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(57) ABSTRACT

An optical flow estimation process based on a spatio-tempo-
ral model with varying coefficients multiplying a set of basis
functions at each pixel. The benefit of over-parameterization
becomes evident in the smoothness term, which instead of
directly penalizing for changes in the optic flow, accumulates
a cost of deviating from the assumed optic flow model. The
optical flow field is represented by a general space-time
model comprising a selected set of basis functions. The opti-
cal flow parameters are computed at each pixel in terms of
coefficients of the basis functions. The model is thus highly
over-parameterized, and regularization is applied at the level
of'the coefficients, rather than the model itself. As a result, the
actual optical flow in the group of images is represented more
accurately than in methods that are known in the art.
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Fig. 1A Fig. 1B
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Fig. 3B
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Fig. 4A Fig. 4B Fig. 4C
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Fig. 7A Fig. 7B
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OVER-PARAMETERIZED VARIATIONAL
OPTICAL FLOW METHOD

FIELD OF THE INVENTION

[0001] The present invention relates in general to image
processing and in particular to a method and system for deter-
mining optical flow.

BACKGROUND OF THE INVENTION

[0002] Optical flow is a concept which approximates the
motion of objects within a visual representation. Optical flow
is the velocity field which warps one image into another
(usually very similar) image. Optical flow techniques are
based on the idea that the same physical point on an object in
the scene is captured by the camera in corresponding points in
the two images preserving certain image properties such as
brightness, the gradient vector, etc.

[0003] Optical flow computations are central to many
image processing applications that deal with groups of simi-
lar images. For example, image sequence compression algo-
rithms commonly use optical flow parameters to represent
images compactly in terms of changes relative to preceding or
succeeding images in the sequence. Optical flow parameters
are also used in three-dimensional reconstruction by stereo
matching of pixels in a group of images taken of an object
from different angles, or by tracking the motion of rigid
objects in a scene, as well as in image resolution enhance-
ment. In addition, variations in optical flow over the area of an
image may be used in image segmentation and in tracking the
motion of an object across a sequence of images.

[0004] Despite much research effort invested in addressing
optical flow computation it remains a challenging task in the
field of computer vision. It is a necessary step in various
applications like stereo matching, video compression, object
tracking, depth reconstruction and motion based segmenta-
tion. Hence, many approaches have been proposed for optical
flow computation. Most methods assume brightness con-
stancy and introduce additional assumptions on the optical
flow in order to deal with the inherent aperture problem.
Lucas and Kanade (1981) tackled the aperture problem by
solving for the parameters of a constant motion model over
image patches. Subsequently, Irani et al. (1993, 1997) used
motion models in a region in conjunction with Lucas-Kanade
in order to recover the camera ego-motion. Spline based
motion models were suggested by Szeliski and Coughlan
(1997).

[0005] Horn and Schunck (1981) sought to recover smooth
flow fields and were the first to use functional minimization
for solving optical flow problems employing mathematical
tools from calculus of variations. Their pioneering work put
forth the basic idea for solving dense optical flow fields over
the whole image by introducing a quality functional with two
terms: a data term penalizing for deviations from the bright-
ness constancy equation, and a smoothness term penalizing
for variations in the flow field. Several important improve-
ments have been proposed following their work. Nagel (1990,
1986) proposed an oriented smoothness term that penalizes
anisotropically for variations in the flow field according to the
direction of the intensity gradients. Ari and Sochen (2006)
recently used a functional with two alignment terms com-
posed of the flow and image gradients. Replacing quadratic
penalty terms by robust statistics integral measures was pro-
posed in (Black and Anandan 1996; Deriche et al. 1995) in
order to allow sharp discontinuities in the optical flow solu-
tion along motion boundaries. Extensions to multi-frame for-
mulations of the initial two-frames formulation allowed the
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consideration of spatiotemporal smoothness to replace the
original spatial smoothness term (Black and Anandan 1991;
Farneback 2001; Nagel 1990; Weickert and Schnérr 2001).
Brox et al. (2004, 2006) demonstrated the importance of
using the exact brightness constancy equation instead of its
linearized version and added a gradient constancy to the data
term which may be important if the scene illumination
changes in time. Cremers and Soatto (2005) proposed a
motion competition algorithm for variational motion seg-
mentation and parametric motion estimation. Amiaz and
Kiryati (2005) followed by Brox et al. (2006) introduced a
variational approach for joint optical flow computation and
motion segmentation. In Farneback (2000, 2001), a constant
and affine motion model is employed. The motion model is
assumed to act on aregion, and optic flow based segmentation
is performed by a region growing algorithm. In a classical
contribution to structure from motion Adiv (1985) used opti-
cal flow in order to determine motion and structure of several
rigid objects moving in the scene. Sekkati and Mitiche (2006)
used joint segmentation and optical flow estimation in con-
junction with a single rigid motion in each segmented region.
Vazquez et al. (2006) used joint multi-region segmentation
with high order DCT basis functions representing the optical
flow in each segmented region.

