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PARALLEL DEBLOCKING FILTER FOR
H.264 VIDEO CODEC

BACKGROUND OF THE INVENTION

[0001] Digital video such as DirecTV and DVD applica-
tions has been growing in popularity. Digitizing a video sig-
nal generates huge amounts of data. Frames of pixels are
generated many times per second, and each frame has many
pixels. Each pixel has a plurality of bits which defines it
luminance (brightness) and two different sets of bits which
define its color.

[0002] A digital video signal is often represented in a
YCbCr format, which follows the human visual perception
model. Y is the luminance (or luma) information and Cb and
Cr is the chrominance (or chroma) information. The human
eye is most sensitive to the luminance information as that is
where the detail of edges is found; the chrominance informa-
tion plays less importance. For this reason, Cb and Cr chan-
nels are often subsampled as by a factor of 2 in the horizontal
and vertical dimensions in order to save on the representation.
Such a format is referred to as YCbCr 4:2:0.

[0003] The huge amount of data involved in representing a
video signal cannot be transmitted or stored practically
because of the sheer volume and limitations on channel band-
width and media storage capacity; compression is therefore
necessary. Because a video has high spatial and temporal
redundancy (the first relating to the fact that neighbor pixels
within a frame are similar, and the second relating to the fact
that two subsequent frames are similar), getting rid of such
redundancy is the basis of modern video compression
approaches. Compression generally speaking tries to predict
a frame from the previous frames exploiting temporal redun-
dancy, and tries to predict parts of a frame from other parts of
the same frame exploiting spatial redundancy. Only the dif-
ference information is transmitted or stored. MPEG2 and
MPEG4 are examples of compression which are familiar
today.

[0004] In the last few years, High Definition (HD) televi-
sion formats have been gaining popularity. HD complicates
the data volume problem because HD formats use even more
pixels than the standard NTSC signals most people are famil-
iar with.

[0005] The H.264 Advanced Video Codec (AVC) is the
most recent standard in video compression. This standard was
developed by the Joint Video Team of ITU-T and MPEG
groups. It offers significantly better compression rate and
quality compared to MPEG2/MPEG4. The development of
this standard has occurred simultaneously with the prolifera-
tion of HD content. The H.264 standard is very computation-
ally intensive. This computational intensity and the large
frame size of HD format signals pose great challenges for
real-time implementation of the H.264 codec.

[0006] To date some attempts have been made in the prior
art to implement H.264 codecs on general purpose sequential
processors. For example, Nokia, Apple Computer and Ateme
have all attempted implementations of the H.264 standard in
software on general purpose sequential computation comput-
ers or embedded systems using Digital Signal Processors.
Currently, none of these systems is capable of performing real
time H.264 encoding in full HD resolutions.

[0007] Parallel general purpose architectures such as Digi-
tal Signal Processors (DSPs) have been considered in the
prior art for speeding up computationally-intensive compo-
nents of the H.264 code. For example, DSPs were used for the
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motion estimation and deblocking processes in papers by H.
Lietal., Accelerated Motion Estimation of H.264 on Imagine
Stream Processor, Proceedings of ICIAR, p. 367-374 (2005)
and J. Sankaran, Loop Deblocking of Block Coded Video in
a Very Long Instruction Word Processor, U.S. Patent Appli-
cation Publication 20050117653, (June 2005 Texas Instru-
ments). DSPs are well adapted for performing one dimen-
sional filtering, but they lack the capability of processing
two-dimensional data as required in digital video processing
and coding applications.

[0008] There also exist in the prior art hardware implemen-
tations custom tailored for H.264 codecs including chips by
Broadcom, Conexant, Texas Instruments and Sigma Designs.
Special architectures were proposed for some computation-
ally-intensive components of the H.264 codec. There follows
some examples.

[0009] 1) Intra-prediction schemes are taught by Drezner,
D, Advanced Video Coding Intra Prediction Scheme, U.S.
Patent Application 20050276326 (December 2005 Broad-
com), and Dottani et al., Intra 4x4 Modes 3, 7 and 8 Avail-
ability Determination Intra Estimation and Compensation,
U.S. Pat. No. 7,010,044 (March 2006 LSI Logic);

[0010] 2) Inverse transform and prediction in a pipelined
architecture is taught in Luczak et al., A Flexible Architecture
for Image Reconstruction in H.264/AVC Decoders, Proceed-
ings ECCTD (2005). This paper presents a pipelined archi-
tecture to do image reconstruction using bit serial algorithms
on a pipeline using an intra 4x4 predictor architecture, adder
grid and plane predictor and a 1-D inverse transformation
engine of FIG. 4 using serial arithmetic with the reconstruc-
tion block including one or up to four 4x4 modules, each of
which performs intra-prediction, inverse quantization and
transformation with possible arrangements shown in FIG. 6
with the output of one stage being an input to the next pipeline
stage so this is not a true parallel processing implementation,
but it does save clock cycles.

