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1
SPACE VARYING GAMUT MAPPING

TECHNICAL FIELD

The technical field is color image processing using gamut
correction.

BACKGROUND

Gamut mapping is a method used to modify a represen-
tation of a color image to fit into a constrained color space
of a given rendering medium. A laser-jet color printer that
attempts to reproduce a color image on regular paper would
have to map the photographed picture colors in a given color
range, also known as the image “color gamut,” into the given
printer/page color gamut. Conventional gamut mapping
methods involve a pixel by pixel mapping (usually a pre-
defined look-up table) and ignore the spatial color configu-
ration. More recently, spatial dependent approaches were
proposed for gamut mapping. However, these solutions are
either based on heurestic assumptions or involve a high
computational cost. An example of such a method is dis-
cussed in “Color Gamut Mapping Based on a Perceptual
Image Difference Measure,” S. Nakauchi, et al., Color
Research and Application, Vol. 24, pp. 280-291 (1999).

Another method relies on preserving the magnitude of
gradients in an original image, while projecting the gradients
onto the target gamut as a constraint. This multi-scale
property is achieved by sampling the image around each
pixel with exponentially increasing sampling intervals while
the sampling is done along vertical and horizontal axes. The
method involves modulating an L, measure for image
difference by human contrast sensitivity functions. The
method uses a model in which the contrast sensitivity
function is a linear combination of three spatial band-pass
filters H,, H,, H;, given in the spatial-frequency domain (or
hy, h,, hy, as their corresponding spatial filters), as shown in
FIG. 1.

For gamut mapping of the image u, in the CIELAB
(which stands for Commission International de I’Eclairage
(CIE) with L, A, and B (more commonly L, a, b) respec-
tively representing converted signals for cyan (C), magenta
M) and yellow (Y)) space, the method minimizes the
functional

E@r, o, ul) =

i

3 (9]
Do | s —urda,
=1

celLap) V'

subject to {u”, v, u’}e 9.
In Equation (1), h;® is the filter corresponding to the
spectral channel ¢ € {L, a, b} the i € {1, 2, 3} ‘contrast

sensitivity’ mod, €2 is the image domain, and § is the target
gamut. Note that a total of nine filters H,© are involved, three
for each spectral channel and a total of three spectral
channels.

The filters H°, are modeled by Gaussians shifted in the
spatial frequency domain. H,“ is a special case where the
shift is zero. The spread function h,“ corresponding to H,¢
is the Inverse Fourier Transform of H,°, and is thus a
Gaussian.

As depicted in the first line of FIG. 2 for the case of H,°
and H;°, spatial frequency shifts are a convolution with
correspondingly shifted delta functions in the spatial fre-
quency domain. The soread functions h,°, (for i=2, 3)
depicted in line 2 of FIG. 2 are the Inverse Fourier Trans-

10

15

20

25

30

35

40

45

50

55

60

65

2

forms of the corresponding H,“. As such, they are multipli-
cations of the Inverse Fourier Transforms of the Gaussian
and the corresponding shifted delta functions, namely a
multiplication of a Gaussian and a harmonic function. As
depicted graphically in line 3 of FIG. 2, harmonically
modulated Gaussians with different harmonic periods cor-
respond to derivatives at different scales. Thus, the gradient
approximation filters H,® and H;° may be denoted by Vhu
Co1, and Voo Note that any band pass filter can be considered
as a version of a derivative operator. Furthermore, one
possible extension of the 1D derivative to 2D is the gradient.
Thus, the minimization of the Equation (1) functional is
similar to minimizing the following functional for each
channel separately.

f|hf*<u—uo)|2+|Vfﬂ<u—uo)|2+|v;2<u—uo)|2am @
(9}

Roughly speaking, the first term corresponds to the
S-CIELAB perceptual measure, while the next two terms
capture the need for matching the image variations at two
selected scales that were determined by human perception
models. One technical difficulty of the spatial filters corre-
sponding to Equation (1) is their large numerical support.

Another simple spatial-spectral measure for human color
perception was proposed in “A Spatial Extension of
CIELAB for Digital Color Image Reproduction,” Zhang et
al., Proceedings of the SID Symposium, Vol. 27, pp. 731-34,
(1996). The ‘S-CIELAB’ defines a spatial-spectral measure
for human color perception by a composition of spatial
band-pass linear filters in the opponent color space followed
by the CIELAB Euclidean perceptual color.