1. SUMMARY OF THE INVENTION

[0006] It is an object of the present invention to represent
the optical flow vector at each pixel by different coefficients
of the same motion model in a variational framework. Such a
grossly over-parameterized representation has the advantage
that the smoothness term may now penalize deviations from
the motion model instead of directly penalizing the change of
the flow. For example, in an affine motion model, if the flow
in a region can be accurately represented by an affine model,
then in this region there will be no flow regularization penalty,
while in the usual setting there is a cost resulting from the
changes in the flow induced by the affine model. This over-
parameterized model thereby offers a richer means for optical
flow representation. For segmentation purposes, the over-
parameterization has the benefit of making segmentation
decisions in a more appropriate space (e.g. the parameters of
the affine flow) rather than in a simple constant motion model
space. The work of Ju et al. (1996) is related to our method-
ology, they used local affine models to describe the motion in
image regions imposing spatial smoothness on the affine
parameters between neighboring patches. The key and con-
ceptually very important difference is that, in our approach,
the model is represented at the pixel level which makes the
problem over-parameterized while the patch size chosen in
(Juetal. 1996) makes it under-parameterized and requires the
choice of a neighborhood size.

[0007] In one aspect, the present invention relates to a
method of determining the optical flow vector of a plurality of
image pixels between two consecutive images in a group of
images, the method comprising the steps of:

[0008] (i) creating multiple sets of the group of images
wherein each set contains a decreasing number of pixels per
image;

[0009] (ii) defining an optical flow motion model appli-

cable to the group of images in terms of a set of basis func-
tions;

[0010] (iii) representing the optical flow vector of each
pixel image by different coefficients of the same motion
model,;

[0011] (iv) starting with the set of group of images with the
lowest number of pixels per image, determining respective
over-parameterized optical flow vectors at the pixels respon-
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sively to motion between the images in the group by comput-
ing respective regularized coefficients of the basis functions
at each of the pixels;

[0012] (v) interpolating the results to the next higher reso-
Iution set of group of images and refining the estimation using
the over-parameterized optical flow representation; and
[0013] (vi)repeating step (v) until the highest resolution set
of group of images is reached.

[0014] The present invention introduces a novel over-pa-
rameterized variational framework for accurately solving the
optical flow problem. The flow field is represented by a gen-
eral space-time model. The proposed approach is useful and
highly flexible in the fact that each pixel has the freedom to
choose its own set of model parameters. Subsequently, the
decision on the discontinuity locations of the model param-
eters is resolved within the variational framework for each
sequence. In most scenarios, the optical flow would be better
represented by a piecewise constant affine model or a rigid
motion model rather than a piecewise constant flow. There-
fore, compared to existing variational techniques, the
smoothness penalty term modeled by the proposed overpa-
rameterization models yields better optic flow recovery per-
formance as demonstrated by our experiments. Our experi-
ments focused on spatial basis functions, though the same
principles apply for spatio-temporal basis functions. Incor-
porating learning of the basis functions (dictionaries) for
specific scenes is of great interest and useful for video com-
pression. According to the invention, motion segmentation
based on optical flow should generally be replaced by seg-
mentation in the higher dimensional parameter space as sug-
gested by our initial results presented herein for the synthetic
sequence. Although the models suggested were all over-pa-
rameterized, an under-parameterized model might also be
used in this framework, for example, in case one has prior
knowledge regarding constraints between the u and v com-
ponents (as in stereo matching or when we know the optic
flow to be radial).

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIGS. 1A, 1B show the optic flow of the Yosemite
sequence, FIG. 1A showing the ground truth and FIG. 1B
according to one embodiment of the invention with pure
translation model.

[0016] FIGS.2A, 2B, 2C show Images of the angular error,
white indicates zero error and black indicates an error of 3
degrees or above. FIG. 2A is according to one embodiment of
the invention method with the affine model. FIG. 2B is
according to one embodiment of the invention method with
the pure translation model. FIG. 2C uses the method of (Brox
et al. 2004).

[0017] FIGS. 3A, 3B show a histogram (FIG. 3A) and
Cumulative probability (FIG. 3B) of the angular errors. Solid
lines denote pure translation model; dash dot lines denotes the
affine model; and dotted lines denote optic flow obtained in
(Brox et al. 2004).

[0018] FIGS. 4A, 4B, 4C show the solution of the affine
parameters for the Yosemite sequence for: A, (FIG. 4A), A,
(FIG. 4B) and A;. (FIG. 4A).

[0019] FIGS. 5A, 5B, 5C show the solution of the affine
parameters for the Yosemite sequence for: A, (FIG. 5A), A,
(FIG. 5B) and A,. (FIG. 5A).