[0011] 3) Video data structures are taught by Linzer et al.,
2-D Luma and Chroma DMA Optimized for 4 Memory
Banks, U.S. Pat. No. 7,015,918 (March 2006 LSI Logic).

[0012] 4) Basic operations such as scan conversion are
taught by Mimar, Fast and Flexible Scan Conversion and
Matrix Transpose in SIMD Processor, U.S. Pat. No. 6,963,
341 (November 2005).

[0013] For the in-loop deblocking filter in the H.264 stan-
dard, several special architectures were proposed:

[0014] 1) V. Venkatraman et al., Architecture for Deblock-
ing Filter in H.264, Proceedings Picture Coding Symposium
(2004). proposed a hardware accelerator which is optimized
for H.264 deblocking computations and requires a general
purpose processor and addition components to implement the
entire codec.

[0015] 2) A pipelined deblocking filter is taught by Kim,
Y.-K et al., Pipeline Deblocking Filter, U.S. Patent Applica-
tion Publication 20060115002 (June 2006 Samsumg Elec-
tronics).

[0016] 3) Parallel processing of the deblocking filter is
taught by Dang, P. P, Method and Apparatus for Parallel
Processing of In-Loop Deblocking Filter for H.264 Video

Compression Standard, U.S. Patent Application Publication
20060078052 (December 2005)
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[0017] 4)J.Li, Deblocking filter process with local buffers,
U.S. Patent Application 20060029288 (February 2006) teach
a memory buffer architecture for deblocking filter.

Other Prior Art Hardware Implementations of H.264 Video
Codecs

[0018] Several companies are mass-producing custom
chips capable of decoding H.264/AVC video. Chips capable
of real-time decoding at high-definition picture resolutions
include these:

[0019] Broadcom BCM7411

[0020] Conexant CX2418X

[0021] Sigma Designs SMP8630, EMS8622L., and
EMS8624L,

[0022] STMicroelectronics  STB7100, STB7109,

NOMADIK (STn 8800/8810/8815 series)

[0023] WISchip (now Micronas USA, Inc.) DeCypher
8100

[0024] Motorola (now Freescale Semiconductor, Inc.)
imx31

[0025] Texas Instruments TMS320DM642 DSP and
TMS320DM644x DSPs based on DaVinci Technology

[0026] Such chips will allow widespread deployment of
low-cost devices capable of playing H.264/AVC video at
standard-definition and high-definition television resolu-
tions.

[0027] Many other hardware implementations are
deployed in various markets, ranging from inexpensive con-
sumer electronics to real-time FPGA-based encoders for
broadcast. A few ofthe more familiar hardware product offer-
ings for H.264/AVC include these:

[0028] ATI Technologies’ newest graphics processing
unit (GPU), the Radeon X1000-series, features hard-
ware acceleration of H.264 decoding starting in the
Catalyst 5.13 drivers. H.264 decoding is one component
of'the ATT “AVIVO” multimedia technology

[0029] NVIDIA has released drivers for hardware H.264
decoding on its GeForce 7 Series and some GeForce 6
Series GPUs. A supported cards list can be found at
NVidia’s PureVideo page.

[0030] Apple added H.264 video playback to their 5th
Generation iPod on Oct. 12, 2005. The new product uses
this format, as well as MPEG-4 Part 2, for video play-
back. The video-enabled iPod uses the H.264 Baseline
Profile with support of bit rates up to 768 kbit/s, image
resolutions up to 320x240, and frame rates up to 30
frames per second.

[0031] WorldGate sells the Ojo videophone (formerly
distributed by Motorola), which uses H.264 Baseline
Profile at QCIF (144x176) image resolution with
bitrates of 80 to 500 kbit/s, at a fixed framerate of 30
frames per second.

[0032] HaiVision developed the hai200 TASMAN and
hai1000, used predominantly in low latency applications
including telepresence (collaboration suites) and medi-
cal (remote surgery), SD resolution at up to 6 Mbit/s.