SUMMARY

Gamut mapping is a method to modify representation of
a color image to fit into a constrained color space of a given
rendering medium. A laser-jet color printer that attempts to
reproduce a color image on regular paper would have to map
the photographed picture colors in a given color range, also
known as the image “color gamut,” into the given printer/
page color gamut.

A method an apparatus uses a variational approach for
space dependent gamut mapping. The method presents a
new measure for the problem. A solution to the formulation
according to the method is unique if the gamut of the target
device is known. A quadratic programming efficient numeri-
cal solution provides real-time results.

In an embodiment, the method comprises receiving an
input image, converting color representations of an image
pixel set to produce a corresponding electrical values set,
applying a space varying algorithm to the electrical values
set to produce a color-mapped value set, and reconverting
the color-mapped value set to an output image. The space
varying algorithm solves the variational problem, namely,
the problem of finding the image “u” that minimizes the
following function:

E(u) = f(/:)2 +a|VDP)dx,
O

subject to u € §, where Q is a support of the image, c is a
non-negative real number, D=g*(u-u,), and g is a normal-
ized Gaussian kernel with zero mean and a small variance o.

The method may be implemented in a variety of image
capture reproduction devices, including cameras and print-
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ers. The method may be embodied on a computer-readable
medium, such as a CD-ROM, for example.

DESCRIPTION OF THE DRAWINGS

The detailed description will refer to the following
drawings, in which like numerals refer to like objects, and in
which:

FIG. 1 is a qualitative description of filters modeling the
human contrast sensitivity functions in the spectral domain;

FIG. 2 illustrates a shifted Gaussian;

FIG. 3 is a block diagram of an apparatus that uses a
variational approach for gamut mapping;

FIGS. 4-7 illustrate algorithms and processes used with
the apparatus of FIG. 3;

FIG. 8 illustrates an example of a behavior of an algo-
rithm used by the apparatus of FIG. 3;

FIG. 9 is a flowchart of an algorithm illustrating an
alternative operation of the apparatus of FIG. 3; and

FIG. 10 is a block diagram of a computer system that
implements the algorithm of FIG. 4.

DETAILED DESCRIPTION

Gamut mapping is a method used to modify a represen-
tation of a color image to fit into a constrained color space
of a given rendering medium. A laser-jet color printer that
attempts to reproduce a color image on regular paper would
have to map the photographed picture colors in a given color
range, also known as the image “color gamut,” into the given
printer/page color gamut. Conventional gamut mapping
methods involve a pixel by pixel mapping (usually a pre-
defined look-up table) and ignore the spatial color configu-
ration. More recently, spatial dependent approaches were
proposed for gamut mapping. However, these solutions are
either based on heurestic assumptions or involve a high
computational cost.

The gamut mapping problem is related to the Retinex
problem of illumination compensation and dynamic range
compression. The basic Retinex problem is: How to estimate
the reflectance image from the given acquired image? A
reasonable optical model of the acquired image S asserts that
it is a multiplication of the reflectance R and the illumination
L images. Where the reflectance image is a hypothetic image
that would have been measured if every visible surface had
been illuminated by a unit valued white illumination source,
and the illumination image is the actual illumination shaded
on surfaces in the scene. In the log domain:

s=r+l

where s, r, and 1 are the respective logarithms of S, R, and
L. Since surface patches can not reflect more light than has
been shaded on them, R<1=r<0. Thus, in an ideal situation,
image r<0, which is perceptually similar to s. For the
Retinex, an additional physically motivated constraint is
provided, namely, that the illumination image I=s-r is
smooth, Le. the gradient [V1|=|V(r-s)| is small. But this is
just another way to say that the features of r are similar to
those of s, since the illumination is assumed not to create
perceptual features in s. In the gamut mapping problem an
image U, exists, and the problem is to estimate an image u

€ 9, which is not only perceptually similar to uy, but also has
similar perceptual features as u,.
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A good measure of image deviation captures the percep-
tual difference between the initial, u, and the final, u,
images. This is modeled by

D=g*(u-ug). ©)
where g may be a normalized Gaussian kernel with zero
mean and a small variance o. This model is good for small
deviations. However, for large deviations it should be elabo-
rated to account for possible perceptual feature differences,
which may be modeled by the difference of gradients, which
due to linearity, turns out to be the gradient of Equation (3)

VD=V g*(u-1g)]=g*(Vu-Vuo) ®

The proposed measure yields the functional

E(x) :f(D2+w|VD|2)dQ, ©)
O

subject to u € §,
which should be minimized.