[0020] FIG. 6A, 6B, 6C show Solution of the pure transla-
tion parameters for the Yosemite sequence for: A, (FIG. 6A),
A, (FIG. 6B) and A;. (FIG. 6A).

[0021] FIGS. 7A, 7B show two images obtained in a syn-
thetic piecewise constant affine flow example based on FIGS.
8A, 8B.
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[0022] FIGS. 8A, 8B show a synthetic piecewise affine
flow—ground truth: FIG. 8A showing the u component; and
FIG. 8B showing the v component.

[0023] FIGS. 9A, 9B, 9C show the solution of the affine
parameters based on FIGS. 8A, 8B. FIG. 9A showing A;;
FIG. 9B showing A,; and FIG. 9C showing A;.

[0024] FIGS.10A,10B, 10C show the solution of the affine
parameters based on FIGS. 8A, 8B. FIG. 10A showing A,;
FIG. 10B showing As; and FIG. 10C showing Ag.

[0025] FIGS. 11A, 11B show the ground truth for the syn-
thetic test (FIG. 11A) and computed flow by the affine over-
parameterization model (FIG. 11B).

[0026] FIGS. 12A,12B, 12C show an example of a flower
garden sequence FIG. 12A; and optical flow computed by the
2D affine over-parameterization model, u (FIG. 12B) and v
(FIG. 120).

[0027] FIGS. 13A, 13B the optical flow computed by the
2D pure translation over-parameterization model based on
the flower garden of FIG. 12A: u (FIG. 13A) and v (FIG.
13B).

[0028] FIGS. 14A, 14B, 14C show the flower garden
sequence based on FIG. 12A: the solution of the pure trans-
lation parameter. FIG. 14A showing A ; FIG. 14B showing
A,; and FIG. 14C showing A;.

[0029] FIGS. 15A, 15B show two frames of a road
sequence.
[0030] FIGS. 16A, 16B show the optical flow of the road

sequence. u is shown on FIGS. 16 A and v is shown on FIG.
16B.

[0031] FIGS. 17A, 17B show the difference of the frames.
FIG. 17A is the difference of the original frames (PSNR=23.
73 dB). FIG. 17B shows motion compensated difterence by
the estimated optical flow (PSNR=38.17 dB). Both images
are scaled by the same linear transformation from errors to
gray levels.

DETAILED DESCRIPTION OF THE INVENTION

[0032] In the following detailed description of various
embodiments, reference is made to the accompanying draw-
ings that form a part thereof, and in which are shown by way
of illustration specific embodiments in which the invention
may be practiced. It is understood that other embodiments
may be utilized and structural changes may be made without
departing from the scope of the present invention.

2. OVER-PARAMETRIZATION MODEL

[0033] We propose to represent the optical flow (u(x, y, t),
v(X, ¥y, 1)) by the general over-parameterized space-time
model

d M
wx ¥ 0= ) Al 08, ¥, 0,

i=1

V06 ¥ D= ) A, Y, DX, 3, D),
i=1

[0034] where, D,(x,y, t) and1,(X,¥,1),i=1,... ,narenbasis
functions of the flow model, while the “i are space and time
varying coefficients of the model. This is an obviously heavily
over-parameterized model since for more than two basis
functions, there are typically many ways to express the same
flow at any specific location. This redundancy however will
be adequately resolved by a regularization assumption
applied to the coefficients of the model. The coefficients and
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basis functions may be general functions of space-time, how-
ever, they play different roles in the functional minimization
process: The basis functions are fixed and selected a priori.
The coefficients are the unknown functions we solve for in the
optical flow estimation process. In our model, appropriate
basis functions are such that the true flow could be described
by approximately piecewise constant coefficients, so that
most of the local spatio-temporal changes of the flow are
induced by changes in the basis functions and not by varia-
tions of the coefficients. This way, regularization applied to
the coefficients (as will be described later on) becomes mean-
ingful since major parts in the optic flow variations can be
described without changes of the coefficients. For example,
rigid body motion has a specific optical flow structure which
can explain the flow using only six parameters at locations
with approximately constant depth. Let us start from conven-
tional optical flow functionals that include a data term E, (u,
v), that measures the deviation from the brightness constancy
assumption, and a regularization (or smoothness) term E (u,
v) that quantifies the smoothness of the flow field. The solu-
tion is the minimizer of the sum of the data and smoothness
terms

E(u,v=Ep(u,v)+aEg(u,v). 2)

[0035] The main difference between the diverse variational
methods is in the choice of data and smoothness terms, and in
the numerical methods used for solving for the minimizing
flow field (u(x, v, t), v(X, y, 1)). For the data term we shall use
the functional)