[0033] Mobilygen develops MG1264 Low Power
H.264/AAC Codec For Mobile Products. The MG1264
is acomplete H.264/AAC AV codec capable of TV qual-
ity D1/VGA video and high-fidelity 2-channel audio.
Requiring only 185 mw for encoding full video resolu-
tion, and stereo audio, the M(G1264 is ideally suited for
battery powered mobile products, as well as traditional
“plugged in” products.
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[0034] USDTYV is now using this codec for over-the-air
“cable” TV network channels on ATSC. Appearing as
subchannels on DTV virtual channel 99, these are nor-
mally viewable only on special set-top boxes. Originally
using WMV, special USB upgrades were sent to earlier
box owners. Because UpdateTV will come installed on
most ATSC tuners (beginning 2007 model year), there is
a significant chance that this codec could later become
an ATSC-accepted standard for non-subscription broad-
casts from TV stations. This is because UpdateTV
would we able to distribute the new codec through data-
casting.

[0035] There still does exist however a need for a highly
parallel architecture and processes for using the data indepen-
dency of macroblocks in video frames in highly parallel com-
puter architectures which are adapted to efficiently do opera-
tions on two dimensional signals expressed in the form of
4x4 matrices of integers which can be used both for H.264
compression and other compression standards such as
MPEG2/MPEG4 etc.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] FIG.1, there is shown a block diagram of a prior art
video data encoder to compress raw video pixel luminance
data down to a smaller size.

[0037] FIG. 2 is a block diagram of the decoder circuitry
which decompresses the received compressed signal on line
38 and outputs the reconstructed frame on line 42.

[0038] FIG. 3 is a block diagram of the H.264 prior art
video compression encoder.

[0039] FIG. 4 illustrates the luma and chroma pixels
required for and processed during the deblocking of a mac-
roblock, and the numbering convention thereof. This conven-
tion will be used to illustrate the parallelization of the
deblocking process in prior art and in the current invention.
[0040] FIG. 5, comprised of FIGS. 5A, 5B, 5C, 5D and 5E,
shows, in FIGS. 5A through 5D, respectively, the order of
luma and chroma vertical and horizontal edge deblocking in
prior art parallel deblocking filters according to Y.-W. Huang
et al. (100A), V. Venkatraman et al. (100B), Y.-K. Kim et al.
(100C), P. P. Dang (100D). FIG. 5E show the order of luma
and chroma vertical and edge processing according to the
most preferred embodiment of the current invention wherein
maximum efficiency and parallelization is achieved. Num-
bers denote the iteration at which the edge is processed.
[0041] FIG. 6, comprised of FIGS. 6 A and 6B, depicting a
flow diagram of luma (FIG. 6A) and chroma Cb or Cr (FIG.
6B) deblocking process according to an embodiment of the
current invention, including independent vertical 500 and
horizontal 502 edge filter units. The inputs to the filters are
4x4 blocks of a macroblock in accordance with the edge
numbering convention in FIG. 4, and the outputs are the
corresponding filtered 4x4 blocks.

[0042] FIG. 7 is a flow diagram of the vertical luma or
chroma edge deblocking filter unit 500, comprising long filter
600, short filter 602 and a selector thereof 604.

[0043] FIG. 8 is a schematic representation of a horizontal
luma or chroma edge filter 502, obtained from vertical luma
or chroma edge filter 500 and pixel transposition units 700.
[0044] FIG. 9, comprised of FIGS. 9A, 9B and 9C, is an
exemplary highly parallel processing architecture, referred to
as AVIOR (FIG. 9A), including four groups (FIG. 9B), each
containing eight clusters (FIG. 9C), each containing a parallel
tensor processor.
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[0045] FIG. 10 is a diagram illustrating one possibility of
obtaining the maximum parallelization of luma and chroma
deblocking using an AVIOR or other parallel architecture
with 8 clusters, and illustrating the sets of luma and chroma
edges and the order in which they are deblocked, in the
corresponding sets of iterations.

[0046] FIGS. 11A and 11B are a diagram illustrating a
possible parallelization of luma and chroma edge deblocking
on the AVIOR architecture with 4 clusters. FIG. 11A illus-
trates the luma edges deblocked during the first 8 iterations,
and FIG. 11B illustrates the chroma edges deblocked during
the last four iterations. FIG. 12 is a diagram illustrating one
possibility of obtaining the maximum parallelization of luma
and chroma deblocking using an AVIOR or other parallel
architecture with 2 clusters, and illustrating the sets of luma
and chroma edges and the order in which they are deblocked,
in the corresponding sets of iterations.

