US 20080126278A1

a2y Patent Application Publication o) Pub. No.: US 2008/0126278 A1

a9 United States

Bronstein et al.

43) Pub. Date: May 29, 2008

(54) PARALLEL PROCESSING MOTION
ESTIMATION FOR H.264 VIDEO CODEC

LGS N LR o) R 706/17

57 ABSTRACT
(76) Inventors: ﬁ:ﬁ;;ﬁ;‘r]z;gzsifuﬁaizﬁgg ,L); A genus of motion estimation processes is disclosed which is
Ron Kimmel. Hai f; (IL): Seli1;1 characterized by the following characteristics which all spe-
Shlomo Rakii) Cupe rtin,o CA (US) cies in the genus will share 1) a process within this genus does
- S UP ’ not perform the motion estimation separately for each of the
Correspondence Address: partitions and subpartitions defined in the H.264 standard; 2)
RON ApLD CRAIG FISH A LAW CORPORA- aprocess within the genus computes for each motion vector in
TION ? the search region the partial costs for all macroblock parti-
PO BOX 820 tions and sub-partitions, compares them to the best partial
LOS GATOS. CA 95032 costs found so far, and for partitions and sub-partitions having
’ lower costs updates the corresponding best partial costs and
. records the current motion vectors as the one realizing them.
(21) Appl. No: 11/606,401 3) a process within the genus after finishing scanning the
- motion vectors in the search region, computes from the best
(22) Filed: Nov. 29, 2006 partial costs the total costs for all possible macroblock parti-
Publication Classificati tioning modes and selects the one with the lowest total cost as
ublication Classification the best macroblock partitioning mode, with the best motion
(51) Imt.ClL vectors corresponding to each of the selected macroblock
GO6F 15/18 (2006.01) partitions and sub-partitions.
MAIN MEMORY
R I R S R 1
: ! | |
|
! GROUP MEMORY 0 | ! GROUP MEMORY 0 |
1
! : ' | 1
1
| | I I
!]
'|cLUSTER 1| <+ |CLUSTERS8| 1 °°° ||CLUSTER1| <-- |CLUSTERS !
| | | |
b e e e e e e e e e e e e e e e e | e e e e e e e e e o o o ————— — !
GROUP 3

GROUP 0

Patent Application Publication

ORIGINAL
FRAME

May 29, 2008 Sheet 1 of 12

US 2008/0126278 Al

ENCODER

L,

30J

RECONSTRUCTED

ERROR IMAGE

/’

PRIOR ART DECODER

FIG. 2

DEBLOCK FILTER

RECONSTRUCTED
FRAME

|
!
|
! DEBLOCK. FILTER
:
|

TRANSMITTED
COMPRESSED
DATA

PRIORART ENCODER

FIG. 1

Patent Application Publication = May 29, 2008 Sheet 2 of 12 US 2008/0126278 A1

/ (X+MV, Y +MVy)

CLUSTER 1| =+** | CLUSTER 8 CLUSTER 1| <<+ | CLUSTERS8

- 62__ MOTION
58 VECTOR
60—~
16" 56 - 64
16
MAIN MEMORY

R B i A B i
E GROUP MEMORY 0 ! | GROUP MEMORY 0 i
' | ! l |
i o |
I ! ! 1
I ! ! 1
I ! ! 1
i : ! 1

GROUP 0

Patent Application Publication = May 29, 2008 Sheet 3 of 12 US 2008/0126278 A1

66’2/

126~ 128 M 90
l l *® [L] [} [) [] - L] . .(
L] L]] * * [[} _\\ 86
A M s
325
— N
/ 68
\
SEARCH REGION) 72

FIG. 5
f 80

ASSIGN EACH OF X SEGMENTS OF
SEARCH REGION TO ONE COMPUTATIONAL
CLUSTER OF A PARALLEL PROCESSING
ARCHITECTURE COMPUTER SYSTEM

' [

IN EACH COMPUTATIONAL CLUSTER,
PERFORMING A SEARCH TO FIND A
PARTITION, IF ANY, OF A SUBJECT
MACROBLOCK AND THE MOTION
VECTOR FOR THE MACROBLOCK OR
MOTION VECTORS FOR THE
SUB-BLOCKS WHICH MINIMIZE THE
EQUATION MIN SAD + A+BITS (MVD)

' S8

CHOOSE THE MOTION VECTOR(S)

AND PARTITION WITH THE MINIMUM VALUE
FOR MIN SAD + A * BITS (MVD)

AND ENCODE ERROR IMAGE(S) AND
MVD(S) FOR TRANSMISSION

FIG. 6

US 2008/0126278 Al

May 29, 2008 Sheet 4 of 12

Patent Application Publication

L Ol

2L —
NOIO3Y
HOY¥V3S —
B [44
\ﬁ_ 1 i
anw N!.? i
IN3WO3s ——F [
- N aﬁk‘w\\g\\\‘n\,f\h N
- |
v6 —[— ———
QAW v n_>_>_g.ﬁnw VAR
ol St
B _
26 ——— — 99
INIWO3S | bl . -
1St a3101a34d 901\ " 20} N_ q3191038d 86’ \og

1

ann

VNLOV

US 2008/0126278 Al

May 29, 2008 Sheet 5 of 12

Patent Application Publication

\

8 Ol

FONF43

\
. HOO180HOVIN
ol

L LI ol ve
ogL " or ~ (k%] €
\

A (0'0)
ZL NOIO3Y HOHVY3S
r/
oL§
»
wh < (0°0) we |
NZ
)
(04:0x)

NOIDO3Y-9NS HOHUVIS

NOIO3IY HOYV3S

(dArdy)

NN_‘\

Lz

(a)

(e)

US 2008/0126278 Al

May 29, 2008 Sheet 6 of 12

Patent Application Publication

NOILLILIVHENS ANV SNOLLILYYd XO0T1908OVIN "441a 40 LSOO avs

6 Ol

‘013 (2)1809-1839

om_‘/ omPV 881

98- PPl
/ / 2h gy o8

(L)1S0O-1839

|

-

_

_

—

|

]

|

| 11

T

B :E

@

b BEleOoESEPEEE ZE

6¢ 8¢ LZ 9¢ S¢ vC €2

961,

L 10b GE

e lag hwm\ e €e \
. A V.
PX¥iL '8XQ gXp:l 'gxg X8l ‘8xg 8xg:l ‘gxg

/ \\ \ \ \
o oo | Far 1

26!l

0coL8LLLOLSL YL

:o_‘mwNmmvav
6€l HYOLO3A 1SOD TVLOL SATIIA NOILILYVY 378ISSOd HOV3 HO4 S1S00 AvIHYIA0 QAW + HOLO3A Avs

61
ZELE g¢
\ Bzli2 vz
6z
0g |14 > ©)
\ 4 4
PXP'0 ‘8X8 8Xpi0 ‘8X8 X80 '8xg 8XB8-:0 8x8
A /. 7
D P (@
NZ._‘N\wv DL 6 er 7 1° 9 o\t‘
91 x8 8 X9l X
€
| v gy e
| 2 1
(A'x (A% (A%)

Patent Application Publication = May 29, 2008 Sheet 7 of 12 US 2008/0126278 A1

139
| sap | [BEST_COsT | MASK =
i COST<BEST_COST
FLEMENT 150 cosT__| Mask |]
/154 139~/ CURRENT COST 158 160
[OVERHEAD | VECTOR |
A (BITS(VVDx) + BITS(MVDy))
4 166
PREFETCHED
UPDATED BEST COST
FOUNDSOFAR ~ |BEST.COST| |
178
[BEST_MVD | &) e 170
172
174 180 (+)y»{BESTMVD| |
UPDATED BEST MV
[wmvo [(& DIFFERENCES FOUND
CURRENT (xy) SO FAR
SEARCH REGION SEGMENT
(xy) 130
ol rer | 16| orig | 2%
N\ SAD CALC
\I SAD CALC
4/ /214 A\ 216
4|, 4/,
210 — 212 1
FIG. 12 \ 7 2
) i
SAD 3 SAD
RESULTS ARRAY
1

J
12 3 4

US 2008/0126278 Al

May 29, 2008 Sheet 8 of 12

Patent Application Publication

L1 ©Old NOILILYVd ANV

1802 I¥NId

2L
9LT ———_ \

SINVHAVNO ooz vie L
R T
8X8 1539 IHL «v/\om |
40 S1S0D W1O0L %
Mww 252 e vee
092 103135 pez %z gyz— ce ove o€z
//’ ZO_._._._.MMM | /’ 62 ,omN// \ e 9€¢ ‘KNMN
1538 JHE gec— | | s |
g 6ee
ANS ssmw 4/(/ NS,/ m?:v/d/ s_:m :wa N%/ aﬂ%/ |NS k
i _ 1 _ | 1
mmwNR@NmN&mm omm::tm:m:: n Smm:mf\mmr

)m iv 8€.E om Ge vt mm [4>
"OL103A LSOO - 1834

Patent Application Publication = May 29, 2008 Sheet 9 of 12 US 2008/0126278 A1

SUMMARY OF COARSE PARALLEL PROCESSED MOTION VECTOR ESTIMATION
TO FIND LOWEST COST SUBPARTITION 300

C DIVIDE SEARCH REGION INTO SUB-REGIONS j

‘—-* /302

ASSIGN EACH SUB-REGION TO A COMPUTATIONAL NODE
OF A PARALLEL PROCESSING ARCHITECTURE

‘—+ START DO LOOP
~—304
/"IN EACH NODE, INITIALIZE A LOOP POINTER
TO POINT TO THE FIRST CANDIDATE MVD
"DESTINATION PIXEL" AS THE ORIGIN OF A
16 X 16 REFERENCE MACROBLOGK AND
INITIALIZE A BEST.COST VECTOR AND A
BEST-MVD(X) AND BEST-MVD(Y) VECTOR TO
HOLD X AND Y COORDINATES OF BEST COST
L SUBPARTITIONS y

I_& [306

CALCULATE SAD COST PLUS MVD OVERHEAD

COST FOR EACH PARTITION AND SUB-

' - PARTITION OF THE 16 X 16 REFERENCE
NO MACROBLOCK AT THE CURRENT

(X, Y) MVD "DESTINATION PIXEL" AND STORE
IN THE APPROPRIATE ELEMENT OF COST
, VECTOR :
/7 308
END DO LOOP —~
318 ™~ FOR EVEEY EPATRBIPON
316 : AND ELEMEN A
LOWEST' SUB PARTITION AT
DONE,_XV'TH &%ﬁhgﬁ%& MACROBLOCK ORIGIN
PIXELS? SUBPARTITION (X, Y), COMPARE THE
USING TOTAL SAD + MVD
PROCESS OVERHEAD COST OF THE
OF FIG. 11 ELEMENT TO THE BEST
~— COST FOUND SO FAR
INCREMENT FOR THE CORRESPONDING
(X, Y) N, 314 ELEMENT AND SUB-
ORIGIN OF PARTITION AND RECORDED
REFERENCE ‘ N SAID BEST-COST VECTOR.)
MACROBLOCK [-
TO NEXT
PIXEL 2
PIXELS AWAY
N I

FROM FiG. 138 NO TOFIG. 138

Patent Application Publication = May 29, 2008 Sheet 10 of 12 US 2008/0126278 A1

TO FIG. 13A
A A

l / 310

IS THE TOTAL COST LESS THAN

THE BEST COST FOUND SO FAR

FOR ANY PARTICULAR PARTITION
OR SUB-PARTITION?
- YES / 312
- y

\-

FOR EACH PARTITION OR SUB-PARTITION
WHERE AN ELEMENT OF THE SUB-
PARTITIONS HAS A TOTAL COST WHICH IS
LESS THAN THE BEST COST FOUND SO FAR
FOR THAT SAME ELEMENT OF A
CORRESPONDING SUB-PARTITION FOR

ANOTHER MVD DESTINATION PIXEL, -
SUBSTITUTE THE TOTAL COST OF SAID
ELEMENT INTO THE BEST-COST VECTOR AT
THE APPROPRIATE LOCATION(S) SOAS TO
RECORD THE NEW BEST COST FOR THAT
PARTICULAR ELEMENT OF THAT PARTICULAR
SUB-PARTITION AND RECORD THE MVD X
AND Y COORDINATES THAT RESULTED IN
THIS NEW BEST COST -- REPEAT TILL EACH
PARTITION AND EVERY ELEMENT OF EVERY
SUB-PARTITION HAS HAD ITS TOTAL COST
CALCULATED IN THE CURRENT-COST VECTOR
AND COMPARED TO THE CORRESPONDING
BEST COST ELEMENT (BEST COST SO FAR
FOR THAT SAME PARTITION OR ELEMENT OF
A SUB-PARTITION)

/

FIG. 13B

US 2008/0126278 Al

May 29, 2008 Sheet 11 of 12

Patent Application Publication

()
)

¢26 = 1S0D V10l
} = NOLLILYVd 1S39

Aann-1s3g ()

---]oig [zie | ool |

Xann-1s3g ()

()]

lo 1 v 1o lyswn

1S02-1s3g (o)

o) {) AaAw- INFHEnD O
9vL~\ |2l + 008 - XaAw - INF¥END (W)
L |2b +00€ 00k} - 6 v
| 1S0OD-IN3aY4ND (B) J1VAIONYD
(o't (0't) zze/
€8z L ® - Jo Jo] o] *anw-is3s
SNOLLILYVLENS NOILILYYd «
(3) o | o[o | *oaw-1s3g .
(0'0)
® ---Joofowr]ooL] 1s00-1s38 31VAIONYD
oze 7
(0) (9)
—ovl ()
oL _]ol + 009 oL+
oo_‘cr ol + o+ o+ + 0+
Ly 1\ [0 * 00F 02 (1 (00
(0'0) o1 (0°0) At x
€8¢ !
NOILILYVd

SNOLLILYVadaNS

Patent Application Publication = May 29, 2008 Sheet 12 of 12 US 2008/0126278 A1

126
/ 331

329? ¥l
/

FIG. 15

US 2008/0126278 Al

PARALLEL PROCESSING MOTION
ESTIMATION FOR H.264 VIDEO CODEC

BACKGROUND OF THE INVENTION

[0001] A digital video signal is encoded in a YCbCr format
which will hereafter be referred to as YUV where Y is the
luminance information (usually encoded in 8 bits) and U and
V are the color channels (each usually encoded in 8 bits). The
human eye is most sensitive to the luminance information as
that is where the detail of edges is found.

[0002] The huge amount of data involved in representing
the YUV information of a video signal cannot be transmitted
or stored practically because of the sheer volume and limita-
tions on channel bandwidth and media storage capacity.
Compression is necessary. Because frames are generated so
frequently, there is little difference between one frame and the
next, and this is the basis of compression. Compression gen-
erally speaking encodes the differences between one frame
and the next and only transmits or stores the difference infor-
mation. MPEG2 and MPEG4 are examples of compression
which are familiar today.

[0003] Video compression is based on removing subjective
redundancy, that is, elements of the sequence that can be
removed without significantly degrading the perceived visual
quality.

[0004] The first redundancy is the temporal one, stemming
from the similarity of consequent frames, especially at high
frame rates. MPEG compression standards exploit temporal
redundancy using motion-compensated prediction.

[0005] The second redundancy is spacial, stemming from
the fact that many images appearing in nature have high
correlation between neighboring pixels. H.264 compression
takes advantage of spacial redundancy by means of intra-
frame prediction. Another technique commonly employed in
video compression is based on the fact the human visual
system is more sensitive to inaccuracies in low frequencies,
which allow to save bits by quantizing higher frequencies
more aggressively. Since the human observer is by far less
sensitive to spatial inaccuracies in the chromatic information,
the color channels can be transmitted with reduced spatial
resolution and more aggressive quantization. MPEG video
compression and JPEG still image compression utilize trans-
form-domain coding techniques to take advantage of these
properties of the human visual system

[0006] In the last few years, High Definition (HD) televi-
sion formats have been gaining in popularity. HD complicates
the data volume problem because HD formats use even more
pixels than the standard NTSC signals most people are famil-
iar with.