Ep(u )= (o+w)~1))dx, 3

[0036] where, x=(x, y, t)* and w=(u, v, 1)7. This is the
integral measure used for example in (Brox et al. 2004) (omit-
ting the gradient constancy term). The function y(s*)=

s+ that is by now widely used, induces an approximate
L, metric of the data term for a small s. The smoothness term
used in (Brox et al. 2004) is given by

Es(u,v)=p([vulP+[Vv|P)dx Q)

[0037] Where st(fx,I:v,u)tft)T denotes the weighted spa-
tiotemporal gradient. m, indicates the weight of the temporal
axis relative to the spatial axes in the context of the smooth-
ness term (w,=1 is used in (Brox et al. 2004)). Inserting the
over-parameterized model into the data term, we have

2 ®

X+Z Aidis
=1
ED(A;):f\P 1 N —1(x,y,0)]| |dx.
y+z Amit+1
=1

[0038] Our proposed smoothness term replaces (4) with a
penalty for spatio-temporal changes in the coefficient func-
tions,

©

ES(Ai):fw[Z||ﬁAi||2]a¢x.
i=1

[0039] Notice that in (6), constant parameters of the model
can describe changes of the flow field according to the chosen
model as described in (1) (e.g. Euclidean, affine, etc.) without
smoothness penalty, whereas in (4), any change in the flow
field is penalized by the smoothness term. For the sake of
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simplicity of the resulting Euler-Lagrange equations, we have
omitted writing explicit relative weights to the different coet-
ficients in the smoothness term, the weighting is alternatively
achieved by scaling the basis functions by appropriate factors
as will be shown in the description of the motion models.
Scaling a basis function by a small factor would mean that in
order to achieve the same overall influence on the optical flow,
the corresponding coefficient would have to make larger
changes (proportional to the inverse of the factor). These
larger changes would be suppressed by the regularization
term. On the other hand, scaling a basis function by a large
factor would scale down the changes required from the cor-
responding coefficient in order to achieve the same overall
change and therefore would result in less regularization for
this specific term.

2.1 Euler-Lagrange Equations

[0040] For an over-parameterization model with n coeffi-
cients, there are n Euler-Lagrange equations, one for each
coefficient. The Euler-Lagrange equation for A, (q=1, ..., n)
is given by

« @
VDL + Iy - a-div[‘l"[z ||€A;||2]¢ Aq] =0.
i=1

where @fs(fx,fy,(,v\)tzft)zw , and

®

n n
I :=1X[x+2 Aigi, v+ Y Ay T+ 1],
i=1 i=1
n n
I :=1y[x+z Aigis y+ D A, 1+ 1],
i=1 i=1

ol

= 1[x+ DAy Y A+ 1] —I(x, y, D).

i=1 i=1

2.2 The Affine Over-Parameterization Model

[0041] The affine model is a good approximation of the
flow in large regions in many real world scenarios. We there-
fore first start with the affine model for our method. Note that
we do not force the affine model over image patches as in
previously considered image registration techniques, and
here each pixel has “its own” independent affine model
parameters. The affine model has n=6 parameters,

dr=1 $r=% $3=5 ]
$4=0; ¢s=0; ¢6=0;
m=0 m=0; 75=0;
m=L n5=% ns=7J
where,
. Px—Xo) 10
X=—-,
Xo
. _ P —Yo)
y=—
Yo
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and X, and y,, are half image width and height respectively. p
is a constant that has no meaning in an unconstrained optimi-
zation such as the Lucas-Kanade method. In our variational
formulation, p is a parameter which weighs the penalty of the
x and y coefficients relative to the coefficient of the constant
term in the regularization. An equivalent alternative is to add
a different weight for each coefficient in (6).

2.3 The Rigid Motion Model

[0042] The optic flow of an object moving in rigid motion
or of a static scene with a moving camera is described by

4=—0+0,8+Q, £9- Q5 (1+£2)+Q37
V==0,40:5+Q, (14+77)- Q50— Q,%, 1n

where (6,, 6,, 8,)7 is the translation vector divided by the
depth and (Q,,Q,,Q,)7 is the rotation vector. Here too, the
number of coefficients is n=6. The coefficients A, represent
the translation and rotation variables, A,;=0,; A,=0,; A;=0;;
A= A;=Q,; A=Q,, and the basis functions are ¢,-1;
D0, ;7% ¢, KF; o5——(14%%); ¢~y and mn,=0;
No-1n3=Y; M,=1+9% Mms==%¥; and m,=-Xx. Similar con-
straints on optical flow of rigid motion were first introduced
by Adiv in (Adiv 1985). However, there the optical flow is a
preprocessing step to be followed by structure and motion
estimation, while our formulation uses the rigid motion
model in the optimality criterion of the optical flow estima-
tion process. Using the rigid motion model directly in the
optimality criterion was previously suggested by Sekkati and
Mitiche (2003) where the functional is explicitly written in
terms of the model parameters. However, since the data term
in (Sekkati and Mitiche 2003) is quadratic and uses the lin-
earized brightness constancy assumption, it is expected to be
more sensitive to outliers and prone to errors for motion fields
oflarge magnitudes. Since the optical flow induced by camera
rotation is independent of the depth it has a more global nature
and therefore one may wish to penalize more severely for
changes in rotation when considering the smoothness term.
This can be done by scaling the basis functions multiplying
the rotation coefficients by a factor between 0 and 1. Such a
factor would require larger changes in the coefficients in order
to achieve the same overall influence of the rotation on the
optical flow. Such larger changes in the corresponding coef-
ficients would be suppressed by the regularization term and
therefore achieve a more global effect of the rotation. Note,
that assuming rigid motion one could also extract the depth
profile (up to scaling) from the above coefficients.

