
boundary conditions, as given in Equation (1), the above
convolution is applied on an expanded version of the image
G. The extension is done by replicating the first and last
columns and rows. After convolution, the additional rows
and columns are removed.

Although simple, the PNSD algorithm usually converges
slowly. Instead of general acceleration schemes, the fact that
the unknown image 1 is assumed to be smooth may be used.
Specifically, the method applies a multi-resolution algorithm
that starts by estimating a coarse resolution image 1, expands
the resolution image 1 by interpolation, and uses the result as
an initialization for the next resolution layer. This way, only
a few iterations at each resolution are required for conver-
gence.

Summarizing the above, a block diagram of an algorithm
120 for the solution of Equation (1) is shown in FIG. 4. The
algorithm 120 begins with input block 121, where an input
to the algorithm 120 is an image s of size [N, M], and the two
parameters o and f.

In initialization block 123, a Gaussian pyramid of the
image s is computed. The thus-constructed pyramid contains
p resolution layers (from fine (1) to coarse (p)) with the
current resolution layer (k) set to p. In block 125, T,
iterations of the PNSD algorithm are applied to the kth
resolution layer, until all resolution layers are checked, block
127. In block 129, the next resolution layer is updated. When
all resolution layers are processed, the result is the final
output of the algorithm 120.
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FIG. 5 is a block diagram showing the initialization
routine 123 in more detail. In block 131, a counter is
initialized with 1=1. In block 132, the Gaussian pyramid is
constructed by smoothing the image with a kernel, such as
the kernel kpyp:

Kpyr =

NN
| = I — oo —
NN

In block 133, the image is decimated by, for example, a 2:1
ratio. The process is repeated (block 134) and the counter is
incremented (block 135) p times where for this section
p<lg, (min (M, N)). This process produces a sequence of
images

oy

conventionally named the “Gaussian Pyramid of s.” The
image s, is the original image s, and s,, is an image with the
coarsest resolution for the Gaussian pyramid.

In block 137, the process sets k=p, ie., starts at the
coarsest resolution layer k, and sets the initial condition
l,=max {s,}.

FIG. 6 is a block diagram of the PNSD processing main
routine 125. The routine 125 starts at block 141, where for
the k” resolution layer, the routine 125 calculates:

Gg=A;s8;
Where: A, =C*k, ,,272*"D; namely a convolution of T with

the kernel k, , » as specified above, normalized by a factor
(1)

Then, for j=1, . .., T,
In block 143, the routine 125 calculates the gradient:

Ga=Al,y,
G=Gs+a(li_1-5)-B(GA-Gp)
In block 145, the routine 125 calculates .-
1,=<G,G>,
tig=—<G, A G>,
Hsp=pal(Gta+(1+B)s)

Where:

M=

N
G.F) =)

n=lm

Gln, m)F[n, m]

In block 147, the routine 125 completes the NSD itera-
tion:

I=l 1 -uysp' G,
In block 149, the result is projected onto the constraints:

l=max {1, 5.},
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The loop processing solves the intermediate problem:

Minimize:

Fll= | (VIF+al-s)"+ BV - s dxdy
23

Subject to: 1Zs, and <V1, 1 >=0 on 4Q

Returning to FIG. 4, in block 127, if k>1, the result 1, is
up scaled (2:1 ratio) by pixel replication into the new 1,, the
initialization for the next resolution k-1 layer. The resolu-
tion layer is updated k=k-1, and the algorithm proceeds by
going again to block 125. If k=1, the result 1, is the final
output of the algorithm 120.

By setting the parameters a=p=0, and removing the
constraint 1Zs, the algorithm 120 reduces to the Homomor-
phic filtering process that was shown to be equivalent to the
basic formulation of the random walk algorithms.

Using the method and the system described above, the
solution to Equation (1), and the convergence of the numeri-
cal algorithm 120 can be shown to be unique. That is, the
variational optimization problem P, given by

Minimize:

F = (VIP + ol - 50)* + BV (U - sp)dxd y
@

Subject to: 1Zs, and <V1, 1 >=0 on 4Q

with 020 and, =0, has a unique solution.

The algorithm 120 has thus far been described with
respect to a single channel. In another embodiment, the
system and the method are applied to color images. When
processing color images, one option is to deal with each
color channel separately. Such channel-by-channel process-
ing may be referred to as ‘RGB Retinex’ processing. Treat-
ing the R, G, and B channels separately usually yields a
color correction effect. For example, applying RGB Retinex
processing to a reddish image should modify the illumina-
tion in such a way that the red hue is removed and the
resulting image is brightened and corrected. Therefore, for
some image types, RGB Retinex processing improves the
colors. For other image types, such color correction may
cause color artifacts that exaggerate color shifts, or reduce
color saturation.