[0007] The H.264 Advanced Video Codec (AVC) is the
most recent standard in video compression. This standard was
developed by the Joint Video Team of ITU-T and MPEG
groups. It offers significantly better compression rate and
quality compared to MPEG2/MPEG4. The development of
this standard has occurred simultaneously with the prolifera-
tion of HD content. The H.264 standard is very computation-
ally intensive. This computational intensity and the large
frame size of HD format signals pose great challenges for
real-time implementation of the H.264 codec.

[0008] To date some attempts have been made in the prior
art to implement H.264 codecs on general purpose sequential
processors. For example, Nokia, Apple Computer and Ateme
have all attempted implementations of the H.264 standard in
software on general purpose sequential computation comput-

May 29, 2008

ers or embedded systems using Digital Signal Processors.
Currently, none of these systems is capable of performing real
time H.264 compatible HD encoding and decoding for com-
pression.

[0009] Parallel general purpose architectures such as Digi-
tal Signal Processors (DSPs) have been considered in the
prior art for speeding up the motion estimation and deblock-
ing processes of the compression process in papers by H. Liet
al., Accelerated Motion Estimation of H.264 on Imagine
Stream Processor, Porceedings of ICIAR, p. 367-374 (2005)
and J. Sankaran, Loop Deblock Filtering of Block Coded
Video in a Very Long Instruction Word Processor, U.S. Patent
Application Publication 20050117653, (June 2005 Texas
Instruments). DSPs are well adapted to doing convolution on
one dimensional signals, but they lack efficiency to process
two-dimensional matrices of data as required in digital video
processing.

[0010] There also exist in the prior art hardware implemen-
tations custom tailored for H.264 decoders including chips by
Broadcom, Conexant, Texas Instruments and Sigma Designs.
Special architectures were proposed for some computation-
ally-intensive components of the H.264 codec.

[0011] There exists a significant amount of prior works on
efficient implementations of motion estimation in video
codecs.

[0012] U.S. Pat. No. 5,200,820 discloses a method and
apparatus for full macroblock matching motion estimation
using a particular cost function. The cost for the original and
the reference macroblocks is computed as the number of
pixels pixels, whose difference falls below a certain thresh-
old.

[0013] U.S. Pat. No. 5,477,272 discloses a pyramid-based
motion estimation scheme, which first produces a coarse
motion vector at the highest pyramid level. This estimate is
used to initialize the motion vector search at lower levels.
Since higher levels contain lower resolution images, the
described method has a benefit on computational complexity.
[0014] U.S. Pat. No. 5,561,475 discloses an apparatus for
block matching motion estimation, which first adapts the
block size to the content of the encoded frame, and then
searches for the best matching block in the reference frame.
[0015] U.S. Pat. No. 5,627,601 discloses a block matching
motion estimation technique based on a new cost function,
reflecting directly the number of bits required for the residual
image transmission.

[0016] U.S. Pat. No. 5,796,434 discloses a system and a
method for performing block matching motion estimation in
the DCT domain.

[0017] U.S. Pat. No. 5,926,231 discloses a method and
apparatus for hierarchical block matching motion estimation
technique, which divides the search region into hierarchical
search areas and employs gradual refinement of the found
motion vector.

[0018] U.S. Pat. No. 6,014,181 discloses a block matching
estimation algorithm, which established the step size in a
motion search region by examining the statistical distribution
of the sums of absolute difference in neighboring macrob-
locks.

[0019] U.S. Pat. No. 6,084,908 discloses a method and
apparatus for variable size quad-tree based motion estima-
tion. The method starts by estimating the motion vectors for
the highest level in the quad-tree, and uses them as an initial-

US 2008/0126278 Al

ization for motion vector search at lower levels. The quad-tree
is then traversed bottom-up, and blocks having similar motion
vectors are merged.

[0020] U.S. Pat. No. 6,175,593 discloses a method for
coarse macroblock matching motion estimation followed by
selectively applied bilinear interpolation to produce indi-
vidual motion vectors for finer macroblock partitions.
[0021] U.S. Pat. No. 6,222,882 discloses a method for full
macroblock matching motion estimation using a cost func-
tion insensitive to changes in scene illuminations.

[0022] U.S. Pat. No. 6,377,623 discloses a method and
apparatus for multi-resolution full macroblock matching
motion estimation. The method reduces the complexity of
motion vector search by performing coarse motion estimation
at lower image resolutions.

[0023] U.S. Pat. No. 6,876,702 discloses a method and
apparatus for full macroblock matching motion estimation,
wherein the search region for a row of macroblocks is deter-
mined according to the values of the motion vectors in the
previously decoded frame.

[0024] US Patent 2004/0190616 discloses an apparatus for
performing an initial block motion estimation in 16x16,
16x8, 8x16, and 8x8 partitioning modes. At a second stage,
finer 4x8, 8x4, and 4x4 sub-partitioning modes are consid-
ered by performing motion vector search in a small search
region, comprising motion vectors predicted from the neigh-
boring blocks.

[0025] US Patent 2005/0013367 discloses an apparatus for
performing an initial coarse block motion estimation and
determining the block size associated with the coarse motion
vector, followed by finer motion vector search in the proxim-
ity of the found motion vector.

[0026] US Patent 2005/0013368 discloses an apparatus for
block matching motion estimation that minimizes the search
memory size and external memory bandwidth.

[0027] US Patents 2005/0074064 and 2005/0089099 dis-
close a method for multi-resolution variable size block
matching motion vector search. The method estimates two
motion vector candidates at low resolution. The coarse search
is followed by refinement at middle resolution, where motion
vectors from neighbor macroblocks are used. Last, fine
motion estimation and mode decision is performed at highest
resolution.

[0028] US Patent 2005/0114093 discloses a method and
apparatus for multi-resolution variable size block matching
motion estimation, consisting of estimating the motion vec-
tors for the 4x4 blocks, determining the similarity of the
found vectors, and deciding the best macroblock partitioning
mode according to the found similarities.

[0029] US Patent 2005/0129122 discloses a method for
variable size block matching motion estimation with an early
termination technique, allowing to skip motion estimation in
blocks, whose estimated encoding cost is higher than the best
cost found so far.

[0030] US Patent 2005/0135481 discloses a method and
apparatus for efficient block matching motion estimation
based on an initial motion vector prediction and scalable
search range.

[0031] US Patent 2005/0141614 discloses a method and
apparatus for variable size block matching motion estimation,
consisting of initial coarse estimation, followed by the deci-
sion whether to further split the macroblock and estimate
multiple motion vectors, based on the matching cost found at
the initial stage.

May 29, 2008

[0032] US Patent 2005/0201627 discloses a method and
apparatus for reducing the complexity of macroblock encod-
ing mode decision by predicting the mode from the neighbor-
ing blocks in space and time.

[0033] US Patent 2005/0243921 discloses a method an
apparatus for multiple reference frame block matching
motion estimation, based on intelligent selection of reference
frames and candidate motion vectors in the search region.

[0034] US Patent 2006/0002474 discloses a method, sys-
tem and apparatus for variable block matching motion esti-
mation, where only a few partitioning modes are selected
when certain favorable conditions occur.

[0035] US Patent 2006/0008008 discloses a method for
multi-resolution block matching motion estimation. The
method includes calculating a coarse motion vector estimate
at low resolution, followed by finer motion estimation in
multiple partitioning modes at medium resolution, followed
by refining the obtained motion vector at the highest resolu-
tion level.

[0036] US Patent 2006/0039470 discloses a method and
apparatus for variable size block matching motion estimation
in the H.264 video codec. The method consists of coarse-to-
fine motion estimation, where each subsequent refinement
stage is performed only if the estimated encoding cost is
sufficiently high.

[0037] US Patent 2006/0056513 and 2006/0056708 dis-
close an implementation of motion estimation on graphics
processing unit (GPU).

[0038] US Patent 2006/0056719 discloses a method and
apparatus for variable size block matching motion estimation
with an early termination technique, which stops exhaustive
motion estimation prior to evaluating all the possible mac-
roblock partitioning modes.

[0039] US Patent 2006/0062302 discloses a method for
variable size block matching motion estimation, which first
performs motion vector search for a limited set of block
partitioning modes, computes the estimated encoding cost
and decides whether to perform a finer motion vector search
for the remaining modes.

[0040] US Patent 2006/0098740 discloses a method and
apparatus for variable size macroblock matching motion esti-
mation using a particular cost function, which is supposed to
give a better estimate of the number of bits needed to convey
the information contained in the macroblock.

[0041] US Patent 2006/0104359 discloses methods and
systems for variable size block matching motion estimation.
The method consists of performing an initial motion estima-
tion in one macroblock partitioning modes, and perform
refined motion vector search in other modes only if the found
motion vectors are substantially different one from the other.
[0042] US Patent 2006/0109905 discloses a method and
apparatus for variable size block matching motion estimation,
where the macroblock partitioning mode is predicted by a
Kalman filter.

[0043] US Patent 2006/0120452 discloses a method for
block matching motion estimation with adaptive search
region, constructed based on a statistical distribution of
motion vectors in previous frames.

[0044] US Patent 2006/0120613 discloses a method for fast
block matching motion estimation in multiple reference
frames.

US 2008/0126278 Al

[0045] US Patent 2006/0133511 discloses a method for
variable size block matching motion estimation with fast
mode selection, based on the encoding modes of the neigh-
boring blocks.

[0046] US Patent 2006/0165175 discloses a method for
block matching motion estimation, which reduces the search
complexity by skipping candidate motion vectors in the
search region.

[0047] US Patent 2006/0193386 discloses methods for fast
block partitioning mode decision, based on neighbor blocks
in space and in time.

[0048] US Patent 2006/0198439 discloses a method and
apparatus for full macroblock matching motion estimation
using a cost function aimed to better estimate the eventual
number of bits required to transmit the information contained
in the macroblock.

[0049] US Patent 2006/0198445 discloses a method and
apparatus for performing block matching motion estimation,
where a first coarse motion estimation stage is performed
based on a predicted motion vector, followed by a finer sub-
pixel motion estimation stage, based on a prediction of the
sub-pixel motion vector.

The Basics of H.264 Video Compression and
Reconstruction

[0050] Compression is done on video frames using 16x16
luminance pixel blocks called macroblocks and 8x8 Cb color
pixel macroblocks and 8x8 Cr color pixel macroblocks. The
Cb and Cr color channels are also referred to as the U and V
channels in YUV parlance. Each luminance and Cb or Cr
pixel is 8 bits in length.

[0051] Referring to FIG. 1, there is shown a block diagram
of a prior art video data encoder to compress raw video pixel
luminance data down to a smaller size. Chrominance data is
compressed in a very similar manner and will not be dis-
cussed in detail. The raw video input pixel data in RGB
format arrives on line 10. RGB format signals have redun-
dancy between the red, green and blue channels, so converter
12 converts this colorspace to a stream of pixel data 14 in
YCbCr format (referred to hereafter as YUV). The Y pixels
are luminance only and have no color information. The color
information is contained in the Cb and Cr channels. Since the
eye is less sensitive to color changes, the Cb and Cr channels
are sampled at one fourth the resolution of the Y channel. A
buffer 16 stores a frame of YUV data. This original frame data
is applied on line 18 to summer 20. The other input 22 to the
summer is the predicted frame which is generated by predic-
tor 24 from a previous frame of pixels stored in buffer 26.
[0052] Video frames happen very fast, so there is little
difference between adjacent frames. This is the basic idea of
compression. Since there is so much similarity between adja-
cent frames in time, only the differences need to be transmit-
ted. All the video compression standards, including H.264,
operate on this same basic principle. The basic idea is to
encode the differences between frames and only transmit the
differences. This is done by performing motion estimation
and then transmitting motion vectors. To do this, a predicted
frame is constructed by predictor 24 from a previous or ref-
erence frame stored in buffer 26. The predictor has many prior
art implementations. The predicted frame is supplied on line
22 to summer 20 which subtracts the predicted frame from the
original frame on line 18 and outputs the luminance differ-
ence between each pixel in the frame to be encoded (on line

May 29, 2008

18) and the predicted frame (on line 22). The collection of
difference numbers (one for each pixel in the original frame)
is the error image on line 28.

[0053] MPEG4 is a long-lasting video coding standard,
whereas the Advanced Video Codec (AVC), commonly
known as H.264 is a stand-alone video coding standard,
though included as annex 10 of the MPEG4 format. Hence,
when we say MPEG4 we are not talking about H.264.

[0054] In MPEG2 and MPEG4, prediction was only tem-
poral. There are two types of prediction: 1) interframe or
P-Block prediction; and 2) intraframe or I-Block prediction.
Each predicted frame was predicted from a preceding frame
in time (previous frame in buffer 26) which is called the
reference frame. In P-Block prediction, each macroblock, or
some subdivision thereof, of the predicted frame is predicted
using a motion vector and residual image. The motion vector
points to the origin of a similarly sized macroblock or subdi-
vision thereof in the reference frame which has the closest set
of pixels in terms of luminance errors. The residual image is
then calculated using this reference macroblock by subtract-
ing the luminance values in the reference macroblock or
subdivision thereof from the luminance values of the pixels in
the corresponding macroblock or subdivision thereof in the
frame being encoded. A similar process is performed for the
chrominance channel.

[0055] The residual image is then encoded in encoder 30
and the encoded data on line 32 is transmitted to a decoder
elsewhere or some media for storage. Encoder 30 does a
Discrete Cosine Transform (DCT) on the error image data to
convert the functions defined by the error image samples into
the frequency domain. That is, the integer luminance differ-
ence numbers of the error image define a function in the time
domain (because the pixels are raster scanned sequentially)
which can be transformed to the frequency domain using
DCT transformation for greater compression efficiency and
fewer artifacts. The DCT transformation outputs integer coef-
ficients that define the amplitude of each of a plurality of
different frequency components, which, when added
together, would reconstitute the original time domain func-
tion. Each coefficient is quantized, i.e., only some number of
the most significant bits are kept of each coefficient and the
rest are discarded. This cause losses in the original picture
quality, but makes the transmitted signal more compact with-
out significant visual impairment of the reconstructed picture.
For the coefficients of the higher frequency components,
more aggressive quantization can be performed (fewer bits
kept) because the human eye is less sensitive to the higher
frequencies. More bits are kept for the DC (zero frequency)
and lower frequency components because of the eye’s higher
sensitivity to lower frequencies.

[0056] All the circuitry inside box 34 is the encoder, but the
predicted frame on line 22 is generated by a decoder 36 within
the encoder.

[0057] FIG. 2 is a block diagram of the decoder circuitry
which decompresses the received compressed signal on line
38 and outputs the reconstructed frame on line 42. Decoder 40
peforms an inverse DCT and inverse quantization on the
incoming compressed data on line 38. This results in a recon-
structed error image on line 44. This is applied to summer 46
which adds each error image pixel to the corresponding pixel
in the predicted frame on line 48. The predicted frame is
exactly the same predicted frame as was created on line 22 in
FIG. 1 because the decoder 36 in FIG. 1 is the same decoder

US 2008/0126278 Al

as the circuitry within box 50 in FIG. 2. The error plus the
predicted pixel equals the original pixel luminance.

[0058] In H.264 encoding, like previous encoding stan-
dards, there are two types of frames in a compressed video
stream: [-frames and P-frames. The difference is the form of
prediction used. Interprediction based upon previous frame
gives P-blocks. Basically, each block is predicted based upon
a region of similar pixels of the same size in a previous
reference frame. Intraprediction gives I-blocks where predic-
tion from within the same frame where each I-block has its
pixel values predicted from neighboring pixels on its borders
in other blocks. This form of prediction did not exist in pre-
vious compressions schemes although I-frames did exist in
MPEG2. MPEG?2 I-frames did not use prediction at all—the
pixel values were subjected to a DCT transform and then
quantized and transmitted.