2.4 Pure Translation Motion Model

[0043] A special case of the rigid motion scenario can be
thought of when we limit the motion to simple translation. In
this case we have,

u=—0,+05%,
v=—0,+0:7, (12)
[0044] The Euler-Lagrange equations of the rigid motion

still applies in this case when considering only the first n=3
coefficients and corresponding basis functions.

2.5 Constant Motion Model

[0045] The constant motion model includes only n=2 coet-
ficients, with

$¢1=1; =0 M =0; m>=1, (13)
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as basis functions. For this model there are two coefficients to
solve for A, and A, which are the optic flow components u and
v, respectively. In this case we obtain the familiar variational
formulation where we solve for the u and v components. This
fact can also be seen by substitution of (13) into (7), that
yields the Euler-Lagrange equations used, for example, in
(Brox et al. 2004) (without the gradient constancy term).

3. NUMERICAL SCHEME

[0046] In our numerical scheme we use a multi-resolution
solver, by down sampling the image data with a standard
factor of 0.5 along the x and y axes between the different
resolutions. The solution is interpolated from coarse to fine
resolution. Similar techniques to overcome the intrinsic non-
convex nature of the resulting optimization problem were
used, for example, in (Brox et al. 2004), we compare our
model and results to (Brox et al. 2004) since, to the best of our
knowledge, that paper reports the most accurate flow field
results for the Yosemite without clouds sequence. At the low-
est resolution, we start with the initial guess of A=0,1=1, . ..
, n. From this guess, the solution is iteratively refined and the
coefficients are interpolated to become the initial guess at the
next higher resolution and the process is repeated until the
solution at the finest resolution is reached. At each resolution,
three loops of iterations are applied. At the outer loop with
iteration variable k, we freeze the brightness constancy linear
approximation in the Fuler-Lagrange equations

V() B g+ ) = 14
o[Siea]
a-di] i=1 =
ﬁAI‘;Jrl
[0047] Inserting the first terms of the Taylor expansion

n n 13
Bt x ey dakg+ () ) dabs,
i=1 i=1

where A/*'=A *+dAf. The second inner loop—fixed point
iteration—deals with the nonlinearity of W with iteration
variable 1, it uses the expressions of W' from the previous
iteration in both the data and smoothness terms, while the rest
of the equation is written with respect to the 1+1 iteration

ot y 16)
N +
W Shedel & it —w-div[(\l")’g;im,hv[ " ]] =0,
Z;df\; d; dabtr
where,
Ay 2= (T B + 7 s a7

If + 2 (18)
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-continued

and

n 19)
W im v[z oAt + Mf")llz]-
=1

[0048] At this point, we have for each pixel n linear equa-
tions with n unknowns, the increments of the coefficients of
the model parameters. The linear system of equations is
solved on the sequence volume using Gauss-Seidel iterations.
Each Gauss-Seidel iteration involves the solution of n linear
equations for each pixel as described by (16). The discretiza-
tion uses two point central difference for the flow components
and four point central difference for the image derivatives as
suggested in (Barron et al. 1994).

4. EXPERIMENTAL RESULTS

[0049] In this section we compare our optical flow compu-
tation results to the best published results. For test sequences
with ground truth, we use the standard measures of Average
Angular Error (AAE) and Standard Deviation (STD). Our
results are measured over all the pixels (100% dense). The
angle is defined as:

Uty +vvg + 1 20

\/(142 +vE D@2 +v2+ 1)

8 = arccos

where u and v are the estimated optical flow components, and
u, and v, represent the ground truth optical flow. The AAE is
the average and STD is the standard deviation of 6 over the
image domain.

4.1 Parameter Settings

[0050] The parameters were set experimentally by an opti-
mization process which numerically minimizes the weighted
sum of AAE and STD measured on the Yosemite sequence.
Such a parameter optimization or training process is usual in
many other papers, for example (Roth and Black 2005). Brox
et al. (2004), Papenberg et al. (2006) also seem to have an
optimal parameter setting since in their parameter sensitivity
analysis, each parameter change in any direction results in an
increase of the AAE measure for the Yosemite sequence.