Taking a first variation of Equation (5) with respect to u
yields the Euler-Lagrange equation:

©

SE() .
== = g+ (@div(V g = ) = g (= ) = O,

Reformulating Equation (6) as a gradient descent flow for u,
provides the following minimization scheme:

du B
T
s.I.

The functional (Equation (5)) and the resulting minimi-
zation scheme are both Euclidean invariant in the image
plane. They are thus both translation and rotation invariant.
As the parameter o goes to zero, the S-CIELAB model is
approximated, while for effective o the result is a proper
extension to the perceptual measures, with an efficient
numerical implementation.

To provide a numerical solution, recall that an artificial
time parameter t was added to the image u(x, y), which now
reads u(x, y, t). A first step is to discretize the Eueler-
Lagrange gradient descent equation, by first taking a simple
forward explicit approximation for the t derivative,

M
agxAD —g=D

ued

Mn+l oyt

=ag+*AD—-g+D

where t=dt and u"(x,y)=u(x,y; nv).

Next, the space derivatives are solved. Let u,;"~u(ih,jh,nt),
where uniform spatial spacings are assumed in the x and y
directions of size h. Using central derivatives in space,

i1 — 205+t
2
U] — U]

2h

Uy % Dy =

u, x Dyu =

and the same for the y direction. Using the relation g*D,
(g*w)=g,*g.*u, the algorithm next computes the kernels
D,=g,*g,.+g,*g,=D,g*D,g+D g*D,g. The explicit approxi-
mation reads:
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D=g*g*(u"~uo)
L"=D,*(u"-ug)
uijn+1=uijn+.c(aLUn_DUn)

subject to the constraint u;” € 9.

To speed up convergence, a standard coarse to fine
pyramidal approach may be preferred. For example, an
original image S may be composed of a set of 512x512
pixels. The image S may then be averaged down (sub-
sampled or decimated) by taking, for example, every 4
adjacent pixels and replacing the block of four pixels with a
single pixel having a value that represents an average of the
four pixels. This results in an image set that is 256x256
pixels. The sub-sampling can be continued, yielding a sub-
sequent reduced pixel set, or layer, comprising 128x128
pixels. This process may continue, with each resulting layer
being an increasingly coarser version of the original image
S. The final layer will be a set of only 2x2 pixels, and likely
will be blurred. The process of sub-sampling or decimating
to provide increasingly coarser details results in an image
pyramid. The original image S represent the base of the
image pyramid at 512x512 pixels, followed by layers of
256%x256 pixels, 128x128 pixels, 64x64 pixels, and so on.
Using this approach of an image pyramid allows for rapid
convergence of the solution to the functional of Equation
(5). The process starts by using the coarsest layer of the
image pyramid, and running a number of iterations until a
solution is achieved. The solution is then used to initialize
the next finer layer of the image pyramid, resulting in less
computation in order to arrive at a solution. The process
continues until the finest layer (e.g., the original, full
resolution, image set for S) is reached. As an alternative to
the image pyramid, a full multi-grid method may be used.

The functional of Equation (5) has a Quadratic Program-
ming (QP) form, since the penalty term is quadratic and the

constraint is linear. If the set § is convex, the overall
problem is convex if and only if the Hessian of the func-
tional Equation (5) is positive definite. In such a case, there
is a unique local minimum that is also the global solution to
the problem. In the above embodiment, the Hessian is given
by g*(1-cA)*g, which is positive definite for all c.>0. Thus,

for a convex target gamut §, there exists a unique solution.