[0059] In H.264 compression, frames can be divided into
slices and each slice can be divided into macroblocks which
can themselves be divided further into partitions. I-frames
and I-blocks in both MPEG?2 and H.264 have no dependence
upon any previous frame and can contain only intra macrob-
locks (encoded in intraframe mode without reference to a
previous reference frame).

[0060] P-framesin H.264 cancontain either I-blocks which
are encoded with intraprediction or P-blocks which are
encoded with interprediction (motion vectors and error pixel
values). In other words, P-blocks have dependence upon a
previous frame because their encoding involves the use of
motion vectors calculated based upon a previous frame.
[0061] In a P-frame, each P-block (or each subdivision
thereof) has a motion vector which points to the same size
block of pixels in a previous frame using a Cartesian X,y
coordinate set. The same size block of pixels pointed to by the
motion vector is the set of pixels which are the closest in
luminance values to the pixel luminance values of the mac-
roblock to be encoded. The differences between the reference
macroblock luminance values and the P-block luminance
values are encoded as a macroblock of error values which are
integers which range from -255 to +255. The data transmit-
ted for the compressed macroblock is these error values and
the motion vector. The motion vector points to the set of pixels
in the reference frame which will be the predicted pixel values
in the block being reconstructed in the decoder.

[0062] The differences between the luma values of the pix-
els of the block being encoded and the reference pixels are
then encoded using DCT and quantization. In the preferred
embodiment, the macroblock of error values is divided into
four 4x4 tiles of error numbers. Each error number is the
number of bits it takes to represent an integer ranging from
-255 to +255. Chroma encoding is slightly different
because the macroblocks are only half the resolution of the
luma macroblocks.

[0063] The DCT, and in particular the DCT-I1, is often used
in signal and image processing, especially for lossy data
compression, because it has a strong “energy compaction”
property: most of the signal information tends to be concen-
trated in a few low-frequency components of the DCT. This
allows compression by quantization because more bits of the
less significant high frequency components can be removed
and more bits of the more significant low frequency compo-
nents can be kept. In digital signal processing, quantization is
the process of approximating a continuous range of values (or
a very large set of possible discrete values) by a relatively-
small set of discrete symbols or integer values. Basically, it is

May 29, 2008

truncation of bits and keeping only a selected number of the
most significant bits. For example, suppose 16 bits are output
for every frequency component coefficient. For the less sig-
nificant higher frequency components, only two bits might be
kept, whereas for the most significant component, the DC
component, all 16 bits might be kept. Typically, quantization
is done by using a quantization mask which is used to multi-
ply the output matrix of the DCT transform. The quantization
mask does scaling so that more bits of the lower frequency
components will be retained.

[0064] The discrete cosine transform is defined mathemati-
cally as follows.

blu, v) = 2 ; a(x, y)cos Wfﬂcos vy427r L
[0065] AsanexampleofaDCT transform,a DCTisused in

JPEG image compression, MIPEG, MPEG, and DV video
compression. In these compression schemes, the two-dimen-
sional DCT-I1 of NxN blocks is computed and the results are
quantized and entropy coded. In this example, N is typically
8 so an 8x8 block of error numbers is the input to the trans-
form, and the DCT-II formula is applied to each row and
column of the block. The result is an 8x8 transform coeffi-
cient array in which the (0,0) element is the DC (zero-fre-
quency) component and entries with increasing vertical and
horizontal index values represent higher vertical and horizon-
tal spatial frequencies. The DC component contains the most
information so in more aggressive quantization, the bits
required to express the higher frequency coefficients can be
discarded.

[0066] Typically, the DC coefficients that result from the
DCT transform are separately extracted into a 4x4 tile for
each 4x4 matrix of DCT coefficients, and these 16 DC coef-
ficients are themselves transformed using a Hadamard trans-
form.

[0067] Intheprocessoftheinvention, parallel processingto
do motion vector computation is performed on any parallel
processor, but the preferred processor is a cluster of eight
computational units each of which is optimized for 4x4
matrix math. Therefore, the preferred input matrix size is
4x4, and the Discrete Cosine Transform (or one of its equiva-
lents), converts the 4x4 matrix of error values into a 4x4
matrix of coefficients of different frequency components.
Each row of error numbers represents a 4 element vector
which is input to the DCT and results in a 4x4 matrix of
frequency components at the output.

[0068] P-block encoding is the form of compression that is
used most because it uses the fewest bits.

[0069] Motion estimation is the process of finding the set of
pixels in the reference frame that reduces the discrepancy in
luma values between the P-block being encoded and the
reference block in the reference frame. It is essentially a
searching process to find the block of pixels in the reference
frame which is closest to the block of pixels to be compressed
(encoded). A motion vector is essentially a pointer to how the
set of pixels in the reference frame were displaced to form
another set of pixels in the frame being encoded with changes
of intensity of individual pixels being encoded as the error
number image.

[0070] Motion estimation is one of the most computation-
ally intensive parts of the process of compressing successive

US 2008/0126278 Al

video frames using P frames, especially in H.264 compres-
sion since resolution for the motion vectors can go downto Y4
pixel. Therefore, there exists a need for a highly parallel
architecture and processes for using this parallel processing
architecture and the data independency of macroblocks in
video frames to do the searching necessary to find the best
motion vectors both for H.264 compression and other com-
pression standards such as MPEG2/MPEG#4 etc. Finding the
best motion vectors is important because when the reference
pixels are close in values to their corresponding pixels in the
frame to be compressed, the error numbers are smaller and it
takes fewer bits to represent them.

BRIEF DESCRIPTION OF THE DRAWINGS

[0071] FIG. 1 is a block diagram of a prior art video data
encoder to compress raw video pixel luminance data down to
a smaller size.

[0072] FIG. 2 is a block diagram of the decoder circuitry
which decompresses the received compressed signal on line
38 and outputs the reconstructed frame on line 42.

[0073] FIG. 3 illustrates the concept of a motion vector.
[0074] FIG. 4 is a high level block diagram of the preferred
parallel processing Avior architecture upon which the process
of the invention can be carried out.

[0075] FIG. 5 shows the subject macroblock, the predicted
motion vector and the search region for the correct motion
vector as part of the process of minimizing equation (2).
[0076] FIG. 6is a flowchart of the broad process for finding
the motion vector or motion vectors and the partition which
minimizes the value for Equation (2) below thereby
approaching the minimum number of bits need to transmit a
compressed macroblock.

[0077] FIG. 7 illustrates an example of what might be com-
puted for a particular macroblock for two searches and com-
putations of Equation (2) carried out simultaneously by two
computational clusters in two separate segments 92 and 94 of
the search region 72.

[0078] FIG.8, comprised of FIGS. 8(a) through 8(d), illus-
trates the concepts employed in selecting a search region from
the reference frame with the destination pixel coordinates of
the predicted motion vector established in the mid section of
the search region.

[0079] FIG.9,comprised of FIGS. 9(a), 9(), 9(c) and 9(d),
shows all the different possible partitions and sub-partitions
for a 16x16 tile in the search area.

[0080] FIG. 10 schematically illustrates this process of
computing the total cost of the macroblock partition candi-
dates and picking the best one.

[0081] FIG. 11 is a diagram which symbolically illustrates
the process of picking the lowest cost macroblock sub-parti-
tion for each of the four quadrants of a 16x16 reference tile
from the best-cost vector.

[0082] FIG. 12 is a diagram which illustrates the SAD
calculation using 4x4 pixel arrays from the 16x16 pixel
reference tile 130 and the original 16x6 pixel macroblock
array 200 to be encoded.

[0083] FIGS. 13A and 13B together comprise a flowchart
of the parallel processing version of the coarse motion esti-
mation process to find the lowest cost partition or subpartition
of the reference macroblock to encode the macroblock to be
encoded.

[0084] FIG. 14, comprised of FIGS. 14(a) through 14(s), is
adiagram illustrating how the process of calculating SAD and
overhead costs for various partition and sub-partition combi-

May 29, 2008

nations works and how the mask vector is generated and the
best-cost vector is updated using the mask vector.
[0085] FIG. 15 shows a lowest cost partition and sub-par-
tition selection where each of the lowest cost elements of a
sub-partition has a different MVD motion vector.

SUMMARY OF THE INVENTION

[0086] The invention claimed herein is related to motion
estimation consisting of finding the lowest cost partition or
sub-partition and the corresponding motion vectors of a mac-
roblock at any pixel precision level although at pixel precision
levels of a fraction of a pixel, pixel values in the reference
macroblock will have to be interpolated from neighboring
pixel values.

[0087] A genus of motion estimation processes is disclosed
which is characterized by the following characteristics which
all species in the genus will share 1) a process within this
genus does not perform-the motion estimation separately for
each of the partitions and subpartitions; 2) a process within
the genus computes for each motion vector in the search
region the partial costs for all macroblock partitions and
sub-partitions, compares them to the best partial costs found
so far, and for partitions and sub-partitions having lower
costs, updates the corresponding best partial costs and records
the current motion vector(s) as the one or ones realizing the
lowest cost or costs. 3) a process within the genus, after
finishing scanning the motion vectors in the search region,
computes from the best partial costs the total costs (sub-
partitions have multiple elements each of which has a cost
which must be totalled to arrive at the total cost of the sub-
partition) for all possible macroblock partitioning modes and
selects the one or ones with the lowest total cost as the best
macroblock partitioning mode, and selects the best motion
vector(s) corresponding to the selected macroblock partitions
and sub-partitions.

[0088] Many different species of processes that share the
above noted characteristics fall within the scope of the inven-
tion. Computers that are programmed with software that
causes the computers to carry out any of these species also fall
within the scope of the invention as does computer-readable
mediums which have stored thereon computer-readable
instructions which, when executed by a computer, cause the
computer to perform any of the processes falling within the
definition of the genus.

[0089] In the preferred embodiment, 16x16 macroblocks
are used, but other species within the genus may use some
other size of macroblock. In the preferred embodiment, each
macrobock is divided up into non-overlapping 4x4 tiles. In
other species, other sizes of non-overlapping tiles may be
used. In the preferred embodiment, a SAD (Sum of Absolute
Differences) for each 4x4 tile is used as its estimated encod-
ing cost. In other embodiments, some other measure of cost of
encoding other than SAD may be used. In the preferred
embodiment, all or part of the partitions and sub-partitions
defined in the H.264 standard are used in the search algorithm
to find the lowest cost partition and/or sub-partitions. In other
embodiments, some other partitions and sub-partitions other
than those defined in the H.264 standard may be used.
[0090] The purpose of the motion estimation algorithm in
the preferred embodiment is to form a motion-compensated
prediction of a given 16x16 macroblock from a reference
picture, so as to minimize the number of bits needed for its
encoding. For this purpose, the macroblock may be parti-
tioned into smaller tiles, for each of which a separate motion

US 2008/0126278 Al

vector is found. The main novelty of the present invention is
the simultaneous computation of the best motion vectors for
all possible macroblock partitions and sub-partitions sup-
ported by the H.264 standard.

[0091] First, the causal neighboring macroblocks of the
currently encoded macroblock are used to form the predicted
motion vector as defined in the standard. The predicted
motion vector is used as the center of the search region. We
henceforth describe the motion estimation algorithm per-
formed on a single processing unit; if more processing units
are available, the search region is divided between them and
the same algorithm is applied simultaneously to the different
parts of the search region. Unless stated otherwise, only the
luma channel is considered.

[0092] The search region is traversed in raster scan order
with an integer step. Motion vectors in the search region are
represented as motion vector differences (MVD) relative to
the predicted motion vector.

[0093] For each MVD in the search region, a 16x16 refer-
ence macroblock, whose upper left corner (origin) is pointed
by that MVD is extracted from the reference frame. Both the
currently encoded macroblock and the reference macroblock
are divided into 16 4x4 tiles. For each pair of corresponding
tiles, a differential cost (such as an SAD or any other cost
measure suitable to those skilled in the art) is computed,
forming a differential cost matrix. The differential cost must
satisfy the additivity property, meaning that the cost of a
whole is equal to the sum of the costs of its non-overlapping
parts. For example, the differential cost may be the sum of
absolute differences (SAD—sum of absolute difference in
luma value between pixels in the reference tile and the luma
values of the corresponding pixels of the tile from the mac-
roblock to be encoded).

[0094] In addition, the approximate overhead for transmit-
ting the MVD is computed; since the traversal order is known
a priori, the overheads for each of the motion vectors in the
search region can be pre-computed and tabulated so that it can
be pre-fetched thereby avoiding the machine cycles of a table
lookup operation.

[0095] A cost vector of partial costs, corresponding to all
the partitions and sub-partitions of the reference macroblock
is computed by summing the corresponding elements of the
differential cost matrix. For example, if the macroblock size
is 16x16 and the allowed partitioning modes are two 16x8
partitions, or two 8x16 partitions, or four 88 partitions, and
the selected tile size is 4x4, the first element ofthe cost vector
corresponding to the 16x16 partition is obtained by summing
all the elements of the differential cost matrix; the second and
the third elements of the cost vector corresponding to the
upper and the lower parts of the 16x8 partition are obtained
by summing the first two and the last two rows of the SAD
matrix, respectively. The MVD coding overhead is added to
each of the partial cost vector elements such that each element
of the partial cost vector stores the total SAD and MVD
overhead cost of the particular partition or sub-partition that
element represents. For example, the vector contains 41 ele-
ments to account for all possible macroblock partitions and
sub-partitions supported by the H.264 standard, and 9 ele-
ments if sub-partitions of the 8x8 partition are ignored.
[0096] The algorithm of a process within the genus of the
invention stores another vector of the same length, containing
the best set of partial costs (lowest costs) found so far and two
additional vectors of the same length, containing the corre-
sponding x- and y-coordinates of the motion vector differ-

May 29, 2008

ences (these two vectors are henceforth referred to as best_
MVDx and best_ MVDy, respectively). The best cost vector is
initialized by maximum cost values, which in 16-bit arith-
metic corresponds to 65,535.

[0097] For each of the scanned motion vectors in the search
region, the partial cost vector is compared to the best cost
vector. Elements in the best cost vector whose value is higher
than that of the corresponding elements in the partial cost
vector are replaced by the corresponding partial cost values.
The corresponding elements of the best MVDx and best_
MVDy vectors are set to the x- and y-coordinate of the current
MVD (the MVD of the partition or sub-partition whose par-
tial costs were substituted into the best cost vector).

[0098] Afterall MVDs in the search region are scanned, the
best cost vector contains the lowest partial costs of all mac-
roblock partitions and sub-partitions, and best_ MVDx and
best_ MVDy contain the MVDs realizing the best partial
costs. For example, the 16x8 sub-partitition has two ele-
ments in the best cost vector, the SAD plus MVD overhead
cost of each of these two elements being stored in two differ-
ent elements of the best cost vector dedicated to this particular
sub-partition. Elements of the best cost vector are summed to
form the total costs for each of the macroblock partitions and
sub-partitions supported by the H.264 standard. For example,
the total cost of the 16x16 partition is simply the first vector
element; the total cost of the 16x8 partition is the sum of the
second and the third elements each of which stores the SAD
plus MVD overhead cost of one of the two elements of this
sub-partition, etc. The partition with the lowest total cost is
deemed the best partition. The corresponding MVDs are
extracted from best_ MVDx and best_MVDy.