[0047] FIG. 13, comprised of FIGS. 13A and 13B, is an
example two 4x4 blocks of pixels 342, 344 adjacent to a

vertical edge 340 (A) used as an input to the vertical edge filter
500 and two 4x4 blocks of pixels 343, 345 adjacent to a

horizontal edge 341 (B), used as an input to the horizontal
edge filter 502.

SUMMARY OF THE INVENTION

[0048] The present invention is a method and apparatus to
perform deblocking filtering on any parallel processing plat-
form to speed it up. The general notion here is to speed up the
deblocking process by dividing the problem up into sub-
problems which are data independent of each other such that
each sub-problem can be solved on a separate computational
path in any parallel processing architecture.

[0049] The genus of the invention is defined by the follow-
ing characteristics which all species within the genus will
share:

[0050] 1) simultaneous deblocking of vertical luma edges
during at least some of a plurality of iterations on at least some
of a plurality of computational units of a parallel processing
architecture computer, and simultaneous deblocking of both
vertical and horizontal luma edges during at least some of a
plurality of iterations on at least some of a plurality of com-
putational units of a parallel processing architecture com-
puter;

[0051] 2) the order of deblocking of both horizontal and
vertical edges is determined by both raster scan order and data
dependency;

[0052] 3)ifthere are enough computational units available
such that some are idle during some iterations, then idle
computational units are used to deblock vertical and/or hori-
zontal chroma channel edges simultaneously with deblock-
ing of vertical and/or horizontal luma edges or simultaneous
deblocking of multiple vertical chroma edges alone during at
least some of a plurality of iterations on at least some of a
plurality of computational units of'a parallel processing archi-
tecture computer and simultaneous deblocking of multiple
horizontal chroma edges alone during at least some of a
plurality of iterations on at least some of a plurality of com-
putational units of a parallel processing architecture com-
puter, wherein the order of deblocking of chroma vertical and
horizontal edges is determined by raster scan order and data
dependency, and wherein whether or not simultaneous
deblocking of luma and chroma edges occurs on some of said
plurality of edges depends upon the number of computational
units available;
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[0053] 4) simultaneous filtering of several lines of pixels in
the blocks for deblocking of each edge

[0054] In the preferred class of embodiments the luma and
chroma edges are divided into six sets. The vertical luma
edges form the first set of edges. The horizontal luma edges
form the second set of edges. The vertical Cb chroma edges
form the fourth set of edges, the vertical Cr chroma edges
form the fifth set of edges, and the horizontal Cb chroma
edges form the sixth set of edges. The processing of each of
these sets of edges is carried out on a plurality of computa-
tional units referred to herein as clusters, in a set of iterations
determined by the data dependency between a set of edges
and other sets of edges. The processing is carried out such the
first set of edges is deblocked by a first set of clusters in a first
set of iterations, and so on for the rest of the sets of edge,
mutatis mutandis. During this processing, the set of clusters
and set of iterations may be partially or completely overlap-
ping or completely disjoint depending upon the number of
clusters available. Overlap of sets of iterations implies simul-
taneous processing of parts or entire sets of edges. Overlap of
sets of clusters implies that processing of different parts of
sets of edges is allocated to the same computational units.

The Basics of Digital Video Compression

[0055] Digital video is a type of video recording system
that works by using a digital, rather than analog, representa-
tion of the video signal. This generic term is not to be con-
fused with DV, which is a specific type of digital video.
Digital video is most often recorded on tape, then distributed
on optical discs, usually DVDs.

[0056] Video compression refers to making a digital video
signal use less data, without noticeably reducing the quality
of the picture. In broadcast engineering, digital television
(DVB, ATSC and ISDB) is made practical by video compres-
sion. TV stations can broadcast not only HDTV, but multiple
virtual channels on the same physical channel as well. It also
conserves precious bandwidth on the radio spectrum. Nearly
all digital video broadcast today uses the MPEG-2 standard
video compression format, although H.264/MPEG-4 AVC
and VC-1 are emerging contenders in that domain.

[0057] MPEG-2 is the designation for a group of coding
and compression standards for Audio and Video (AV), agreed
upon by MPEG (Moving Picture Experts Group), and pub-
lished as the ISO/IEC 13818 international standard. MPEG-2
is typically used to encode audio and video for broadcast
signals, including direct broadcast satellite (DirecTV or Dish
Network) and Cable TV. MPEG-2, with some modifications,
is also the coding format used by standard commercial DVD
movies.