In yet another embodiment, colors are mapped into a
luminance/chrominance color space, such as HSV. Next, the
Retinex correction is applied, but only to the luminance or
V layer, and then the colors are mapped back to the RGB
domain. This method may be referred to as ‘HSV Retinex’.
Color shifts in such cases are less-likely. The advantage of
HSV Retinex processing is that only a single channel is
processed. However, using this embodiment colors are not
corrected with respect to hue (H), and saturation (S).

The reflectance image R obtained by the Retinex process
is sometimes an over-enhanced image. This can be
explained by the facts that i) the human visual system
usually prefers illumination in the image, and that ii)
removal of all the illumination exposes noise that might
exist in darker regions of the original image.
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In still another embodiment, a corrected version of the
reconstructed illumination is added back to the constructed
reflectance image. FIG. 7 describes this operation. In FIG. 7,
an algorithm 200 computes the illumination image L=exp(l)
from the intensity image S=exp(s), and the reflectance image
R=S/L. This is shown where an input image S 201 is applied
to a Retinex module 202 to produce an illumination image
L 203. The illumination image L. 203 is tuned by a Gamma
correction operation 204 with a free parameter v, to obtain
a new illumination image L' 209. A reflectance module 206
computes reflectance R 207 from the input image S 201 and
the illumination image L 203. The new illumination image
L' 209 is multiplied by the reflectance R 207 at 210 to
produce an output image S' 211, where S'=L'R. The Gamma
correction is performed by

where W is the white value (equal to 255 in 8-bit images).
The final result S' is given, therefore, by:

’

;o g7 _L
S'=L"-R=—5§
L

L)) s

L 0T LW

For y=1, the whole illumination is added back, and therefore
S'=S. For y=00, no illumination is returned, and S'=R W,
which is the same reflectance image, R, as obtained by the
algorithm 100, stretched to the interval [0, W]. This later
case can also be considered as multiplying a maximum
constant illumination W to the reflectance image R.

An analog to adding the illumination to the final image
can be found in the homomorphic filtering approach. A
linear filter for the illumination calculation in the log domain
removes high-pass spatial components of s, yet also attenu-
ates the low-pass components by a factor of y, (where i
stands for illumination). This is an analog to a gamma
correction of the illumination with y=y,, since the equation
for S' can be written in the form:

1y
-R,

and therefore:

1
s —w=—=(l-w)+r
Y

= %(low— pass components) + (high— pass components).

In an ideal environment, the illumination L is assumed to
be piece-wise smooth. That is, L. is smooth everywhere
except at strong discontinuities of the input image S. This
ideal can be approached in a number of ways. First, referring
again to FIG. (1), both the illumination L and the reflectance
R are required to be smooth. However, these requirements
contradict each other because 1 plus r must equal s. Thus 1
and r share the discontinuities. The parameter § arbitrates
this contradiction and makes sure that appropriate parts of
each discontinuity are apportioned to 1 and r.
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Asecond approach ensures that the illumination 1 smooth-
ness requirement be valid everywhere except over discon-
tinuities of s, and that the reflectance smoothness be valid
over discontinuities of s.

This second approach requires computing a weight func-
tion w(Vs) that obtains values close to 1 over most parts of
the image s, and close to 0 over strong discontinuities.
Equation (1) then becomes:

lan| =f(w(Vs)|Vl|2 +all-s)+ @
o)
A=WV =) )dxdy
The projected steepest descent solution to Equation (3)
composed of a series of gradient steps is:
Ly =1+ p[DL{ MV )DL()) + DLWV )D5 (1)) — ol - 5) +
B-DL(L = w(VsNDEU; =) + B- D (1 = m(Vs)D (= )]
and projections:
l,=max{l,, s}
Where:

M is a constant

D/ () is a forward derivative in the x-direction.

D.? () is a backward derivative in the x-direction.

D,/ () is a forward derivative in the y-direction.

D,” () is a backward derivative in the y-direction.

FIG. 8 illustrates an algorithm 1254, which is an alterna-
tive to the algorithm 125 in algorithm 120, that may be used
to solve the functional (Equation (3)).

In block 221, the algorithm 1254 calculates w(Vs), o, and
Ty

1

(1 | Vs |2]6
T

where Th is a constant threshold,

w(Vs) =

0y=0,2%
and

T =Ty 2%+

Note that o, changes for each resolution level-a higher o,
corresponds to a course resolution level.
In block 223, the algorithm 1254 calculates:

G=DJw(Vs)°D,(1))+D,J(w(Vs)D, (I)~alli=s)+BD.A(I-
w(V)D,*(=5)+BD J(U-w(V5)D, (1;-5))

In block 225, the algorithm 1254 completes the SD
iteration:

lya=lreG
In block 227, the result is projected into the constraints
l=max {1, s,}.