[0099] The search process to find the lowest cost partition
or sub-partition(s) of the reference macroblock in the entire
search area is completed by performing the following steps:
[0100] 1) in each computational unit, once all the motion
vectors in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the lowest
partial costs found so far to obtain a vector of total costs
whose elements correspond to each of the macroblock parti-
tions and sub-partitions;

[0101] 2) in each computation unit, selecting the macrob-
lock partition or sub-partition(s) and the corresponding MVD
motion vectors that yield the lowest total cost;

[0102] 3)among the macroblock partition or sub-partitions
selected in step 2 by all computational units, selecting the
macroblock partition or sub-partition(s) and the correspond-
ing MVD motion vectors that yield the lowest total cost. The
described process can be used as a single-stage motion esti-
mation, or can be followed by one or more fine-tuning stages.
Fine tuning with sub-pixel precision can be done around the
selected MVD(s) which point to the lowest cost partition or
sub-partition(s), but that is not part of the scope of this inven-
tion. In an alternative embodiment, instead of dividing the
16x16 reference macroblock up into 16 4x4 tiles, the abso-
lute difference at each pixel location in the 16x16 reference
macroblock is calculated at the reference macroblock pointed
to by each candidate MVD. The cost (such as SAD cost or
other suitable cost measure) for each partition and sub-parti-
tion (such as those supported by the H.264 specification) is
then calculated (such as by summing up the absolute differ-
ences at the pixels within each partition and each element of
a sub-partition) and recording the total cost in the appropriate
elements of the partial cost vector. In some embodiments,
within this class of processes, the cost so calculated will be

US 2008/0126278 Al

incremented by adding the MVD overhead costs to each
element. All other steps are the same. We do not perform
motion estimation separately for each of the partitions and
sub-partitions, as the competing algorithms do, but rather
compute the partial costs for all partitions simultaneously. In
the preferred embodiment, this is done by dividing the 16x16
reference block into 4x4 tiles and computing the SAD of
each 4x4 tile simultaneously. These computed SADs are
recorded in a SAD matrix, and the SAD matrix is computed
before the partial cost of any partition or sub-partition is
calculated using this SAD matrix. In an alternative embodi-
ment, the total SAD plus MVD overhead cost for each parti-
tion and sub-partition at each candidate MVD may be calcu-
lated by a separate computational unit dedicated to each
partition or sub-partition, and the results are compared by one
or more computational units to find the lowest cost partition
or sub-partition(s).

[0103] After all the MV candidate motion vectors in the
search sub-region are exhausted, we only have to select the
lowest cost partition or sub-partition(s) and the MVD(s) that
point to the lowest total cost partition or sub-partitions. Once
the lowest cost partition or sub-partition(s) are selected, the
corresponding MVD motion vectors are readily available
because they are recorded in the as best MVDx and best_
MVDy vectors. The original macroblock can then be encoded
using these results.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0104] FIG. 3 illustrates the concept of a motion vector. A
16 pixel by 16 pixel macroblock 56 has an origin (x,y) at 58.
A motion vector 60 points to a (X,y) coordinate in a reference
frame (not shown but the reference frame can be imagined as
a transparency lying below of the frame 64) which is the
origin of a 16x16 block of pixels which are closest in luma
values to the luma values of the pixels in macroblock 56. The
coordinates on the origin of the block of pixels pointed to by
the motion vector are (x+MV,, y+MV). Multiple reference
frames are allowed in H.264. Only one reference frame per
macroblock is allowrd. The motion estimation process
described herein is equally applicable to multiple reference
frames by extending the search region across several frames.
[0105] Motion estimation is the process of finding the best
motion vector which points to a block of pixels in the refer-
ence frame which is closest to the pixels in the block to be
encoded.

[0106] A 16x16 macroblock can be split under the H.264
standard into multiple sub-blocks (sub-blocks are also
referred to herein as tiles or sub-partitions), and each sub-
block has its own motion vector. For example, a 16x16
macroblock can be split into two 16x8 sub-blocks or four
8x8 sub-blocks. Each 8x8 sub-block can be split into four
4x4 sub-blocks. Therefore, the worse case scenario for a
subdivided macroblock is that it will be divided into 16 4x4
sub-blocks and have 16 motion vectors which will need to be
computed.

[0107] Each of the motion vectors need to be encoded and
transmitted. Recall that the motion vector points to a set of
pixels in the reference frame which will serve as the predicted
macroblock or subblock. The difference between the pixel
values in the block of pixels in the reference frame pointed to
by the motion vector and the actual values of the pixels in the
macroblock or sub-block being encoded needs to be encoded
and transmitted. This set of differences between the set of

May 29, 2008

pixels pointed to by the motion vector and the same size set of
pixels to be encoded in the current frame is called the error or
residual image. The larger the errors in the error image that
need to be encoded, the more bits it usually takes to encode
them. This error is called the prediction error, and it is desir-
able to keep it small so that it takes less bits to transmit it.
[0108] Thereis a cost function trade-offinvolving the num-
ber of sub-blocks into which a macroblock is divided in order
to minimize the errors in the error image and the overhead of
breaking a macroblock down into sub-blocks and having to
transmit macroblock partitiong mode and multiple motion
vectors. The tradeoff is between the number of bits needed to
encode the residual image and the number of bits needed to
encode the motion vector and partitioning mode. One way to
find a suitable trade-off is brute force by doing motion esti-
mation for each different sub-blocks into which a macroblock
may be broken and calculating the number of bits it takes to
encode the required motion vectors and error images for each
different combination, and selecting the combination of sub-
blocks forming a valid macroblock partitioning, which results
in the fewest number of bits to encode the motion vectors and
the error images for each sub-block. This is a large amount of
computation and is difficult to do in real time.

[0109] A more practical approach is a heuristic approach
which is quite reliable in predicting with quite good correla-
tion to the actual number of bits required to transmit the
motion vectors and the error image. This approach, in part,
finds the minimum of the Sum of Absolute Differences (SAD)
which is a measure of the error between the predicted mac-
roblock and the macroblock to be encoded (compressed).
[0110] TheSADis calculated by subtracting the luma value
of the pixel at row one, column one of the reference macrob-
lock from the luma value of the pixel at row one, column one
of'the original macroblock to be encoded. This absolute value
of the said difference is stored in memory. This process is
repeated for the pixels at row one, column two, and the abso-
lute values of the difference is added to the absolute value of
the difference stored for the pixels at row one, column one of
the reference block and the original block. This process is
repeated until all pixels in the reference macroblock pointed
to by the motion vector have had their luma values subtracted
from the luma values of the corresponding pixels in the origi-
nal frame. A macroblock has 256 pixels, but SAD can be
calculated for smaller tiles as well.

[0111] The SAD is higher when coarser macroblock parti-
tioning is used because some small motion will be likely to be
missed which causes the error numbers at the pixels where the
motion is displayed to be higher thereby raising the SAD.
With finer granularity of sub-partitioning, the total SAD for
the 16x16 macroblock is lower because the predicted pixel
luma values of the smaller sub-blocks is much more likely to
be closer to the luma values of the corresponding pixels in the
original block to be encoded. In other words, the more a
macroblock is divided and the more motion vectors found for
it, the more accurate is the prediction and the lower is the
SAD. But there is an overhead cost associated with more
sub-division which must be counted.

[0112] So an equation that expresses the cost function
trade-off relationship is:

min SAD+A*bits(MVD) 2)
[0113] where min SAD is the minimum SAD for the par-

ticular macroblock partitioning mode chosen as opposed to
all the other partitioning modes options tried, and

US 2008/0126278 Al

[0114] where A* bits(MVD) is a constant times the motion
vector difference (with respect to the predicted motion vector
for that particular partition), and is the fixed overhead cost of
the particular macroblock partitioning mode and motion vec-
tors chosen (when there are more motion vectors because of
sub-divison, more bits are consumed to transmit them; larger
MVDs also consume more bits to encode). A is a constant for
each macroblock and is bitrate or quality dependent. Motion
vectors can be predicted based upon neighboring motion
vectors so MVD is the error between the predicted motion
vector and the actual motion vector of a sub-block or mac-
roblock. The MVD is the difference vector between the pre-
dicted motion vector and the actual motion vector. H.264
always transmits MVD difference vectors based upon motion
vector prediction.

[0115] Basically, the process teachings of the invention are
a process to find the sub-block partition combination which
minimizes Equation (2). Any process which finds the sub-
block partition and motion vectors which minimize Equation
(2) is potentially within the teachings of the invention. The
preferred embodiment breaks the 16x16 reference macrob-

lock into 16 4x4 tiles and calculates the SAD of each one and

stores that SAD for each 4x4 tile in an 4x4 SAD matrix. For

each candidate partition or sub-partition, the SAD costs of the
appropriate tiles are added together and stored in the partial
cost vector and summed with the MVD encoding overhead
costs. This partial cost vector is then compared to the best cost
vector, and a binary mask is prepared. Then the mask is used
to substitute any partial cost which is lower than the corre-
sponding element of the best cost vector into the best cost
vector and the X, y coordinates of the origins of the sub-
partitions are substituted into the appropriate elements of the
of'the best_MVDx and best_MVDy vectors. The lowest cost
partition or lowest cost sub-partitions for each quadrant are
then selected. In the preferred embodiment, all this process-
ing is done on a single processor of a multi-processor parallel
processing architecture computer. Hereafter, the term cluster
should be understood as referring to a single processor or
CPU of a multi-processor parallel processing architecture
computer and may be used instead of processor or CPU from
time to time. The remaining processors are occupied with the
same process for different parts of the motion search region.

[0116] In a first alternative embodiments, a single proces-
sor can calculate the SAD of each partition and sub-partition
of each quadrant separately without first dividing the 16x16
reference macroblock into 16 4x4 tiles. This is slower since
there is repetition in calculating SAD costs for each different
partition or sub-partition.

[0117] Ina second alternative embodiment, a separate pro-
cessor could be assigned to calculate the SAD and add the
MVD overhead cost for a particular partition or sub-partition
or sub-group of partitions or sub-partitions, and store the total
cost results in the-cost vector and then do the comparison and
substitution. In this embodiment, the SAD costs and addition
of'the MVD overhead for each partition and sub-partition are
calculated simultaneously in different processors and the
comparison and substitution is done in separate processors
simultaneously, and the selection of the lowest cost partition
or sub-partition for each quadrant is done in a single proces-
sor.

[0118] Sub-partitioning to reduce the SAD is desirable,
because if the predicted block is very close in pixel luma
values to the corresponding set of pixel, the residual image

May 29, 2008

magnitudes will be smaller and carry less information.
Smaller. SAD magnitudes mean less information has to be
transmitted.

[0119] The goal of the process genus taught herein is to
minimize both the SAD by sub-division as well as the over-
head cost resulting from the sub-division. Rate distortion is a
trade off concept which entails maximizing the quality of the
image resulting from the bits of the compressed image which
are transmitted when the bit transmission rate is fixed, such as
in direct broadcast satellite or cable programming, or which
entails minimizing the consumed bandwidth of transmission
or making the file size as small as possible on a storage media
for a fixed quality such as DVD quality.

[0120] A genus ofprocesses is taught herein to calculate the
SAD for each of a number of different partition and sub-
partition options and to calculate the MVD overhead cost of
each and decide which particular macroblock partitioning
mode yields the lowest cost. If, using the teachings of the
invention, the minimum is found for Equation (2), then it is
highly probable that the quality of the transmitted image will
be better for a fixed bandwidth; and (2) for a fixed quality
image, fewer bits will have to be transmitted or stored.

The Motion Estimation Algorithm

[0121] One possibility is to perform an exhaustive search
which tries each possible origin in the reference frame for
each motion vector and for each possible sub-partition of the
subject macroblock and calculates the value of Equation (2)
for each possibility and chooses the one with the minimum
value. That is a great deal of computation complicated by the
fact that it gets multiplied by the number of macroblocks in a
high definition picture which is a large number of macrob-
locks.

[0122] The preferred embodiment of the invention is to
efficiently and rapidly find a motion vector or multiple motion
vectors and a partition or one or more sub-partitions for the
subject macroblock which minimizes the value of Equation
2.

[0123] The Motion Estimation algorithm is explained start-
ing at FIG. 5 which shows the subject macroblock, the pre-
dicted motion vector and the search region for the correct
motion vector as part of the process of minimizing Equation
(2). The subject macroblock to be encoded 66 has an esti-
mated motion vector 68 estimated from motion vectors of
neighboring macroblocks (not shown). The motion vector
terminates at a pixel 70 in search region 72. The search region
72 is a two-dimensional MxN pixel array which is typically
atleast 32x32 pixels in size for High Definition pictures. The
dots inside the search region represent pixel locations where
motion vectors participating in the search might terminate.
The H.264 standard specifies resolution of motion vectors
down to %4 pixel, so each of the dots only represents one of
sixteen possible termination points per pixel for the motion
vector. When integer motion vector search is performed, can-
didate MVDs terminate on every other pixel in each row of
pixels, or a subset thereof (e.g. even pixels in every even row),
but the process described herein can also be used to search for
lower cost partitions at any one of the sixteen possible termi-
nation points around each pixel although pixel interpolation
would berequired. Thus, if search area 72 were a 16x16 pixel
array, the total number of possible origins for the correct
motion vector that must be considered as to their effect on

US 2008/0126278 Al

Equation (2) is 16x16x16. This is because each pixel has a
4x4 array of quarter-pixel points around it where the motion
vector could terminate.

[0124] In addition to all these possible motion vector ter-
mination points, there must also be considered the effect of all
the possible partitions of macroblock 66 into sub-blocks.
Each sub-block will have its own motion vector which also
can terminate on any one of the 16x16x16 possible termi-
nation points. If the search area is 32x32, the problem
becomes even bigger. It is clear that the number of possible
combinations which must be searched to find the right com-
bination of subdivision and motion vector termination points
is huge. Exhaustive search is not a viable option. However, the
more precise is the estimate, the fewer is the number of bits
that must be sent. The invention makes use of the assumption
that the SAD reflects the amount of bits that must be used to
send the error image which is quite close to reality. The
invention also makes the assumption that the second term in
Equation (2) is the amount of bits needed to send the motion
vector differences. Minimizing Equation (2) then comes
pretty close to minimizing the number of bits that must be sent
to transmit the compressed macroblock. This means one can
achieve better picture quality for the same bandwidth because
you can use finer quantization, or you can achieve less band-
width to transmit the same quality picture.

[0125] To speed up the process of finding the minimum
value for Equation (2), a parallel processor can be used and
the search area can be divided into the number of areas for
which there are computational units. FIG. 6 is a flowchart of
the broad process for finding the motion vector or motion
vectors and the partition which minimizes the value for Equa-
tion (2) below thereby approaching the minimum number of
bits need to transmit a compressed macroblock. The first step,
represented by block 80 is to assign each of X segments of the
search region to one processor or CPU of a parallel processing
computer. X is the number of segments into which the search
region was divided and is equal to the number of computa-
tional clusters available in the parallel processing computer
system chosen. Any parallel processing computer having
multiple computational clusters, each capable of performing
independent searches for the partition and motion vector(s)
which minimize Equation (2) will suffice to practice the
invention. In FIG. 5, tick marks 86 and 88 represent two of the
boundaries of eight horizontal band segments into which
search region 72 is divided in one example. The number of
segments can be any number equal to the number of available
computational clusters. Eight is chosen in this example
because that is the number of available computational clusters
in one group of the preferred Avior parallel processing archi-
tecture shown in FIG. 4. The segment represented by hori-
zontal band 90 is assigned to one of the eight computational
clusters. Any parallel processing architecture computer or
gate array or ASIC which is programmed or “hardwired”
(netlist structures device to perform any process within the
genus) to perform any process within the genus of processes
described herein will suffice to practice the invention.

[0126] Step 82 represents the actual search in each segment
of the search region. Specifically, each computational unit
performs a search, preferably the search algorithm described
further below, to find the motion vector or vectors and the
partition that minimizes Equation (2) for the particular por-
tion of the search region processed by that computational
unit. In other words, the best partition into multiple sub-
blocks (or no partition at all if that is best) is found that

May 29, 2008

minimizes the value of Equation (2), and the motion vector
for each sub-block is found which minimizes the value of
Equation (2). Each computational cluster carries out its
search in its assigned sector of the search region indepen-
dently of the rest of the computational clusters.

[0127] When all the computational units are done, there
will be X candidates for the value of Equation (2), each
calculated by one computational unit and each based upon
some termination point(s) in the corresponding search area
and the motion vector(s) and partitions calculated by the
computational unit for the corresponding search area. The
final motion vector(s) and partition is determined by selecting
as those minimizing the cost value in Equation (2) from the X
candidates, as symbolized by step 84. This speeds up the
process of finding the correct motion vector and partition by
a factor X which is equal to the number of computational
clusters searching their segments of the search region in par-
allel.