TABLE 1

Parameter settings

Method a p o7 € I
Constant motion (3D) 16.0 — 9.0 0.001 0.8
Affine (2D) 58.3 0.858 0 0.001 0.8
Pure translation (2D) 51.0 0.575 0 0.001 0.8
Affine (3D) 329 1.44 0.474 0.001 0.8
Rigid motion (3D) 54.6 1.42 0.429 0.001 0.8
Pure translation (3D) 23.6 1.22 0.688 0.001 0.8

[0051] We have found slightly different parameter settings
for the 2D and 3D smoothness cases as shown in Table 1,
where 2D refers to smoothness term with only spatial deriva-
tives, while 3D refers to spatio-temporal smoothness term
that couples the solution of the optic flow field at different

Oct. 28, 2010

frames (also known as the “two frames” versus “multi-frame”
formulation). Here a denotes the standard deviation of the 2D
Gaussian pre-filter used for pre-processing the image
sequence. We used 60 iterations of the outer loop in the 3D
method and 80 iterations in the 2D method, 5 inner loop
iterations and 10 Gauss-Seidel] iterations.

4.2 Yosemite Sequence

[0052] We applied our method to the Yosemite sequence
without clouds (available at http://www.cs.brown.edu/
people/black/images.html), with four resolution levels.

TABLE 2

Yosemite sequence without clouds

Method AAE STD
Papenberg et al. 2D smoothness (Papenberg et al. 2006) 1.64° 1.43°
Brox et al. 2D smoothness (Brox et al. 2004) 1.59° 1.39°
Meémin and Pérez (2002) 1.58° 1.21°
Roth and Black (2005) 1.47° 1.54°
Bruhn et al. (2005) 1.46° 1.50°
Amiaz et al. 2D smoothness (Over-fine x4) 1.44° 1.55°
(Amiaz et al. 2007)

Farnebick (2000) 1.40° 2.57°
Liu et al. (2003) 1.39° 2.83°
Our method affine 2D smoothness 1.18° 1.31°
Govidu (2006) 1.16° 1.17°
Farnebick (2001) 1.14° 2.14°
Our method constant motion 3D smoothness 1.07° 1.21°
Papenberg et al. 3D smoothness (Papenberg et al. 2006) 0.99° 1.17°
Brox et al. 3D smoothness (Brox et al. 2004) 0.98° 1.17°
Our method rigid motion 3D smoothness 0.96° 1.25°
Our method affine 3D smoothness 0.91° 1.18°
Our method pure translation 3D smoothness 0.85° 1.18°
[0053] Table 2 shows our results relative to the best pub-

lished ones. As seen in the table, our method achieves a better
reconstructed solution compared to all other reported results
for this sequence, both for the 2D and 3D cases. In fact, our
result for the 2D case is good even compared to 3D results
from the literature. FIGS. 4 and 5 show the solution of the
affine parameters from which one can observe the trends of
the flow changes with respect to the x and y axes. The solution
of the pure translation parameters is shown in FIG. 6. The
depth discontinuities in the scene are sharp and evident in all
the parameters

[0054] FIG. 1 shows the ground truth optical flow and the
results with the pure translation model. FIG. 2 shows the
image of the angular errors. FIG. 3 shows both the histogram
and the cumulative probability of the angular errors. Both
figures demonstrating the typically lower angular errors of
our method.

TABLE 3

Yosemite without clouds-noise sensitivity
results presented as AAE = STD

Our method (affine) coupled ~ Our method  Results reported in
o, with (Nir et al. 2005) (affine) (Brox et al. 2004)
0 0.91 = 1.18° 0.93 £1.20° 0.98 £ 1.17°
20 1.59 = 1.67° 1.52 £1.48° 1.63 £ 1.39°
40 2.45 £2.29° 2.02 £1.76° 240« 1.71°
[0055] Table 3 summarizes the noise sensitivity results of

our method. We also coupled the affine over-parameterized
model with our previous work on joint optic flow computa-
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tion and denoising presented in (Nir et al. 2005) by iterating
between optical flow computation on the denoised sequence
and denoising with the current optical flow. A related concept
was first introduced by Borzi et al. (2002). This coupling
provides a model with robust behavior under noise, that
obtains better AAE measure under all noise levels compared
to the best published results.

TABLE 4

Yosemite sequence without clouds-results obtained by using equal
spatio-temporal smoothness weights (0, = 1)

Method AAE STD

Our method affine 3D smoothness 0.93° 1.20°

Our method pure translation 3D smoothness 0.86° 1.18°
[0056] Our improvement relative to (Brox et al. 2004)

results mostly from the over-parameterization and not by the
additional smoothness weight parameter co,. Table 4 shows
the results obtained with equal spatio-temporal smoothness
weights (co,=1) as used in Brox et al. (2004). The AAE
measure changes by approximately 1 percent for the pure
translation model and 2 percent for the affine model, where,
the w, parameter was changed by approximately 21 and 45
percent for the pure translation and affine models respec-
tively.