The above-described functional (Equation (5)) may be
used in imaging devices to map a gamut of an image to the
gamut of a device that attempts to reproduce the image. FIG.
3 is a block diagram of an apparatus 100 that may be used
for gamut mapping according to the functional of Equation
(5). An image capture device 101 receives an input original
image and produces an output image S 102, which is an
electrical signal representing a calorimetric value image. For
example, the capture device 101 may convert at least three
calorimetric values of each pixel of the original image into
corresponding electrical signals. The electrical signals may
indicate the L, a, b values, for example. Other calorimetric
values may be the XYZ tristimilus value and the L, U, V or
device dependent RGB values. A gamut mapper 105 pro-
duces an in-gamut image S' 106. Finally, a rendering module
107 provides a rendered image S" 108. The rendering
module 107 may be implemented as a color laser printer. The
thus-generated image S" 108 may represent a best-fit image,
given gamut limitations of the device in which the image
reproduction is to occur.

The gamut mapper 105 applies an algorithm to extract and
map the values of the image S 102 into the gamut of the
image reproduction device 107. In particular, the gamut
mapper 105 may apply an algorithm that solves the problem
represented by Equation (5), thereby solving the gamut
mapping problem and optimizing the output image S" 108.
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6

FIG. 4 is a block diagram showing routines of an algo-
rithm 120 that may be used to complete the gamut mapping
function. In an embodiment, the algorithm 120 provides a
numerical solution to the functional of Equation (5).

The algorithm 120 begins with input block 121, where an
input to the algorithm 120 is an image S of size [N, M], and
the two parameters o and f3.

In initialization block 123, a Gaussian pyramid of the
image s is computed. The thus-constructed pyramid contains
p resolution layers (from fine (1) to coarse (p) with the
current reolution layer (k) set to p. In block 125, T, iterations
of a gradient descent algorithm are applied to the k*
resolution layer, until all resolution layers are checked, block
127. In block 129, the next resolution layer is updated. When
all resolution layers are processed, the result is the final
output image 130 of the algorithm 120.

FIG. 5 is a block diagram showing the initialization
routine 123 in more detail. In block 131, a counter is
initialized with i=1. In block 132, the Gaussian pyramid is
constructed by smoothing the image with a kernel, such as
the kernel kpyz:

Kpyr =

YN
0| = ] — oo —
YN

In block 133, the image is decimated by, for example, a 2:1
ratio. The process is repeated (block 134) and the counter is
incremented (block 135) p times where p<lg, (min (M, N)).
This process produces a sequence of images {S,},_* con-
ventionally named the “Gaussian Pyramid of S.” The image
S, is the original image S, and S, is an image with the
coarsest resolution for the Gaussian pyramid.

In block 137, the process sets k=p, i.e., starts at the
coarsest resolution layer k, and sets the initial condition
Ly=max {S,}.

FIG. 6 1s a block diagram of an embodiment of the
processing main routine 125. The routine 125 starts at block
141, where the new resolution layer is initialized and T, and
a, are set (e.g., T,=K*T,).

Then, for j=1, ..., T,.

In block 143, the routine 125 calculates the gradient:

G=A(u—ug+o,(u-uy)

where Ax is the convolution of each of the color planes of
x with K, 4 p:

01 0
KLAP:\I -2 1]
01 0

and oy is, for example o=c*2%(k-1)
In block 145, the routine 125 calculates p¢,:

2.

HNSD = 5 (G+AG) + ax 3, O)

In block 147, the routine 125 completes the gradient
descent iteration:

L j=L j—1~Ho UNsD" G,
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Where p, is a constant; for example y,=0.8.
In block 148, the result is projected onto the constraints:

Lj=P H ojpullout;zu5026DD.QDD(Lj)

Where Proj8(x) is a projection of x into the gamut §.

In block 149, if j=T, processing returns to block 143.
Otherwise, the routine 125 ends.

Returning to FIG. 4, in block 127, if k>1, the result L,
is up scaled (2:1 ratio) by pixel replication into the new L,
the initialization for the next resolution k-1 layer. The
resolution layer is updated k=k-1, and the algorithm pro-
ceeds by going again to block 125. If k=1, the result L, is
the final output of the algorithm 120.

FIG. 7 is a block diagram of an alternative embodiment of
an algorithm routine, denoted as 120a. The routine 120a
may be applied to solve the equation:

Uil = oy + T(@l] - D)

subject to the constraint u;” €3.

The routine 120z begins with block 151, where the
kernels D, and g, and the counter k are initialized.