[0128] FIG. 7 illustrates an example of what might be com-
puted for a particular macroblock for two searches and com-
putations of Equation (2) carried out simultaneously by two
computational clusters in two separate segments 92 and 94 of
the search region 72. The first cluster determines that parti-
tioning the macroblock into two 8x16 partitions 96 and 98 is
best for purposes of minimizing the value of Equation (2). It
also calculates that for partition 98, the predicted motion
vector 100 is not right and that the actual motion vector to
minimize Equation (2) should be as shown at 102. The MVD
or difference vector 104 is then calculated for encoding along
with the error image between the pixels in 8x16 array 98 and
the 8x16 array of pixels having its origin at 106 in segment 92
of the search region. MVD 104 and the error image just
described are not selected yet for encoding because the other
MVDs and error images resulting from searches of the other
segments may have a lower score for Equation (2). Likewise,
for 8x16 partition 96, predicted motion vector 108 is found to
differ from the actual motion vector 110 which minimizes
Equation (2) by MVD vector 112. Each MVD vector has a
number of bits needed to encode it that can be looked up in a
table. The number ofbits depends upon the length and relative
angle of the MVD vector relative to the predicted motion
vector and is specified by the H.264 standard. A table lookup
is not even needed if the order in which the motion vectors are
scanned is known, then the overhead needed to encode the
MVD for an actual motion vector terminating at each new
trial and error destination point is known.

[0129] Computational cluster 2 determines from segment
94 of the search region that two 8x8 sub-block array 114 and
115 in the left halfand two 8x8 sub-block arrays 116 and 118
are best to minimize Equation (2). For each of these sub-
blocks an actual motion vector marked A is found which
differs from the predicted motion vector marked P by a dif-
ference vector marked MVD. This process in cluster 2 hap-
pens simultaneously with the search and computation process
carried out in cluster 1 and simultaneously with search and
computation processes carried out in the other search region
segments by other computational clusters.

The Preferred Integer Motion Estimation Algorithm

[0130] The Motion Vector Search Region

[0131] FIG. 8, comprised of FIGS. 8(a) through 8(d), illus-
trates the concepts employed in selecting a search region from
the reference frame with the destination pixel coordinates of
the predicted motion vector established in the mid section of

US 2008/0126278 Al

the search region. The quest in the integer search of the
preferred embodiment is to evaluate the costs for all the
possible partitions for a 16x16 tile (also referred to as a

macroblock) having its origin at a particular integer location
in the reference frame search area and then pick the partition
having the best cost. This cost will include the cost of the
MVD motion vector difference vector translating the termi-
nation point of the estimated motion vector to the pixel in the
search area at the origin of the first candidate 16x16 tile.

[0132] The process is then repeated for a second 16x16
macroblock in the search area with its origin at the next pixel
in the raster scan order which is two pixels over from the pixel
of the origin of the 16x16 tile just evaluated. The best parti-
tion (best cost) for that macroblock is determined, and a cost
vector storing the costs of all the partititions and sub-parti-
tions of the previous (first) 16x16 tile is updated at all posi-
tions in the cost vector where a partition or sub-partition of the
second macroblock was lower than the cost of the same
partition or sub-partition of the first macroblock. This process
is repeated for all the tiles having origins in the search area
segment at one of the pixels in a grid of pixels in the search
area segment which are separated by an integer number of
pixels (usually 1 or 2 pixels for the purpose of coarse motion
estimation).

[0133] This coarse or integer resolution search process
goes on simultaneously for each search area segment in each
processor of a parallel processing architecture computer hav-
ing a plurality of processors. Finally, the lowest cost partition
or sub-partition for all the search area segments is found by
finding the lowest cost partition or sub-partition in each
search area segment and then finding the lowest of those. That
lowest cost partition or sub-partition will be the 16x16 tile in

the search area which is selected to encode the SAD of the
16x16 tile to be encoded, and an MVD from the tip of the

estimated motion vector to the origin of this tile will be
calculated and the overhead bits to encode this MVD will the
overhead bits sent (they are already included in the cost cal-
culated for the winning tile as will be seen from the process
described more fully below).

[0134] The process is then repeated in a restricted search
region at sub-pixel resolution starting from the lowest cost
partition found in the previous stage in some embodiments.

[0135] Motion vectors are predicted in H.264, so before the
motion vectors search begins to to start the minimization
process to find the minimum value for Equation (2) for a
macroblock to be encoded (hereafter referred to as the subject
macroblock), first the subject macroblock’s neighboring
macroblocks have to have already been encoded. Once the
neighboring macroblocks are encoded, their motion vectors
are known and a motion vector for the subject macroblock is
predicted.

[0136] The fact that according to the H.264 specifications
the inner partitions of the macroblock require the motion
vectors of their left and upper neighbors to form the predicted
motion vector impedes the motion estimation for all macrob-
lock partitioning modes simultaneously. We overcome this
difficulty by forming an approximate predicted motion vec-
tor, which is computed as if the macroblock was encoded
using the 16x16 partitioning mode. This prediction is subse-

quently refined once the best partitioning mode is selected.
Together with the approximate encoding cost in Equation (2),
this assumption constitutes a reasonable compromise for
achieving significantly faster computation.

May 29, 2008

[0137] After the already decoded macroblocks that neigh-
bor the subject macroblock are used to predict the motion
vector (X, y,) for the subject macroblock (shown as the P
vectors in FIG. 7), the search for the correct partition and the
motion vector(s) for the macroblock or each sub-block into
which it is divided is begun by establishing a search region in
which the termination points for the motion vector(s) will be
found.

[0138] There is a search region hierarchy. FIGS. 7(a)
through 7(d) illustrate the various concepts to be discussed
next. The search region 72 is in the reference frame (one or
more previous frames), and is centered on the termination
point (X, y,). The motion estimation algorithm will search
the search region for the best motion vector(s) for the subject
macroblock in the region [x,-M, x,+M]x[y,-N, y, +N].
Typically, M and N each are set equal to 16 or 32, but they can
be set to any number supported under the standard. The H.264
standard limits the, maximum MYV size, depending upon the
level of the encoded stream to ensure compatibility with the
decoder. The search region 72 in the preferred embodiment is
set to have size (2M+16)x(2N+16) which includes 16 pixel
margins on the right and bottom, and which is centered at (x,,,
y,) in the reference frame is extracted from the reference
frame 12 and brought into the group memory. The group
memory refers to a shared memory in a parallel processing
architecture called the Avior architecture which has four
groups of calculation nodes each of which is called a cluster,
each group having eight clusters which share a group
memory. This is the preferred architecture to perform the
parallelized motion estimation algorithm, but any parallel
architecture which can perform data independent parts of the
process in parallel to speed up the ultimate conclusion will
suffice to practice the invention. The Avior architecture is
shown in FIG. 4.

[0139] The motion vectors are searched relative to (x,,y,),
ranging between [-M, M]* [-N, N], as illustrated in FIG.
8(c). To speed the process up by parallelization, the search
region is divided up into eight non-overlapping segments or
sub-regions [-M, M]x[k/4-1)N, ((k+¥%-1)N-1,k=0, ...

,7. Basically, one divides the search region up into eight slices
and copies the pixels from each slice with overlapping mar-
gins of 16 pixels on the right and bottom into one of the
computational clusters of the parallel processing system. One
sub-region is shown in FIG. 8(b). The motion estimation
algorithm (an organized search) is then performed on each
slice simultaneously in each of the clusters producing eight
best candidates and their encoding cost estimates. Then the
best of the candidates (the one with the lowest cost) is
selected.

[0140] The actual motion vectors terminate at candidate
pixels which are at the origin (x, y) of a candidate 16x16
reference tile (130 in FIG. 8(d)). In other words, the current
actual motion vector during any particular iteration termi-
nates at a candidate pixel (x, y—which is at the origin of a
16x16 candidate tile) in the search region segment. The
coordinates of this point (x, y) are given in relative terms with
respect to the origin or upper left corner of the search region,
shown at 124 in FIG. 8(d). The origin of the search region is
arbitrarily set as coordinate (0,0). It is preferred to translate
the (X, y) termination points of the MVD motion vectors
which define the difference in spatial terms between the
actual motion vector termination point and the termination
point of the predicted motion vector. To do this, itis necessary
to translate coordinate (x, y) for the MVD termination pixel to

US 2008/0126278 Al

the system of the coordinates with the origin at (0,0). The
MVD goes from x,,, y,—which is the tip or termination point
of the estimated motion vector) to (X, y). To make this trans-
lation, an offset vector (x,, y,)=(-M, (k/4-1)N) has to be
added to (x,y) where (x,y) is any one of the candidate termi-
nation points for the candidate MVD motion vectors tried in
the search sub-region.

[0141] Insub-region 90 of FIG. 5, each one of the candidate
pixel points 126 and 128, etc. is a possible termination point
(x,y) for a candidate MVD which describes an actual motion
vector to replace the predicted motion vector 68 and its ter-
mination point 70. The pixel points illustrated in FIG. 5 are
separated by two pixels in all directions for the coarse search
phase. Each of the candidate pixel points 126, 128, etc. has its
overhead bits for MVD, and MVD,, precalculated and stored
so these overhead values can be prefetched and stored in the
computational cluster to save the time of a table lookup.

Integer Resolution Motion Estimation

[0142] The purpose of the integer resolution motion esti-
mation is to select the best macroblock partition and, possibly,
a sub-partition, and provide a rough estimate of the best
motion vectors found in the search sub-region with integer
pixel resolution. For that purpose, 16x16 reference tiles 130
of pixels from the search region are used, each with an origin
ata candidate pixel having coordinates X, y (where x and y are
incremented on a two pixel skip for each new candidate).
These reference tiles are extracted from the search sub-region
in raster scan order during the search for the lowest cost. One
such 16x16 candidate reference tile (a candidate reference
tile is a tile whose origin is pointed to by a candidate motion
vector) is shown at 130 in FIG. 8(d). The idea is to calculate
the value for Equation (2) for tile 130 with the candidate
motion vector terminating at (X, y).

[0143] FIG. 12 is a diagram which illustrates the SAD
calculation process using 4x4 pixel arrays from the 16x16
pixel reference tile 130 and the original 16x6 pixel macrob-
lock array 200 to be encoded. A 16x16 pixel reference tile
130 having its origin at candidate actual motion vector termi-
nation pixel (X, y) is selected. This 16x16 reference tile 130
is divided into sixteen non-overlapping 4x4 pixel blocks (as
is every other 16x16 reference tile selected on subsequent
iterations), and is processed to calculate the total SAD value
for each 4x4 pixel block in raster scan order. The 16x16
pixel original macroblock 200 from the frame being encoded
is stored in the cluster also and is also divided into 4x4 pixel
blocks, and is scanned in the same raster scan order. Scanning
in this case means first 4x4 block 210 from the reference tile
is compared to 4x4 block 212 from the original macroblock
200, and the SAD (sum of the absolute differences between
the values of corresponding pixels of the two 4x4 blocks) of
these two 4x4 blocks is calculated and stored in block 218 of
SAD array 220. Then, the same thing is done for 4x4 block
214 and 216. This process is repeated until all the blocks of
SAD array 220 have been filled with the SAD values of the 16
corresponding pairs of 4x4 blocks from the reference tile 130
and the original tile 200.

[0144] The preferred Avior parallel computing architecture
is optimized to do 4x4 array integer arithmetic and can
calculate all 16 SAD values in less than 48 clock cycles.
[0145] Asillustratedin FIG. 12, for each of the 4x4 blocks,
the sum of the absolute differences in pixel values (SAD)
between the reference block and the original block being

May 29, 2008

encoded is computed. The results are stored in a 4x4 matrix
containing the SADs of all 16 blocks in their scan order,
namely:

4j-1 4i-1 3)
SAD(,) = Z Z |REF(x + m, y +n) — ORIG(m, n)|
m=4(j—1) n=4(i-1)

The elements of SAD are indexed in column-dominated
order.

[0146] FIG.9,comprised of FIGS. 9(a), 9(), 9(c) and 9(d),
shows all the different possible macroblock partitions and
sub-partitions. The idea is to find the partition or sub-parti-
tions with the lowest cost, i.e., the smallest amount of differ-
ences from the tile being encoded. Since the MVD always
points to the macroblock origin, the overhead cost for using
the MVD for a specific tile is the same regardless of the
particular location of the tile within the macroblock. There-
fore, the same overhead cost is added to each element of the
cost vector 139, and that overhead cost depends upon which
of the pixels 126, 128 etc. in FIG. 5 is at the origin of the
reference macroblock. These overhead costs are pre-com-
puted. In the case of the two 16x8 sub-partitions 146 and 147
in FIG. 9(a), whose SAD costs are recorded in elements 2 and
3, the overhead cost of an MVD to origin (%, y), the overhead
of this MVD is added once to element 2 and once to element
3. The same situation applies to any of the other multiple
sub-partitions possibilities shown in FIGS. 9(a), 9(b) and
9(c).

[0147] The elements of the SAD matrix are summed
according to all possible partititions and sub-partititions of
the macroblock, as shown in FIG. 9 comprised of FIGS. 9(a),
9(b), 9(c) and 9(d). The results are stored in a 41x1 cost
vector shown in FIG. 9(d) at 139 (represented as three 16x1
vectors, with seven elements of the last vector left unused).
For example, the first element of the vector, shown at 142,
contains:

~

4)
s = Z SAD(, j)
i=1

i

S

which corresponds to the SAD cost of the 16x16 partition
shown at 140 in FIG. 9(a). In Equation (4) indices i and j
identify the particular SAD value blocks inthe SAD array 220
of FIG. 12. So equation (4) means all 16 SAD values inthe 16
blocks of SAD array 220 are summed, and that is the SAD
value for partition 140 in FIG. 9(a) (the partition with no
sub-partitions). That single SAD value plus the MVD over-
head is stored in element 1 shown at 142 of the cost vector 139
in FIG. 9(d).

[0148] Since the cost is additive, the cost of a specific
partition can be computed as the sum of the costs of the 4x4

tiles of which it consists. In this way, we do not compute the
computationally expensive SAD for overlapping partitions;
we rather perform a significantly cheaper scalar addition
operation to sum the elements of the SAD matrix. This can be
done very efficiently using the Avior architecture or any other
architecture which is optimized for 4x4 matrix integer math
to break each 16x16 array into sixteen 4x4 blocks. Any

US 2008/0126278 Al

parallel processing architecture computer or gate array or
ASIC whichis programmed or “hardwired” (netlist structures
device to perform any process within the genus) to perform
any process within the genus of processes described herein
will suffice to practice the invention Likewise, the second and
third elements (shown at 144 in FIG. 9(d)) of the cost vector
139, corresponding to sub-partitions 146 and 147 of FIG.
9(a), contain SAD values as follows:

®

NS

i
.
il

SAD(, j) and

(6)
SAD(, j)

NS

1

w
.

I

corresponding to the SAD cost of the upper and the lower
parts of the 16x8 sub-partitions marked 2 and 3 in FIG. 9(a).
[0149] Each of formulas (4) through (6) calculates the sum
of'the absolute differences in pixel values of the pixels in the
different partitions of the reference macroblock and the actual
macroblock for a reference macroblock whose origin is
pointed to by the current candidate motion vector. The current
candidate motion vector points to the 16x16 macroblock in
the reference frame having its origin at (x,y) as shown in FI1G.
8(d). Equation (4) above calculates the SAD cost for the
16x16 partition 1 shown at 140 in FIG. 9(a) and stores the
result in cost vector 139 at position 1, indicated at 142 in FIG.
9(d). Equation (5) above calculates the cost of the 16x8
partition 2 shown at 147 and puts that cost in the second
position of motion vector 139. Likewise, Equation (6) calcu-
lates the SAD cost of the 16x8 partition 3 at 146 in FIG. 9(a)
and places that at position 3 of cost vector 139.