4.3 Synthetic Piecewise Constant Affine Flow Example

[0057] For illustration purposes we also considered the
piecewise affine flow over an image of size 100x100 having
the ground truth shown in FIG. 8, and given by

[0058] For x<40,

4=—0.8-1.6(x-50)/50-+0.8(y—50)/50,

v=1.0+0.65(x-50)/50-0.35 (y—50)/50.
[0059] For x=40,
4=0.48-0.36(x-50)/50-0.6(y-50)/50,

v=0.3-0.75(x-50)/50-0.75 (y—50)/50.

[0060] The two images used for this test were obtained by
sampling a grid of size 100x100 from frame 8 of the Yosemite
sequence (denoted [,,,,,.). The second image 1,(x, y)=L,-
osemire(X+AX, y+Ay) and the first image is sampled at warped
locations I, (X, ¥)=L,, e pe(X+AX+y, y+Ay+v) using bilinear
interpolation. The constant shift values are: Ax=79 and
Ay=69. The two images obtained are displayed in FIG. 7.

TABLE §

Synthetic piecewise affine flow test

Method AAE STD

Our implementation of the method of (Brox et 1.48° 2.28

al. 2004)

Our method with the affine flow model 0.88° 1.67
[0061] The results exhibited in Table 5 show that our

method with the affine over-parametrization outperforms the
method of (Brox et al. 2004). This is to be expected since the
true flow is not piecewise constant and the smoothness term in
(Brox et al. 2004) penalizes for changes from the constant
flow model, whereas, the affine over-parametrizationmodel
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solves the optimization problem in the (correct) affine space
in which it accurately finds the piecewise constant affine
parameters solution of the problem, as shown in FIGS. 9 and
10. One can notice that the discontinuity at pixel x=40 is very
well preserved due to the effective edge preserving L, based
optimization. The resulting optical flow shown in FIG. 11
accurately matches the ground truth.

4.4 Flower Garden Sequence

[0062] We also applied our method to the real image
sequence “flower garden”. The results obtained by the 2D
affine model are shown in FIG. 12. We have checked our
results by manually marking the coordinates of several cor-
responding points on the two images and comparing the
motion with the optical flow results. We have found good
match between manual tracking and the computed flow. The
tree moves with a velocity of about -5.7 pixel/frame along the
x direction. The whole scene has low velocity in the y direc-
tion (the computed v is between -0.9 and 1.4 pixel/frame).
[0063] They component of the flow is about 1 pixel/frame
in the upper section of the tree and almost zero in the lower
section. In the area of the garden, the velocity is decreasing as
the distance from the camera increases from about -3 pixel/
frame in the right lower section (-2 on the left) to about -1
pixel/frame in the upper part and in the area of the houses. The
computed flow by the pure translation over-parameterized
model shown in FIG. 13 produces similar flow field as the
results with the affine model. The solution of the three pure
translation model parameters is shown in FIG. 14.

4.5 Road Sequence

[0064] Thetwo frames of'this real sequence courtesy of the
authors of (Vazquez et al. 2006) are shown in FIG. 15. The
computed flow by our 2D over-parameterized affine model is
shown in FIG. 16. The motion compensated image difference
is shown in FIG. 17, our motion compensated reconstruction
ratio is PSNR=38.17 dB (more than 1.13 dB better than the
results reported in (Vazquez et al. 2006) for the affine model
and 0.58 dB better than their quadratic model). The measure
of the motion compensated difference might be misleading
for comparing the quality of different optical flow algorithms
since one can generate a globally optimal algorithm for this
measure which produces meaningless optical flow results.
For example: suppose we find for each pixel in one image a
corresponding pixel with the same gray value in the other
image. In this case, the resulting optical flow is broadcasts
(resolutions such as 852x576, 1,280x720, 1,920x1,080 or
1,920x1,080). Another application would be to enhance the
quality of a low-resolution video segment in order to better
recognize its contents. When increasing the resolution of an
image or a video segment, new information (pixels) needs to
be added that was not in the image before processing. By
analyzing the movement of objects in the segment, the optical
flow results according to the invention help complete the
information that is to be represented in the added pixels.
[0065] Video compression—digital video segments can
be voluminous and typically need to be compressed for
broadcasting and storage purposes. Image sequence
compression algorithms commonly use optical flow
parameters to represent images compactly in terms of
changes relative to preceding or succeeding images in
the sequence. As with any compression, the results can
be an approximation of the original video segment
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(lossy compression) or an exact decompression. The
majority of commercial video compressions are lossy
assuming that the human eye does need absolutely all the
information on an image in order for the results to
achieve good perceptual quality.