In block 229, the algorithm 1254 checks if i=T,, and if so,
processing according to the algorithm 220 ends.
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What is claimed is:

1. An image enhancement method, comprising:

capturing an image;

constructing a multi-resolution structure comprising one
or more resolution layers;

processing each resolution layer using an iterative algo-
rithm having at least one iteration;

calculating a gradient of a penalty functional, where the
penalty functional includes a weight function that
obtains values close to the logarithm of the illumination
of the image over most parts of the logarithm of the
image;

projecting each processed resolution layer to a subsequent
resolution layer;

up-calling each projected resolution layer to the subse-
quent resolution layer; and
using the projected resolution layers to estimate an illu-
mination image.
2. The method of claim 1, further comprising, for each of
one or more iterations:

computing an optimal line-search step size.
3. The method of claim 1, wherein the penalty functional
is given by:

F[l = fwl(Vs)Wllz +all-s)+pm(Vs|VI- vs|2]a¢xa¢y
O

where w, and w, are non-linear functions of the gradient.

4. The method of claim 1, wherein the iterative algorithm
is a Projected Normalized Steepest Descent algorithm.

5. The method of claim 1, wherein the iterative algorithm
is a Steepest Descent algorithm.

6. The method of claim 1, wherein a set of constraints
comprises a constraint that the illumination is greater than
the image intensity, L>S.

7. The method of claim 1, further comprising applying
penalty terms, the penalty terms comprising:

that the illumination is spatially smooth;

that the reflectance is maximized; and

that the reflectance is piece-wise smooth.

8. The method of claim 1, further comprising:

computing the reflectance image based on the captured

image and the estimated illumination image;
computing a gamma correction factor;

applying the gamma correction factor to the estimated

illumination image;

and multiplying the gamma-corrected illumination image

and the reflectance image, thereby producing a cor-
rected image.

9. A system, embodied in computer-readable medium, for
enhancing digital images, comprising:

a log module that receives an input digital image S and

computes a logarithm s of the input digital image;

an illumination estimator module that produces an esti-

mate 1* of an illumination component L of the input
digital image S, wherein the estimator module employs
a construct comprising one or m or ¢ resolution layers,
and an iterative algorithm that processes each of the
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one or more resolution layers, wherein the iterative
algorithm, for each of one or more iterations, calculates
a gradient of a penalty functional, wherein the penalty
functional includes weight functions w, and w, applied
to V, that obtain values close to the logarithm of L
except over discontinuities of the logarithm s; and

a summing node that sums the logarithm s and a negative
of the estimate 1* to produce an estimate r* of a
logarithm of a reflectance component R of the input
digital image S, wherein a processed resolution layer is
used to up-scale a subsequent resolution layer.

10. The system of claim 9, wherein the iterative

algorithm, for each of one or more iterations:

computes an optimal line-search step size.
11. The system of claim 9, wherein the penalty functional
is given by:

Flll = fwl(Vs)Wllz +a(z—s)+ﬁwz(vs)|vz—vs|2]a¢xa¢y
O

where w, and w, are non-linear functions of the gradient.

12. The system of claim 9, wherein the iterative algorithm
is a Projected Normalized Steepest Descent algorithm.

13. The system of claim 9, wherein the iterative algorithm
is a Steepest Descent algorithm.

14. The system of claim 9, wherein each of the one or
more resolution layers is projected onto constraints, and
wherein the constraints comprise that the illumination is
greater than the image intensity, L>S.

15. The system of claim 9, further comprising applying
penalty terms, the penalty terms comprising:

that the illumination is spatially smooth;

that the reflectance is maximized; and

that the reflectance is piece-wise smooth.

16. The system of claim 9, further comprising:

a module that computes reflectance and illumination
images based on the input digital image and the esti-
mate illumination image;

a gamma correction module that computes a gamma
correction factor and applies the gamma correction
factor to the estimated illumination image; and

a node that multiplies the gamma-corrected illumination
image and the reflectance image, thereby producing a
corrected digital image.

17. A method for enhancing an image S, the image S
comprising a reflectance R and an illumination L, the
method comprising:

constructing a multi-resolution image structure having
one or more resolution layers;

processing the resolution layers using an iterative
algorithm, wherein the iterative algorithm, for each of
one or more iterations, calculates a gradient of a penalty
functional, wherein the penalty functional includes a
weight function that obtains values close to the loga-
rithm of L except over discontinuities of the logarithm
of the image S;

projecting the processed resolution layers onto a set o
constraints, the set of constraints comprising boundary
conditions and that L>S; and
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using the projected resolution layers to estimate an illu- 19. The method of claim 17, wherein the penalty func-
mination image. tional is given by:
18. The method of claim 17, wherein the image S is a
RGB domain color image, the method further comprising:
mapping colors R, G, B of the image S into a luminance/
chrominance color space;

Flll = fwl(Vs)Wllz +a(z—s)+ﬁw2(vs)|vz—vs|2]a¢xa¢y
O

applying a correction factor to a luminance layer; and where w, and w,, are non-linear functions of the gradient.

mapping the luminance/chrominance colors back to e
RGB domain. k% & %