[0150] This process is repeated for each possible sub-par-
titition option shown in FIGS. 9(b) and 9(c) to fill in all the
cost elements of cost vector 139. As mentioned above, the
computational complexity of the described process is signifi-
cantly lower than that of direct cost computation of all the
possible partitions and sub-partitions. When the cost vector
elements have been completely populated with SAD plus
overhead costs for the various sub-partitions for the first time,
some of its elements are stored as the best-cost vector and will
be used as the lowest cost reference to be updated as new
partitions at new candidate MVD termination pixel positions
are calculated and return lower costs. This updating process
will be explained in detail in a subsequent patent application
and this updating or fine tuning process does not form part of
the claimed invention in this patent application. The next
candidate motion vector terminating at a new pixel (x, y) in
the search area sub-segment is then tried for the next iteration
and a new 16x16 reference macroblock having its origin at
the new (x,y) is imported into the memory of the computation
cluster which is searching for the best cost partition in the
sub-segment of the search area. This process is going on
simultaneously in all sub-segments of the search region, but
in different computational clusters. Each new iteration pro-
duces a new cost vector 139. Each element of each new cost
vector is compared to the corresponding element of the best-
cost vector, and if it is smaller, the element from the cost
vector 139 is substituted into the best-cost vector to update it.
Then the best cost partitioning mode can be found by com-
puting the total partition cost out of the vector elements, as
symbolized by FIG. 11. In other words, FIG. 11 is a diagram

May 29, 2008

which symbolically illustrates the process of picking the low-
est cost macroblock partitioning mode from the best-cost
vector.

[0151] The idea is to calculate all the SAD costs for the
various partitions shown in FIGS. 9(a), 9(b) and 9(c) for the
current destination pixel for the candidate actual motion vec-
tor (terminating at candidate pixel (x, y) in FIG. 8(d), and then
repeat the process for the next iteration of the actual motion
vector (terminating at a different one of the pixels in FIG. §
than the pixel the candidate actual motion vector pointed to in
the earlier iteration). During the coarse estimation search
phase, the candidate termination pixels for the actual motion
vector candidates are spaced apart by two pixels.

[0152] Each candidate actual motion vector has an MVD
overhead cost which is fixed for any given candidate motion
vector termination pixel in FIG. 5. To account for this over-
head, i.e., the term A* bits(MVD) of Equation (2) above, the
cost of each part of the partition is incremented by

overhead=Mbits(MVDx)+bits(MVDy)) (7

where bits(x) and bits(y) denote the number of bits required to
encode the motion vector difference MVDx and MVDy
respectively, and A is the rate-distortion Lagrange multiplier
set by the bit rate controller. The bit coding overhead is known
in advance and can be accessed by a table lookup, but in the
preferred embodiment, it is pre-fetched and stored in the
memory of the computational cluster doing the search to save
the time of a table lookup. This overhead cost is added simul-
taneously to all the elements of the SAD cost vector, resulting
in the current total cost vector cost shown at 139 in FIG. 9(d).
The first element of the cost vector 139, denoted s, and shown
at142, expresses the SAD+MVD cost of the no sub-partition
16x16 macroblock partition when the motion vector termi-
nates at position (x,y) in FI1G. 8(d). Likewise, the second and
third elements of the cost vector 139, shown at 144, expressed
as Equations (5) and (6) above, is summed, and that is the total
cost (after MVD overhead is added for two candidate actual
motion vectors, each terminating at (X, y) in FIG. 9(a)) if the
two 16x8 sub-partitions marked 2 and 3 in FIG. 9(a) were to
be used.

[0153] This same process is repeated for all the other can-
didate sub-partitions shown in FIGS. 9(b) and 9(¢), with each
candidate sub-partition marked with the number of the ele-
ment in the cost vector where the cost of that candidate
sub-partition will be recorded (plus its MVD overhead). For
example, the four candidate sub-partitions shown at 182 in
FIG. 9(b) and marked 11, 12, 13 and 14 will have their SADs
calculated, and to each SAD will be added, respectively, the
overhead for the MVD of one of four candidate actual motion
vectors for sub-partitions 11, 12, 13 and 14, each terminating
at (x,y). The resulting costs for each of the sub-partitions 11,
12, 13 and 14 will be recorded at positions 11 through 14 of
the cost vector 139, illustrated generally at 150.

[0154] The values of the MVD overhead terms bits(x) and
bits(y) are tabulated in tables. Since x and y are incremented
sequentially during the search as each new 16x16 macrob-
lock from the reference frame pointed to by the new candidate
actual motion vector is tried, the values of the overhead terms
bits(x) and bits(y) can be pre-fetched from the table and
stored in the cluster memory in the order in which they will be
needed (the order in which new candidate actual motion
vectors are tried). This avoids the need for a time-consuming
and therefore costly table lookup operation.

US 2008/0126278 Al

[0155] The coarse search algorithm holds three 1x41 vec-
tors: a best-cost vector(the best partial cost for each partition
or sub-partition found so far) each initialized by 65535, and
best-MVD and best-MVD vectors holding the actual motion
vector differences (the differences between x and y and the
termination pixel coordinates x,, y,, of the predicted motion
vector) corresponding to the lowest cost partition or sub-
partition found so far.

[0156] For every new candidate motion vector terminating
at a new (X, y), the cost vector 139 is computed and is com-
pared on and element-by-element basis to the best-cost vec-
tor. As the result, a 1x41 mask vector is created, in which the
bit or bits corresponding to the candidate partition where
cost<best-cost are set to one, and the bits corresponding to
cost=best-cost are set to zero. In other words, the 1s in the
mask mark the locations in the cost vector 139 where the
calculated SAD and MVD overhead cost are less than the
previously found best cost for some other partition or sub-
partition. The best-cost vector is then updated to the best cost
found so far by updating the best-cost vector by combining
cost and best-cost using this mask.

best-cost=(cost AND mask) OR (best-cost AND NOT
mask) (®)

In other words, the best-cost vector is created by substituting
into the cost vector 139 in FIG. 9(d) the lowest cost partitions
at the appropriate positions of the cost vector. In this way, the
value of best-cost can only decrease if a new candidate par-
tition has a lower cost or stay the same if the new candidate
partition has a higher cost than a partition whose cost was
previously calculated and is the current lowest cost.

[0157] In the same way, the best motion vectors are
updated:

best-MVD=(MVD AND mask) OR (best-MVD AND

NOT mask) ()]

where MVD is a 1x41 vector of replicated values of x or y.
[0158] The update procedure is depicted in greater detail in
FIG. 10. Adder 150 represents the process step of summing
the calculated 41 partial SAD cost values 152 on an element-
by-element basis. To this sum is added the overhead bits 154
needed to transmit the MVD. The SAD values are the SAD
calculated for all macroblock partitions and sub-partitions for
the candidate MVD (%, y). The pre-fetched MVD overhead
are the bits to express the MVD x and y coordinates at the
MVD’s termination point (the termination point (X, y) of the
actual candidate motion vector currently being evaluated).
The MVD has its origin at the termination point of the esti-
mated motion vector. The result is the partial cost 139 for the
macroblock of sub-partition thereof being evaluated.

[0159] The “less than” operator 158 represents the process
of comparing the cost 139 of the partition under evaluation to
the best-cost vector 139' (the cost vector 139 after updating
with the best costs found so far previously found for other
partitions) to set or clear the bits of mask 162. If costrecorded
in an element of cost vector 139 for the candidate partition is
less than the corresponding element in the best-cost vector
139, then the mask bit in the mask vector 160 for the 1x41
vector elements representing the candidate partition is set to
one. This comparison and bit setting process happens for
every element of the cost vector 139.

[0160] The mask vector 160 is then used to guide combi-
nation of the best-cost vector 139" and the cost vector 139 into
an updated best-cost vector 139", as symbolized by summer
164 and gating operators 166 and 168 which receive guidance

May 29, 2008

from the mask vector 160 to act as gates in deciding whether
the contents of the element of cost vector 139 or the corre-
sponding element of the best-cost vector 139' get substituted
into the best-cost vector 139". This substitution or filling pro-
cess goes on an element-by-element basis of the best-cost
vector 139' until all elements have been updated or left alone.
SIMD architectures like the Avior are capable of performing
such element-by-clement operations very efficiently.

[0161] A similar process is followed to create the best
MVD vector 170 from the current MVD vector 174 (repre-
senting the cost to express the current candidate MVD termi-
nation point (X, y)) and the vector 172 representing the least
cost MVD found so far. Summer 176 fills vector 170 using
gating operators 178 and 180 under the control of the mask
vector 160.

Best Macroblock Partition Selection

[0162] FIG. 11 is a diagram which symbolically illustrates
the process of picking the lowest cost macroblock sub-parti-
tion for each of the four quadrants of a 16x16 reference tile

from the best-cost vector. After all candidate motion vectors
in the search sub-region are processed, the best-cost vector
will contain the lowest cost element found for each partition
and sub-partition possibility of each quadrant of the 16x16

reference tile. To pick the best sub-partition for each quad-
rant, the total cost of each element is calculated for sub-
partitions comprised of several elements. Note that the best-
cost vector 239 in FIG. 11 is paired with best-MVD, and
best-MVDy vectors so each lowest cost element in the best-
cost vector may be with reference to a different MVD. Thus
for example, the lowest cost partition of the upper right quad-
rant may be comprised of elements 11, 12, 13 and 14 from
four different 16x16 tiles, each having their own motion

vector. That is the import of the teachings of FIG. 10. Thus, to
encode the upper right quadrant of the original 16x16 mac-

roblock using the lowest cost elements 11, 12, 13 and 14 may
require four different MVDs.

[0163] The computation of the total cost of the macroblock
sub-partition consists of summing the partial costs costs of all
of'its elements. FIG. 11 schematically illustrates this process
of computing the total cost of each macroblock partition
candidate’s elements from the best-cost vector and picking
the lowest cost one. For example, the total cost of the 16x16

partition 140 in FIG. 8(a) consisting of a single part is simply
best-cost(1), meaning the entry in the first location 141 in
FIG. 8(d) of the best-cost vector 139.

[0164] Likewise, the total cost of the two 16x8 partitions

146 and 147 in FIG. 8(a) is the sum of best-cost(2)+best-cost

(3) shown at 144 in FIG. 8(d). The total cost of the two 8x16

partitions 149 and 151 is best-cost(4)+best-cost(5) shown at

153 in FIG. 8(d).

[0165] Inorder to find the lowest cost 88 partition (quad-

rant) and the corresponding total cost, we first calculate the
total costs of each of the four sub-partitions of the four 8x8

blocks. In other words, for the 8x8 partition representing the

upper left quadrant (176 in F1G. 9(b)), there are four possible
sub-partitions: 8x8 shown at 176 (best-cost vector element

6); two 8x4 sub-partitions shown at 178 (best-cost vector

elements 7 and 8); two 4x8 sub-partitions shown at 180

(best-cost vector elements 9 and 10); and four 4x4 sub-

partitions shown at 182 (best-cost vector-elements 11, 12,13
and 14). The cost of the sub-partition 176 is recorded at
best-cost(6). The cost of the sub-partition 178 is best-cost
(7)+best-cost(8). The cost of sub-partition 180 is best-cost

US 2008/0126278 Al

(9)+best-cost(10). The cost of sub-partition 182 is best-cost
(11)+best-cost(12)+best-cost(13)+best-cost(14). These
four costs are recorded in best-cost vector 139 at 186, 188,
190 and 150, respectively.

[0166] The sub-partition having the lowest cost for the
upper left quadrant shown at 176 can then be selected. In FI1G.
11, this is symbolized by placing each of the four costs for the
sub-partition options shown at 176, 178, 180 and 182 for the
upper left quadrant into one of the elements of a 4x1 vector
230. The cost of 8x8 sub-partition 6 shown at 176 is stored in
element 232 of vector 230. The cost of the two 8x4 sub-
partitions 7 and 8 are summed and stored in element 234. The
cost of the two 4x8 sub-partitions 9 and 10 are summed and
stored in element 236. The cost of the four 4x4 sub-partitions
11,12,13 and 14 are summed and stored in element 238. The
lowest total cost sub-partition for the upper left quadrant is
then selected, as symbolized by selector switch 240 selecting
the cost element 238 as the lowest cost.

[0167] This process of finding the lowest cost sub-partition
of each of the upper left quadrant 176, upper right quadrant
192, lower left quadrant 194 and lower right quadrant 196 is
performed simultaneously for each of the four 8x8 blocks or
quadrants. This can be done in one processor using 4x4
matrix operations, and this is the preferred embodiment since
the other clusters are busy doing the search and select process
in their own sub-regions. In other embodiments, the creation
of'the 4x1 vectors storing the total costs of the four possible
sub-partitions of each quadrant and selection of the lowest
cost can be done in parallel in multiple processing units in
some embodiments. For example, while one cluster is storing
the cost for partition 6 in element 232 and summing the cost
elements of the other sub-partitions, and storing them in
vector 230 and picking the lowest cost element, another clus-
ter is doing the same sort of thing for a 4x1 vector 242 for the
upper right quadrant. In that cluster, the cost of the 8x8
sub-partition 15 for the upper right quadrant 192 will be
stored in element 244, and the costs of the two 8x4 sub-
partitions 16 and 17 will be summed and stored in element.
Likewise, the costs of sub-partitions 18 and 19 will be
summed and stored in element 248, and the costs of 4x4
sub-partitions 20, 21, 22 and 23 will be summed and stored in
element 250. The lowest cost element will then be selected, as
symbolized by switch element 252 selecting the cost element
250 as the lowest cost.

[0168] Likewise, in such an embodiment, another compu-
tational cluster will do this same process for the lower left
quadrant 194 and store the four different sub-partition costs in
the elements of 4x1 vector 254. In this quadrant 194, the
lowest cost sub-partition option is the 8x8 sub-partition 24
stored in element 258 and selected by switch 256.

[0169] For the lower right quadrant 196, the costs of the
sub-partition options are stored in 4x1 vector 260 and the
lowest cost sub-partition option is the sum of elements 34 and
35 stored in element 262 and selected by switch 264.

[0170] The switches in FIG. 11 are metaphors only for a
software process which creates the 4x1 vectors, populates
them with the total costs of the four possible sub-partitions of
each quadrant and then scans the four total costs of the four
sub-partition options for the quadrant and picks the lowest
cost from each of 4x1 vectors and stores it in one of the
elements of another 4x1 vector 266. These lowest total costs
for the sub-partitions of each quadrant are then summed, and
the sum is stored in element 274 of a another 4x1 vector 272.
The first three elements of vector 272 store the total costs of

May 29, 2008

the sub-partition 1 (140 in FIG. 9(a)), sub-partition 2 plus
sub-partition 3 (shown at 146 and 147 of FIG. 9(a), and
sub-partition 4 plus sub-partition 5 (shown at 149 and 151 of
FIG. 9(a)). Basically, vector 272 allows comparison of the
cost of the three different sub-partitions shown in FIG. 9(a) to
the lowest total cost for the lowest cost sub-partitions of the
four quadrants.

[0171] Switch 276 symbolizes the selection of the final
lowest cost for the overall 16x16 original macroblock 200 in
FIG. 12, and the partition or sub-partitions that produced it.
The result of the process symbolized by FIG. 11 is the lowest
cost partition or sub-partition of the 16x16 reference mac-
roblock found after considering every candidate origin pixel
and every one of the possible partitions and sub-partitions
shown in FIGS. 9(a), 9(b) and 9(¢). The resulting best cost
vector 239 of FIG. 11 has a separate MVD motion vector for
each of the elements of any of the sub partition. In other
words, since the best-cost vector records the lowest total cost
for each element of each sub-partition, the final cost and
partition output by switch 276 could be comprised of ele-
ments from different reference macroblocks within the search
region. For example, referring to FIGS. 9,11 and 5, the lowest
cost sub-partition was comprised of elements 20, 21, 22 and
23 shown in FIG. 9(b) for the upper right quadrant. Each of
elements 20, 21, 22 and 23 in the best-cost vector was the
lowest cost one of that particular element found after consid-
ering that particular sub-partition at each of the candidate
pixels illustrated in FIG. 5 for the search sub-region 90. Thus,
element 20 could have come from the reference macroblock
with its origin at pixel 126, element 21 could have come from
the reference macroblock with its origin at pixel 128, element
22 could have come from the reference macroblock with its
origin at pixel 325 and element 23 could have come from the
reference macroblock with its origin at pixel 327. Thus, this
lowest cost sub-partition would have recorded for it four
different MVD motion vectors pointing at pixels 126, 128,
325 and 327.