[0066] Object tracking—object tracking has many use-
ful applications such as: security and surveillance—to
recognize people; medical therapy—recognize move-
ment patterns for physical therapy patients and disabled
people; retail—analyze shopping behavior of custom-
ers; traffic management—analyze flow etc. Optical flow
analysis is a very useful tool for recognizing and then
tracking an object along multiple images (frames).

[0067] 3D object reconstruction—it can be helpful to
reconstruct three-dimensional objects from two-dimen-
sional camera images, for example, by filming the same
object from two (or more) different angles (stereo
vision, similar to the human eye stereo vision). One
major challenge of the reconstruction problem is to find
feature correspondences, that s, to locate the projections
of the same three-dimensional geometrical or textural
feature on two or more images. Comparing the optical
flow information from different video inputs (angles)
can help recognize the same object in the different video
inputs, and thus enhance the information collected about
the object and its behavior.

[0068] Medical imaging—medical imaging applications
benefit from optical flow computations in several areas,
for example, reconstructing a 3D image of an area based
on several images taken from different angles.

[0069] Although the invention has been described in detail,
nevertheless changes and modifications, which do not depart
from the teachings of the present invention, will be evident to
those skilled in the art. Such changes and modifications are
deemed to come within the purview of the present invention
and the appended claims.
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1. A method of determining the optical flow vector of a
plurality of image pixels between two consecutive images in
a group of images, the method comprising the steps of:

(1) creating multiple sets of said group of images wherein
each set contains a decreasing number of pixels per
image;

(ii) defining an optical flow motion model applicable to the
group of images in terms of a set of basis functions;

(iii) representing the optical flow vector of each pixel
image by different coefficients of the same motion
model,;

(iv) starting with the set of group of images with the lowest
number of pixels per image, determining respective
over-parameterized optical flow vectors at the pixels
responsively to motion between the images in the group
by computing respective regularized coefficients of the
basis functions at each of the pixels;

(v) interpolating the results to the next higher resolution set
of group of images and refining the estimation using the
over-parameterized optical flow representation; and

(vi) repeating step (v) until the highest resolution set of
group of images is reached.

2. A method according to claim 1, wherein said motion

model is an affine motion model.

3. A method according to claim 1, wherein said motion
model is a rigid motion model.

4. A method according to claim 1, wherein said basis func-
tions are spatial basis functions.

5. A method according to claim 1, wherein said basis func-
tions are spatio-temporal basis functions.

6. A method according to claim 1, wherein a new group of
images is created such that each image in the new group of
images contains more pixels than the corresponding image in
the original group of images.
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7. A method according to claim 1, wherein the over-param-
eterized optical flow representation is used within a super-
resolution scheme.

8. A method according to claim 1, wherein the over-param-
eterized optical flow representation is used to track a moving
object in said group of images.

9. A method according to claim 1, wherein the over-param-
eterized optical flow representation is used in a video com-
pression and/or decompression application.

10. A method according to claim 1, wherein the over-
parameterized optical flow representation is used in a seg-
mentation application.

11. A computer-readable medium encoded with a program
module that determines the optical flow vector of a plurality
of'image pixels between two consecutive images in a group of
images, by:

(1) creating multiple sets of said group of images wherein
each set contains a decreasing number of pixels per
image;

(i1) defining an optical flow motion model applicable to the
group of images in terms of a set of basis functions;

(ii1) representing the optical flow vector of each pixel
image by different coefficients of the same motion
model,;

(1v) starting with the set of group of images with the lowest
number of pixels per image, determining respective
over-parameterized optical flow vectors at the pixels
responsively to motion between the images in the group
by computing respective regularized coefficients of the
basis functions at each of the pixels;

(v) interpolating the results to the next higher resolution set
of group of images and refining the estimation using the
over-parameterized optical flow representation; and

(vi) repeating step (v) until the highest resolution set of
group of images is reached.

12. A medium according to claim 11, wherein said motion

model is an affine motion model.

13. A medium according to claim 11, wherein said motion
model is a rigid motion model.

14. A medium according to claim 11, wherein said basis
functions are spatial basis functions.

15. A medium according to claim 11, wherein said basis
functions are spatio-temporal basis functions.

16. A medium according to claim 11, wherein a new group
of'images is created such that each image in the new group of
images contains more pixels than the corresponding image in
the original group of images.

17. A medium according to claim 11, wherein the over-
parameterized optical flow representation is used within a
super-resolution scheme.

18. A medium according to claim 11, wherein the over-
parameterized optical flow representation is used to track a
moving object in said group of images.

19. A medium according to claim 11, wherein the over-
parameterized optical flow representation is used in a video
compression and/or decompression application.

20. A medium according to claim 11, wherein the over-
parameterized optical flow representation is used in a seg-
mentation application.
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