In block 153, the routine 120a calculates:

Di=g*g™(w'~io).
In block 155, the routine 120a calculates:
L™=D,*(u"-uy).

In block 157, the routine 120a performs the gradient steps
to solve ui]-’“'1 as noted above.

In block 158, the routine 120a determines if k>1, and if
s0, processing moves to block 159, where k is set to k-1.
Processing then returns to block 153. Otherwise, the routine
1204 ends.

The penalty function as shown in Equation (5) tends to
create halos in the resulting image. FIG. 8 explains the origin
of those halos through a one dimensional example. FIG. 8
shows an original signal 160 that is outside of gamut 162
(delimited in the gray range by dotted lines 163 and 164).
Projecting the signal 160 onto the gamut 162 will result in
a constant value, denoted as “High” (163) and loss of all
detail. FIG. 8 also shows the result of processing the original
signal 160. Dashed line 165 represents the result of scaling
the signal 160 into the allowed range of the gamut 162. All
the details are preserved, but with a smaller contrast. As
opposed to point operations, the space dependent approach
represented by Equation (5) yields a signal 166 (the solid
line) that preserves the details with high contrast. However,
halos occur near strong edges 167, which means that near
the edges 167 there is a slow transition from low to high
values.

In order to avoid these phenomena, the penalty term may
be modified, and robust estimation tools may be used. The
original penalty term in Equation (5) may be replaced by:

8
Ew) = f (01(D) + apy(1 VD )dS. ®
(9}

which for p,(x)=p,(x)=x> coincides with Equation (5). If the
function p(x) grows slower than x> as x §¢, behavior near
strong edges improves. Good candidates for p(x) are p(x)=
[x] or p(x)=V1+x>.

A different and simpler (linear) approach with similar
robust behavior involves solving the original Equation (5)
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twice, with two different values of a. A solution with a small
a may be denoted as u,,; and a solution that corresponds
to the high value of a may be denoted as u,,_,. The solution
u,,..,; has smaller contrast at areas with smalfdetails, yet has
almost no halos. On the other hand, the solution u,,,
preserves the small details, but at the expense of strong halo
effects. By averaging these two results (u,,,;; and uy,.,) in
a spatially adaptive way provides a simple, improved solu-
tion. The improved solution is therefore:

uﬁmzl[krj 1=kl smanl b 711~k ])uhigh[krj 1

The weight w[k,j] should be close to one near strong edges,
and close to zero in relatively smooth regions. In an
embodiment,

1

s ——
e = AN e

provides a robust estimation.

Halo problems have been recently dealt with in relation to
Dynamic Range Compression. Solutions proposed included
anisotropic diffusion and robust filtering. The halo-related
solutions described herein are solutions to the same halo
problem.

FIG. 9 is a flowchart showing an operation 180 of the
gamut mapper 105. The process begins in start block 185. In
converter block 195, the raw image S is converted from
electrical signals having arbitrary values (calorimetric
values) to locally defined color descriptors.

In block 200, the converted image signal is decimated to
form an image pyramid. A 2:1 decimation scheme may be
used, for example. Subsequent steps in the operation 180
begin with the coarsest resolution layer of the image pyra-
mid using a space varying algorithm. In block 205, the
gamut mapper 105, using a space varying algorithm such as
that represented by Equation (5) calculates the image devia-
tion for the coarsest resolution layer. This process may
involve calculating a first variation (block 210), determining
a gradient descent flow (block 215), and solving the result-
ing gradient subject to a constraint (block 220). In block 225,
a determination is made if the current resolution layer is the
last (finest) resolution layer. If additional layers remain for
processing, the process 180 returns to block 205. Otherwise,
the process 180 moves to block 230, where local color
descriptors are converted to the required output format. In
block 245 the process 180 ends.

The above-described space-varying algorithm 120, as
represented by Equation (5), for example may be executed
using a general purpose computer system 250 as shown in
FIG. 10. The computer system 250 includes an input device
260, a computer unit 270, a display 280, a keyboard 290, and
a storage device 300. The storage device 300 may be a
CD-ROM drive, for example. Program code instructions for
executing the algorithms 120, 120g and 180 may be stored
on a CD-ROM 305, or other computer readable memory,
which is read by the storage device 300. The program code
read out of the CD-ROM 305 are executed by a CPU of the
computer unit 270. The CPU may perform the processing
shown by the flowchart of FIG. 9. The algorithms 120, 1204,
and 180 also may be performed in a camera or printer
hardware.