[0172] An example of what can result from the coarse
search is illustrated in FIG. 15. FIG. 15 shows a lowest cost
partition and sub-partition selection where each of the lowest
cost elements of a sub-partition has a difterent MVD motion
vector. The sub-partition type illustrated at 178 in FIG. 9(b)
turned out to be the lowest total cost for the upper left quad-
rant, but its component elements 2 and 3 each came from
16x16 reference macroblocks having different origins. The
origin for element 2 is at pixel 126 which is recorded in the
best-MVD_and best-MVD,, vectors by and MVD 331 which,
when vector added to the estimated motion vector 329 results
in a resultant final motion vector 333 which points to origin
pixel 126. Similarly, all the other lowest cost elements come
from different reference macroblocks and have their origins
pointed to by the resultant motion vectors shown.

[0173] The software that performs the process of FIG. 11
for each macroblock and each reference block in the search
segment keeps track of which sub-partition option produced
which costs by the best-MVD, and best-MVD,, vectors.

[0174] The search for the lowest cost sub-partition in each
of the four quadrants is data independent (the data in each
quadrant is not dependent upon the data in any of the other
quadrants). Therefore, the search for the lowest cost sub-

US 2008/0126278 Al

partition can proceed independently for each of the four quad-
rants in four separate computational clusters in some embodi-
ments.

Summary of Parallel Motion Estimation Process Integer
Resolution Search

[0175] Referring to FIGS. 13(a) and 13(b) which comprise
a flowchart of the parallel processing version of the coarse
motion estimation process to find the lowest cost partition or
sub-partition of the reference macroblock to encode the mac-
roblock to be encoded. Step 300 represents the process of
dividing the search region 122 in FIG. 8 up into multiple
search sub-regions, preferably the same number of sub-re-
gions as there are computation nodes in the parallel process-
ing architecture to be used to carry out the calculations
described. In step 302, each sub-region is assigned to a com-
putational node. Step 304 represents the beginning of a do
loop which is performed in each computational node in par-
allel on different reference macroblocks within their sub-
regions. In step 304, a loop pointer is initialized to point to the
first of a number of candidate pixels for the MVDs in the
coarse search mode. These pixels are separated by two pixels,
and pixels 126 and 128 in FI1G. 5 are examples of these pixels
for the first search sub-region. A 1x41 best-cost vector is then
initialized to some high value which will be higher than any
partition or sub-partition cost. Likewise, 1x41 MVD, and
MVD vectors are also initialized. When the search process is
complvete, the best-cost vector will contain the best total SAD
plus overhead costs for each partition and sub-partition pos-
sibility of all the possibilities illustrated in FIGS. 9(a), 9(b)
and 9(c), and the MVD, and MVD), vectors will contain the x
and y coordinates of the MVDs pointing to the origins of the
reference macroblocks which contained each partitition or
sub-partition which is stored as the best cost in particular
positions of the best-cost vector. For every element or ele-
ments of the best-cost vector which record the costs of a
particular partition or sub-partition, there are corresponding
elements in the MVD, and MVD),, vectors will contain the x
and y coordinates of the MVDs pointing to the origins of the
reference macroblocks which contained each partitition or
sub-partition having the lowest cost.

[0176] Step 306 represents the step of calculating the SAD
cost plus the MVD overhead cost for each partition and sub-
partition possibility shown in FIGS. 9(a), 9(b) and 9(c), and
recording these costs in a cost vector 139 shown in FIG. 9(d).
This is done as previously described.

[0177] Step 308 represents the process of comparing the
total cost (SAD+MVD overhead) of each partition and sub-
partition possibility to the best cost found so far for that same
partition or sub-partition, as recorded in the best-cost vector.
In other words, after the cost vector 139 has had all its ele-
ments calculated, the SAD cost plus the MVD overhead cost
for each element of a partition or sub-partition are totaled and
the total cost of each partition or sub-partition element is
compared to the best cost found so far for the corresponding
partition or sub-partition element, as recorded in the best-cost
vector. For purposes of understanding the terminology, an
“element” of a sub-partition means one of the component
blocks of pixels that go into the makeup of a full 16x16 tile
from the search region. For example, the 16x8 sub-partition
shown in FIG. 9(a) has two elements labeled 2 and 3 shown at
147 and 146, respectively. Likewise, the 8x8 sub-partition
with an origin at 182 has four elements called 11, 12, 13 and
14.

May 29, 2008

[0178] Ifthetotal costofanelement of a sub-partitioninthe
cost vector 139 is found to be lower than the best cost found
so far for that same element of the same sub-partition (step
310), then that total cost from the cost vector 139 is substi-
tuted into the corresponding position of the best-cost vector.
This is best understood by reference to FIG. 14 and its
description below. Specifically, at origin (0,0), sub-partitions
2 and 3 shown at 146 and 147 of FIG. 14(c) are what will be
referred to herein as elements of this sub-partition. Each of
these elements has a total cost comprised of an SAD cost and
an MVD overhead cost. In the case of origin (0,0), the total
cost of element 147 is 410 and the total cost for element 146
is 610. However, at origin (1,0), the total cost of element 147
is 312 and the total cost of element 146 is 812 as shown at FIG.
14(%). Since 312 is less than 410, 312 gets substituted into
element 320 of the best-cost vector shown at FIG. 14(o) in the
state it has after completion of the calculations of cost for all
the various partition and sub-partition possibilities at origin
(1,0). Since the cost (812) of element 146 at (1,0) is more than
the cost (610) of element 146 at (0,0), no substitution is made
into the best-cost vector at the element 321 corresponding to
sub-partition 3 shown at 146.

[0179] Ifalower cost is found and a substitution is made,
the x and y coordinates of the destination pixel (origin of the
reference macroblock containing the lower cost partition)
pointed to by the MVD vector is recorded in the best-MVD,
and best-MVD), vectors at the elements corresponding to the
partition or sub-partition just substituted. In the example just
given, the x coordinate of the element 147 (sub-partition 2) at
origin (1,0) is 1 so since this is the lowest cost for this sub-
partition element up to this point, 1 will be substituted into
element 323 of the best-MVD, vector shown at FIG. 14(p)
and the best-MVD,, vector shown in FIG. 14(g) is left alone.
Compare these best-MVD, and best-MVD,, vectors in FIGS.
14(p) and 14(g) to the state these vectors were in (as shown in
FIGS. 14(e) and 14(f)) before the (1,0) reference macroblock
was processed.

[0180] Ifstep 310 found that no cost in cost vector 139 was
lower than the best cost found so far for that same partition or
sub-partition, step 314 is performed to increment the x and y
coordinates of the origin of the reference macroblock to the
next pixel (two pixels away) in the sub-region in step 314, and
then step 316 is performed to determine if the last pixel in the
sub-region has had the reference macroblock with its origin
there processed. If so, processing proceeds to step 318 where
the lowest cost partition or sub-partition is selected using the
process symbolized by FIG. 11. If not all the pixels have been
processed yet, processing proceeds to step 306 and the pro-
cess is started over again at the new (X, y) origin reference
macroblock.

[0181] FIG. 14, comprised of FIGS. 14(a) through 14(s), is
adiagram illustrating how the process of calculating SAD and
overhead costs for various partition and sub-partition combi-
nations works and how the mask vector is generated and the
best-cost vector is updated using the mask vector. FIG. 14(a)
illustrates three candidate “destination pixels” for candidate
MVDs which will be origins in the search area for 16x16

macroblock candidates. The first candidate 16x16 pixel

array having its origin at (0,0) is shown in FIG. 14(b). This
partition corresponds to partition 1 shown at 140 in FIG. 9(a).
Its SAD cost is calculated at 1000 plus overhead of 10 for the
MVD. Partitions 2 and 3 at origin (0,0) in F1G. 9(a) are shown
at FIG. 14(c) and have SAD costs of 400 and 600, respec-
tively, and each has an overhead of 10. Since candidate pixel

US 2008/0126278 Al

(0,0) is the first candidate, the best-cost vector will just be set
to the costs of these partitions 1, 2, 3 (and all the other
sub-partition combinations shown in FIGS. 9(a) through 9(c)
because the best-cost vector was previously initialized in step
304 to a very high value. The best-cost vector set to the costs
of partitions 1, 2 and 3 is shown in FIG. 14(d). Since the best
cost partitions found so far are all in the (0,0) 16x16 array, the
elements of the MVD, and MVD,, vectors corresponding to
the x and y coordinates of partitions 1, 2 and 3 are all set to 0,
as shown at FIGS. 14(e) and 14(f).

[0182] Now, assuming all the possible sub-partitions costs
have been calculated for the (0,0) pixel candidate, the process
starts again for the (1,0) pixel in FIG. 14(a). The (1,0) 16x16
array’s partition 1 SAD cost is 1100 plus an overhead of 12 as
shown at FIG. 14(j). The SAD+overhead costs of sub-parti-
tions 2 and 3 are shown at FIG. 14(k). These total costs are
entered into a current-cost vector shown at FIG. 14(g) whose
elements store the total SAD plus overhead costs of all the
partition and sub-partition combinations at origin (1,0). The
current MVD, and MVD, vectors have their elements set as
shown in FIGS. 14(%) and (¥) with the x coordinates all set to
1 and the y coordinates all set to 0.

[0183] Now the updating process of step 312 begins to
update the elements of the best-cost vector to the lowest costs
found so far. A comparison is made on an element-by-element
basis between the current-cost vector of FIG. 14(g) and the
best-cost vector of FIG. 14(d), and the mask vector of FIG.
14(/) is formed. At each element where the current-cost is
lower than the best-cost, a logic 1 is set. All elements are set
to logic 0. The elements in the current-cost vector which are
lower than the corresponding elements in the best-cost vector
are substituted into the best-cost vector, and the MVD, and
MVDy vectors are updated with the x and y coordinates of the
origin of the current 16x16 tile at locations corresponding to
the sub-partition with the lower cost. In the example of FIG.
14, the total cost 312 of sub-partition 2 shown at 147 in FIG.
14(%) is lower than the total cost recorded in element 320 of
the best-cost vector and the mask element corresponding to
this element is 1 and all other mask elements are set to 0.
Therefore, 312 total cost from element 322 of the current-cost
vector of FIG. 14(g) is substituted into element 320 of the new
best-cost vector shown at FIG. 14(0), and the best-MVD, and
MVD, vectors shown at FIG. 14(p) and 14(g) are updated to
the state shown there from the state shown in FIGS. 14(e) and
14(f). This update shows that the origin is(1,0) of the 16x16
macroblock in the search sub-region from which the total cost
in element 320 came from. If sub-partition 2 at 147 in FIG.
14(%) from the (1,0) tile and sub-partition 3 at 146 in FIG.
14(c) were the lowest cost of all the sub-partitions for all
candidate tiles in the complete set of sub-regions after all
candidate MVDs had been searched, then encoding of the
original 16x16 macroblock 200 in FIG. 12 would be using
sub-partitions 2 and 3 with MVDs pointing to (0,0) and (1,0),
respectively.

[0184] Although the invention has been described in terms
of the preferred and alternative embodiments disclosed
herein, those skilled in the art will appreciate other alternative
embodiments which are within the genus of the invention
defined in the summary and which are not specifically
detailed herein but which share common characteristics that
define the genus which will be apparent to those skilled in the
art. All such embodiments are intended to be included within
the scope of the claims appended hereto.

May 29, 2008

What is claimed:

1. A motion estimation process comprising:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original macroblock and a reference macroblock whose
origin is pointed by the motion vector into non-overlap-
ping tiles, and computing a matrix of differential costs
between the said tiles of the original macroblock and the
corresponding tiles of the reference macroblock;

C) for each computed differential cost matrix, computing a
partial cost vector whose elements are the partial differ-
ential costs of all the macroblock partitions and sub-
partitions;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y-components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitioning and sub-partitioning modes;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVDs that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational units,
selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVDs that yield the
lowest total cost.

2. A process as claimed in claim 1, Wherein the tile size is
set to be the maximum size contained in all macroblock
partitions and sub-partitions.

3. Aprocess as claimed in 1, wherein the differential cost is
computed as the sum of absolute differences (SAD).

4. A process as claimed in claim 1, wherein the differential
cost is computed as the sum of squared differences SSD.

5. A process as claimed in claim 1, wherein the allowed
macroblock partitioning modes are 16x16, 16x8, 8x16 and
8x8.

6. A process as claimed in claim 5, wherein the tile size is
4x4.

7. A process as claimed in 5, wherein the tile size is 8x8.

8. A process as claimed in claim 5, wherein each 8x8
macroblock partition can be subsequently sub-partitioned
into 8x8, 8x4, 4x8 or 4x4 sub-partitions.

9. A process as claimed in claim 8, wherein the tile size is
4x4.

10. An apparatus having a plurality of computational units,
said apparatus programmed or hard wired to perform the
following process:

US 2008/0126278 Al

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original macroblock and a reference macroblock whose
origin is pointed by the motion vector into non-overlap-
ping tiles, and computing a matrix of differential costs
between the said tiles of the original macroblock and the
corresponding tiles of the reference macroblock;

C) for each computed differential cost matrix, computing a
partial cost vector whose elements are the partial differ-
ential costs of all the macroblock partitions and sub-
partitions;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so farand
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y-components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitioning and sub-partitioning modes;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVDs that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational units,
selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVDs that yield the
lowest total cost.

and wherein said computational units are dedicated hard-
ware units.

11. An apparatus as claimed in claim 10, wherein said
programming or hard wiring controls said computer to divide
said reference and original macroblocks up into tiles where
the tile size is set to be the maximum size contained in all
macroblock partitions and sub-partitions.

12. An apparatus as claimed in claim 10, wherein said
programming or hard wiring controls said computer to cal-
culate said differential cost by computing the sum of absolute
differences (SAD).

13. An apparatus as claimed in claim 10, wherein said
programming or hard wiring controls said computer to cal-
culate said differential cost by computing the sum of squared
differences (SSD).

14. An apparatus as claimed in claim 10, wherein said
programming or hard wiring controls said computer to parti-
tion and sub-partition said reference macroblock using only
allowed partitions or sub-partitions where the allowed mac-
roblock partitioning modes are 16x16, 16x8, 8x16 and 8x8.

15. An apparatus as claimed in claim 14, wherein said
programming or hard wiring controls said computer to divide
said original and reference macroblocks into tiles of 4x4 size.

17

May 29, 2008

16. An apparatus as claimed in claim 14, wherein said
programming or hard wiring controls said computer to divide
said original and reference macroblocks into tiles of 8x8 size.

17. An apparatus as claimed in claim 1, wherein said pro-
gramming or hard wiring controls said computer to divide
said reference macroblocks into 16x16 or 8x8 partitions and
wherein each 8x8 macroblock partition can be subsequently
sub-partitioned into 8x8, 8x4, 4x8 or 4x4 sub-partitions.

18. An apparatus as claimed in claim 1, wherein said pro-
gramming or hard wiring controls said computer to divide
said reference macroblocks into 16x16 or 8x8 partitions and
wherein each 8x8 macroblock partition can be subsequently
sub-partitioned into 8x8, 8x4, 4x8 or 4x4 sub-partitions, and
wherein the tile size is 4x4.

19. An apparatus having a plurality of computational units,
said apparatus programmed to perform the following process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original macroblock and a reference macroblock whose
origin is pointed by the motion vector into non-overlap-
ping tiles, and computing a matrix of differential costs
between the said tiles of the original macroblock and the
corresponding tiles of the reference macroblock;

C) for each computed differential cost matrix, computing a
partial cost vector whose elements are the partial differ-
ential costs of all the macroblock partitions and sub-
partitions;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitioning and sub-partitioning modes;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVDs that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational units,
selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVDs that yield the
lowest total cost;

and wherein said computational units are programmable
processors capable of performing operations on 4x4
matrix data types.

20. A computer-readable medium having stored thereon a
set of computer-readable instructions which, when executed
by a computer having a plurality of computational units cause
said computer to carry out the following process:

US 2008/0126278 Al

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original macroblock and a reference macroblock whose
origin is pointed by the motion vector into non-overlap-
ping tiles, and computing a matrix of differential costs
between the said tiles of the original macroblock and the
corresponding tiles of the reference macroblock;

C) for each computed differential cost matrix, computing a
partial cost vector whose elements are the partial differ-
ential costs of all the macroblock partitions and sub-
partitions;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so farand
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector,

E) for each of the updated partial costs, recording the x- and
y- components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitioning and sub-partitioning modes;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVDs that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational units,
selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVDs that yield the
lowest total cost.

21. A motion estimation process comprising:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original 16x16 macroblock and a 16x16 reference mac-
roblock whose origin is pointed to by the candidate
motion vector into non-overlapping 4x4 tiles, and com-
puting a Sum of Absolute Difference (SAD) cost for
each said 4x4 tiles between said tiles of the original
macroblock and the corresponding tiles of the reference
macroblock;

C) for each computed 4x4 SAD matrix, computing a partial
cost vector whose elements are the partial SAD costs of
all the macroblock partitions and sub-partitions speci-
fied in the H.264 specification as it existed at the time of
filing of this patent application with the addition to each
said element of the estimated overhead of encoding the
current candidate MVD;

18

May 29, 2008

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the allowed
macroblock partitioning and sub-partitioning modes
specified in the H.264 specification as it existed at the
time of filing of this patent application;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVD(s) that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational unit,
selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVD(s) that yield the
lowest total cost.

22. An apparatus having a plurality of computational units,

said apparatus programmed or hard wired to perform the
following process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original 16x16 macroblock and a 16x16 reference mac-
roblock whose origin is pointed to by the candidate
motion vector into non-overlapping 4x4 tiles, and com-
puting a Sum of Absolute Difference (SAD) cost for
each said 4x4 tiles between said tiles of the original
macroblock and the corresponding tiles of the reference
macroblock;

C) for each computed 4x4 SAD matrix, computing a partial
cost vector whose elements are the partial SAD costs of
all the macroblock partitions and sub-partitions speci-
fied in the H.264 specification as it existed at the time of
filing of this patent application with the addition to each
said element of the estimated overhead of encoding the
current candidate MVD;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing

US 2008/0126278 Al

the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the allowed
macroblock partitioning and sub-partitioning modes
specified in the H.264 specification as it existed at the
time of filing of this patent application;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVD(s) that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational unit,
selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVD(s) that yield the
lowest total cost;

and wherein said computational units are dedicated hard-
ware units.

23. An apparatus having a plurality of computational units,

said apparatus programmed or hardwired to perform the fol-
lowing process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
motion vectors in the search sub-region, dividing the
original 16x16 macroblock and a 16x16 reference mac-
roblock whose origin is pointed to by the candidate
motion vector into non-overlapping 4x4 tiles, and com-
puting a Sum of Absolute Difference (SAD) cost for
each said 4x4 tiles between said tiles of the original
macroblock and the corresponding tiles of the reference
macroblock;

C) for each computed 4x4 SAD matrix, computing a partial
cost vector whose elements are the partial SAD costs of
all the macroblock partitions and sub-partitions speci-
fied in the H.264 specification as it existed at the time of
filing of this patent application with the addition to each
said element of the estimated overhead of encoding the
current candidate MVD;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so farand
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the current candidate MVD as the ones
that realize the lowest partial costs for the corresponding
partitions and sub-partitions

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the allowed
macroblock partitioning and sub-partitioning modes
specified in the H.264 specification as it existed at the
time of filing of this patent application;

(3) in each computation unit, selecting the macroblock
partitioning or sub-partitioning mode and the corre-
sponding MVD(s) that yield the lowest total cost;

H) among the macroblock partitioning or sub-partitioning
modes selected in step G by all computational unit,

19

May 29, 2008

selecting the macroblock partitioning or sub-partition-
ing mode and the corresponding MVD(s) that yield the
lowest total cost.

and wherein said computational units are programmable
processors (clusters) capable of performing SIMD 4x4
operations.

24. The apparatus of claim 23, wherein the number of

computational units is eight.

25. The apparatus of claim 23 wherein each computational
unit is programmable.

26. A computer-readable medium having stored thereon
computer-readable instructions which when executed by a
parallel processing architecture computer cause said com-
puter to carry out the following motion estimation process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
MVD motion vectors in the search sub-region, comput-
ing a 4x4 matrix of SADs between the 16 corresponding
4x4 tiles of the original macroblock and a reference
macroblock whose origin is pointed by the MVD motion
vector;

C) for each computed 4x4 SAD matrix, computing a partial
cost vector whose elements are the partial SAD costs of
all the macroblock partitions and sub-partitions speci-
fied in the H.264 specification as it existed at the time of
filing of this patent application with the addition to each
said element of the estimated overhead of encoding the
corresponding MVD motion vector for the partition or
sub-partition represented by said element;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the origin of the partition or sub-
partition which resulted in the lower cost which was
substituted into said best-cost vector and to which said
MVD motion vector pointsas the one that realize the
lowest partial costs;

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitions and sub-partitions specified in the H.264
specification as it existed at the time of filing of this
patent application;

(3) in each computation unit, selecting the macroblock
partition or sub-partition and the corresponding MVD
motion vectors that yield the lowest total cost;

H) among the macroblock partition or sub-partitions
selected in step G by all computational units, selecting
the macroblock partition or sub-partition and the corre-
sponding MVD motion vectors that yield the lowest total
cost.

27. A parallel processing architecture computer having a

plurality of computational units each capable of performing

US 2008/0126278 Al
20

4x4 matrix operations on integer data, said computer pro-
grammed with a program which causes said computational
units to carry out the following motion estimation process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units units of
a parallel processing architecture computer having a
plurality of computation units;

B) in each computational unit, for each of the candidate
MVD motion vectors in the search sub-region, comput-
ing a 4x4 matrix of SADs between the 16 corresponding
4x4 tiles of the original macroblock and a reference
macroblock whose origin is pointed by the MVD motion
vector;

C) for each computed 4x4 SAD matrix, computing a partial
cost vector whose elements are the partial SAD costs of
all the macroblock partitions and sub-partitions;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so farand
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the origin of the partition or sub-
partition which resulted in the lower cost which was
substituted into said best-cost vector and to which said
MVD motion vector points as the one that realizes the
lowest partial costs;

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitions and sub-partitions;

(3) in each computation unit, selecting the macroblock
partition or sub-partition and the corresponding MVD
motion vectors that yield the lowest total cost;

H) among the macroblock partition or sub-partitions
selected in step G by all computational units, selecting
the macroblock partition or sub-partition and the corre-
sponding MVD motion vectors that yield the lowest total
cost.

28. A motion estimation process comprising:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units units of
a parallel processing architecture computer having a
plurality of computation units;

B) in each computational unit, for each of the candidate
MVD motion vectors in the search sub-region, comput-
ing the absolute luminance difference at each pixel loca-
tion of the original macroblock and a reference macrob-
lock whose origin is pointed by the MVD motion vector;

C) for each computed set of absolute differences, comput-
ing a partial cost vector whose elements are the partial
SAD costs of all the macroblock partitions and sub-
partitions by summing the absolute differences at each
pixel location of all the pixels within each element of the
partition or sub-partition and recording the sum of the
absolute differences within each element of a partition
or sub-partition in a corresponding element of said par-
tial cost vector, and adding to each element the estimated

May 29, 2008

overhead of encoding the corresponding MVD motion
vector for the partition or sub-partition represented by
said element;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the origin of the partition or sub-
partition which resulted in the lower cost which was
substituted into said best-cost vector and to which said
MVD motion vector points as the one that realize the
lowest partial costs;

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitions and sub-partitions;

(3) in each computation unit, selecting the macroblock
partition or sub-partition and the corresponding MVD
motion vectors that yield the lowest total cost;

H) among the macroblock partition or sub-partitions
selected in step G by all computational units, selecting
the macroblock partition or sub-partition(s) and the cor-
responding MVD motion vectors that yield the lowest
total cost.

29. A computer-readable medium having stored thereon

computer-readable instructions which, when executed by a
parallel processing computer having multiple computation
units, cause said computer to perform the following motion
estimation process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
MVD motion vectors in the search sub-region, comput-
ing the absolute luminance difference at each pixel loca-
tion of the original macroblock and a reference macrob-
lock whose origin is pointed by the MVD motion vector;

C) for each computed set of absolute differences, comput-
ing a partial cost vector whose elements are the partial
SAD costs of all the macroblock partitions and sub-
partitions application by summing the absolute differ-
ences at each pixel location of all the pixels within each
element of the partition or sub-partition and recording
the sum of the absolute differences within each element
of a partition or sub-partition in a corresponding element
of said partial cost vector, and adding to each element the
estimated overhead of encoding the corresponding
MVD motion vector for the partition or sub-partition
represented by said element;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so far and
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

US 2008/0126278 Al

E) for each of the updated partial costs, recording the x- and
y- components of the origin of the partition or sub-
partition which resulted in the lower cost which was
substituted into said best-cost vector and to which said
MVD motion vector points as the one that realize the
lowest partial costs;

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total
costs whose elements correspond to each of the macrob-
lock partitions and sub-partitions;

(3) in each computation unit, selecting the macroblock
partition or sub-partition and the corresponding MVD
motion vectors that yield the lowest total cost;

H) among the macroblock partition or sub-partitions
selected in step G by all computational units, selecting
the macroblock partition or sub-partition(s) and the cor-
responding MVD motion vectors that yield the lowest
total cost.

30. A parallel processing architecture computer having
multiple computation units and programmed with one or
more programs which, when executed by said computer
cause said computer to perform the following motion estima-
tion process:

A) dividing a motion vector search area up into a plurality
of search sub-regions and assigning each search sub-
region to one of a plurality of computation units of a
parallel processing architecture computer having a plu-
rality of computation units;

B) in each computational unit, for each of the candidate
MVD motion vectors in the search sub-region, comput-
ing the absolute luminance difference at each pixel loca-
tion of the original macroblock and a reference macrob-
lock whose origin is pointed by the MVD motion vector;

C) for each computed set of absolute differences, comput-
ing a partial cost vector whose elements are the partial
SAD costs of all the macroblock partitions and sub-
partitions by summing the absolute differences at each
pixel location of all the pixels within each element of the
partition or sub-partition and recording the sum of the
absolute differences within each element of a partition
or sub-partition in a corresponding element of said par-
tial cost vector, and adding to each element the estimated
overhead of encoding the corresponding MVD motion
vector for the partition or sub-partition represented by
said element;

D) for each element of the computed partial cost vector,
comparing said element to the corresponding element of
a best cost vector of lowest partial costs found so farand
updating the elements of said best cost vector whenever
the newly computed partial cost is lower than the best
cost so far in the corresponding element of said best cost
vector;

E) for each of the updated partial costs, recording the x- and
y- components of the origin of the partition or sub-
partition which resulted in the lower cost which was
substituted into said best-cost vector and to which said
MVD motion vector points as the one that realize the
lowest partial costs;

F) in each computational unit, once all the motion vectors
in the search sub-region have been scanned, summing
the relevant partial costs in said best cost vector of the
lowest partial costs found so far to obtain a vector of total

21

May 29, 2008

costs whose elements correspond to each of the macrob-
lock partitions and sub-partitions specified in the H.264
specification as it existed at the time of filing of this
patent application;

(3) in each computation unit, selecting the macroblock
partition or sub-partition and the corresponding MVD
motion vectors that yield the lowest total cost;

H) among the macroblock partition or sub-partitions
selected in step G by all computational units, selecting
the macroblock partition or sub-partition(s) and the cor-
responding MVD motion vectors that yield the lowest
total cost.

31. A process for doing motion estimation comprising:

A) at each of a plurality of pixel locations in a search area,
where a pixel location can be a half pixel or a quarter
pixel location as well as an integer pixel location, calcu-
lating the partial cost for all candidate partition and
sub-partitions of a candidate reference macroblock hav-
ing its origin at said pixel location and recording the
partial cost results along with the MVD(s) which point
to said origin of each partition or sub-partition;

B) finding the lowest cost partition or sub-partition(s) of all
candidate reference macroblocks in said search area
from the results recorded in step A and finding the cor-
responding MVD(s) of said lowest cost partition or sub-
partition(s) selected in this step B;

C) encoding a macroblock using the results of step B.

32. A computer-readable medium having stored thereon
computer-readable instructions which, when executed by a
computer, cause said computer to perform the following pro-
cess for motion estimation:

A) at each of a plurality of pixel locations in a search area,
where a pixel location can be a half pixel or a quarter
pixel location as well as an integer pixel location, calcu-
lating the partial cost for all candidate partition and
sub-partitions of a candidate reference macroblock hav-
ing its origin at said pixel location and recording the
partial cost results along with the MVD(s) which point
to said origin of each partition or sub-partition;

B) finding the lowest cost partition or sub-partition(s) of all
candidate reference macroblocks in said search area
from the results recorded in step A and finding the cor-
responding MVD(s) of said lowest cost partition or sub-
partition(s) selected in this step B;

C) encoding a macroblock using the results of step B.

33. A computer programmed with instructions which,
when executed by said computer cause said computer to
perform the following motion estimation process:

A) at each of a plurality of pixel locations in a search area,
where a pixel location can be a half pixel or a quarter
pixel location as well as an integer pixel location, calcu-
lating the partial cost for all candidate partition and
sub-partitions of a candidate reference macroblock hav-
ing its origin at said pixel location and recording the
partial cost results along with the MVD(s) which point
to said origin of each partition or sub-partition;

B) finding the lowest cost partition or sub-partition(s) of all
candidate reference macroblocks in said search area
from the results recorded in step A and finding the cor-
responding MVD(s) of said lowest cost partition or sub-
partition(s) selected in this step B;

C) encoding a macroblock using the results of step B.

34. The computer of claim 33 wherein said computer has a

plurality of programmable computation units and wherein

US 2008/0126278 Al

said program causes said computer to perform step A by
assigning a dedicated computation unit to each said partition
or sub-partition of a candidate reference macroblock and use
that computation unit to calculate the partial cost for said
partition or sub-partition.

35. The computer of claim 33 wherein said program causes
said computer to cause one or more computation units to
calculate the partial cost of each partition or sub-partition as
the total SAD and MVD cost of the partition or sub-partition,
and to compare the total SAD and MVD costs of each parti-
tion or sub-partition, as calculated by said dedicated compu-
tation units, and to select the partition or sub-partition(s) with
the lowest total cost and the MV D(s) which point to the lowest
total cost partition or sub-partitions.

May 29, 2008

36. The computer of claim 33 wherein said program causes
said computer to partition and sub-partion each candidate
reference macroblock using the partitions and sub-partitions
defined in the H.264 standard as it existed at the time this
patent application was filed and then compute the total SAD
and MVD overhead cost of each partition and sub-partition of
an 8x8 partition, and select the lowest total cost sub-partition
of each said 8x8 partition and the MVD(s) which point to
these lowest cost sub-partitions if none of the 16x16 or 16x8
or 8x16 partitions defined in the H.264 specification are the
lowest total cost partition of the 16x16 reference macroblock.

sk sk sk sk sk