What is claimed is:

1. A method for gamut mapping of an input image using
a space varying algorithm, comprising:

receiving the input image;

converting the color representations of an image pixel set

to produce a corresponding electrical values set;
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applying the space varying algorithm to the electrical
values set to produce a color-mapped value set;

reconverting the color-mapped value set to an output
image; and

wherein the space varying algorithm minimizes the fol-
lowing variational problem:

Ew) = f(D2 +a|VD P,
O

subject to ueg, wherein Q is a support of the input image,
9§ is the target gamut, o is a non-negative real number,
D=g*(u-u,), g is a normalized Gaussian kernel with zero
mean and a small variance o, u0 is the input image, and u
is the output image.

2. The method of claim 1 further comprising:

solving the variational problem at a high value of a

solving the variational problem at a low value of «; and

averaging the solutions.

3. The method of wherein the step of averaging the
solutions comprises using a spatially adaptive weighting
scheme, comprising:

Uginad b 1WA et atd b F 1A= WK f Dt K}
wherein the weight w[k,j], comprises:

1

k= ——— . and
e = AN e

wherein [ is a non-negative real number.
4. The method of claim 1, wherein the variational problem

is solved according to:
du AD-g«D
77 Se8*AD—g=D,

subject to u € §.
5. The method claim 1, wherein the space varying algo-
rithm is solved according to:

Wit = uf + T(all - DY),

subject to u;” € 8, wherein
T=dt,
D=g*g*(u"-u)
L"D,*(u" ™) and
Do=g,*g:+8,"8,
6. A method for gamut mapping of an input image using
a space varying algorithm, comprising:
receiving the input image;
converting the color representations of an image pixel set

to produce a corresponding electrical values set;
applying the space varying algorithm to the electrical
values set to produce a color-mapped value set;
reconverting the color-mapped value set to an output
image; and
wherein the space varying algorithm minimizes the fol-
lowing variational problem:
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10

Ew) = f(ﬂl(D) +ap, (| VD)L,
o)

subject to u € 9, wherein p; and p, are scalar functions, Q
is a support of the image, § is the target gamut, @ is a
non-negative real number, D=g*(u-u,), g is a normalized
Gaussian kernel with zero mean and a small variance o, ug
is the input image, and u is the output image.

7. The method of claim 1, further comprising:

decimating the input image to create one or more reso-

lution layers, wherein the one or more resolution layers
comprises an image pyramid; and

solving the variational problem for each of the one or

more resolution layers.

8. The method of claim 1, wherein the method is executed
in at least one of a camera and a printer.

9. The method of claim 6, wherein the method is executed
in at least one of a camera and a printer.

10. A computer-readable memory for color gamut
mapping, comprising an instruction set for executing color
gamut mapping steps, the steps, comprising:

converting first colorimetric values of an original image to

second colorimetric values, wherein output values are
constrained within a gamut of the output device; using
a space varying algorithm that solves an image differ-
ence problem; and

optimizing a solution to the image difference problem,

wherein the image difference problem is represented
by:

E(u) = f(/:)2 +a|VDP)dO
O

subject to u € §, wherein is a support of an input image, o

iS a non-negative real number, § is the target gamut,
D=g*(u-u,), g is a normalized Gaussian kernel with zero
mean and small variance o, u, is the input image, and u is
an output image.

11. The computer-readable memory of claim 10, wherein
the instruction set further comprises steps for:

solving the image difference problem at a high value of o

solving the image difference problem at a low value of

and

averaging the solutions.

12. The computer-readable memory of claim 11, wherein
averaging the solutions comprises using a spatially adaptive
weighting scheme, comprising:

uﬁmzI[krj]=w[krj]uxmall[krj](l_w[krj])uhigh[krj])
wherein the weight w[k,j], comprises:

1

. ad
T+ AVgrml

wik, jl =

wherein [ is a non-negative real number.

13. A computer-readable memory for color gamut
mapping, comprising an instruction set for executing color
gamut mapping steps, the steps, comprising:

converting first colorimetric values of an original image to

second colorimetric values, wherein output values are
constrained within a gamut of the output device; using
a space varying algorithm that solves an image differ-
ence problem; and
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optimizing a solution to the image difference problem,
wherein the image difference problem is represented
by:

E(u) =fﬂ(p1(D)+wp2(|VD|))dQ,

wherein p, and p, are scalar functions.

14. A computer-readable memory for color gamut
mapping, comprising an instruction set for executing color
gamut mapping steps, the steps, comprising:

converting first colorimetric values of an original image to

second colorimetric values, wherein output values are
constrained within a gamut of the output device; using
a space varying algorithm that solves the following
variational problem:

E(u) = f(/:)2 +a|VD PO,
O

subject to u € 9, wherein Q is a support of the input image,

9§ is the target gamut, o is a non-negative real number,
D=g*(u-u,), g is a normalized Gaussian kernel with zero
mean and a small variance o, u, is the input image, and u is
the output image; and
wherein the instruction set further comprises steps for:
decimating the input image to create one or more
resolution layers, wherein the one or more resolution
layers comprise an image pyramid; and
solving the variational problem for each of the one or
more resolution layers.
15. The computer-readable memory of claim 14, wherein
the instruction set further comprises steps for:
(a) initializing a first resolution layer;
(b) calculating a gradient G for the resolution layer, the
gradient G comprising:
G=A(u-u,)+0o,(u-u, ), wherein Ax is a convolution of
each color plane of x with

01 0
Kup=|1 -2 1
01 0

and a,=0,,*22*_ wherein K, , » is a Laplacian kernel, k is
a kernal, and o is an initial non-negative real number:

(¢) calculating an iteration layer value Li=L; o™ ttysp*
G, wherein y, is a constant, j is a specific resolution
layer, and t4yp, 1s a normalized steepest descent param-
eter;

(d) projecting the value onto constraints Proj9(L)),
wherein Proj8(x) is a projection of x into a gamut §;
and

(e) for a subsequent resolution layer, upscaling from one
resolution layer to another and repeating steps (b)—(d).

16. A method for image enhancement using gamut

mapping, comprising:

receiving a input image;

from the input image, constructing an image pyramid
having a plurality of resolution layers;

processing each resolution layer, wherein the processing
includes completing a gradient iteration, by:

calculating a gradient G, for G=A(u-uy)+o,(u-u,),
wherein u is the iterated image, u, is the input image at
the appropriate resolution layer, and o is a non-negative
real number;
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completing a gradient descent iteration; and
projecting the completed gradient descent iteration onto
constraints; and computing an output image using the
processed resolution layers.
17. The method of claim 16, wherein completing the
gradient descent iteration (L;) comprises calculating:

2.

BNSD = S G AG) + ar 0, GB)

and

Lj= j—l_:"tD':"tNSD'Gr
wherein 5, is a normalized steepest descent parameter,
is a constant, k is a number of resolution layers in the image
pyramid, and j is a specific resolution layer.

18. The method of claim 16, wherein projecting the
completed gradient descent iteration onto the constraints is
given by:

L=Proj,(L),
wherein Proj,(x) is a projection of x into a gamut §.
19. The method of claim 16, wherein constructing the
image pyramid, comprises:
smoothing the input image with a Gaussian kernel;
decimating the input image; and
setting initial condition L, max {Sp}, wherein Sp is an
image with the coarsest resolution layer for the image
pyramid.

20. The method of claim 19, wherein the Gaussian kernel,
comprises:

Kpyr =

NN
| = = o] —
NN

21. The method of claim 16, wherein processing each
resolution layer further comprises applying a space varying
algorithm to minimize the following variational problem:

subject to u € §, wherein € is a support of the image, § is
the target gamut, and D=g*(u-u,), wherein g is a normalized
Gaussian kernel with zero mean and small variance o, u, is
the input image, u is the output image, and wherein o is a
non-negative real number.

22. The method of claim 16, wherein processing each
resolution layer comprises applying a space varying algo-
rithm to minimize a variational problem represented by:

Ew) = fQ(PI(D) +ap, (| VD)L,

subject to u € 9, wherein and p, and p, are scalar function.
23. The method of claim 22, wherein pl and p2 are
chosen from the group comprising p(x)=|x|andp(x)=V1+x>.