[0058] H.264, MPEG-4 Part 10, or AVC, for Advanced
Video Coding, is a digital video codec standard which is
noted for achieving very high compression ratios. A video
codec is a device or software module that enables video
compression or decompression for digital video. The com-
pression usually employs lossy data compression. In daily
life, digital video codecs are found in DVD (MPEG-2), VCD
(MPEG-1), in emerging satellite and terrestrial broadcast sys-
tems, and on the Internet.

[0059] The H.264 standard was written by the ITU-T Video
Coding Experts Group (VCEG) together with the ISO/IEC
Moving Picture Experts Group (MPEG) as the product of a
collective partnership effort known as the Joint Video Team
(IVT). The ITU-T H.264 standard and the ISO/IEC MPEG-4
Part 10 standard (formally, ISO/IEC 14496-10) are techni-
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cally identical. The final drafting work on the first version of
the standard was completed in May of 2003.

[0060] The need for video compression stems from the fact
that digital video always requires high data rates—the better
the picture, the more data is needed. This means powerful
hardware, and high bandwidth when video is transmitted.
However, much of the data in video is either redundant or
easily predicted—for example, successive frames in a movie
rarely change much from one to the next—this makes data
compression work well with video. Such compression is
referred to as lossy, because the video that can be recovered
after such a process is not identical to the original one.

[0061] In computer science and information theory, data
compression or source coding is defined as the process of
encoding information using fewer bits (or other information-
bearing units) than a raw (prior to coding) representation
would use. The forward process of creating such a represen-
tation is termed encoding, the backward process of recover-
ing the information is termed decoding. The entire scheme
comprising an encoder and decoder is called a codec, for
coder/decoder.

[0062] Ifthe original data can be recovered precisely by the
decoder, such a compression is termed lossless. Video com-
pression can usually make video data far smaller while per-
mitting a little loss in quality. For example, DVDs use the
MPEG-2 compression standard that makes the movie 15 to 30
times smaller, while the quality degradation is not significant.

[0063] Videoisbasically athree-dimensional array of color
pixels. Two dimensions serve as spatial (horizontal and ver-
tical) directions of the moving pictures, and one dimension
represents the time domain. A frame is a set of all pixels that
correspond to a single point in time. Basically, a frame can be
thought of as an instantaneous still picture.

[0064] Video data is often spatially and temporally redun-
dant. This redundancy is the basis of modern video compres-
sion methods. One of the most powerful techniques for com-
pressing video is inter-frame prediction. In the MPEG and
H.264 video compression lexicon, this is called P mode com-
pression. Each frame is divided into blocks of pixels, and for
each block, the most similar block is found in adjacent refer-
ence frame by a process called motion estimation. Due to
temporal redundancy, the blocks will be very similar, there-
fore, one can transmit only the difference between them. The
difference, called residual macroblock, undergoes the pro-
cess of transform coding and quantization, similarly to JPEG.
Since inter-frame relies on previous frames, by loosing part of
the encoded data, successive frames cannot be reconstructed.
Also, prediction errors to be accumulated, especially if the
video content changes abruptly (e.g. at scene cuts). To avoid
this problem, I frames are in MPEG compression. I frames are
basically treated as JPEG compressed pictures.

[0065] Compression of residual macroblocks and the
blocks in I frames is based on the discrete cosine transform
(DCT), whose main aim is spatial redundancy reduction. The
discrete cosine transform (DCT) is a Fourier-type transform
similar to the discrete Fourier transform (DFT), but using
only real numbers. It is equivalent to a DFT of roughly twice
the length, operating on real data with even symmetry (since
the Fourier transform of a real and even function is real and
even), where in some variants the input and/or output data are
shifted by halfa sample. (There are eight standard variants, of
which four are common.) The most common variant of dis-
crete cosine transform is the type-1I DCT, which is often
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called simply “the DCT”; its inverse, the type-III DCT, is
correspondingly often called simply “the inverse DCT” or
“the IDCT”.

[0066] Two related transforms are the discrete sine trans-
form (DST), which is equivalent to a DFT of real and odd
functions, and the modified discrete cosine transform
(MDCT), which is based on a DCT of overlapping data.
[0067] TheH.264 video compression standard requires that
a Modified Integer Discrete Cosine Transfer be used, and its
particular implementation with integer arithmetic, and that is
what is used in the preferred embodiments of H.264 video
codec implementations according to the teachings of the
invention doing compression. However, the term “Discrete
Cosine Transform” ifused in the claims, should be interpreted
to cover the DCT and all its variants that work on integers.
[0068] Further compression is achieved by quantization. In
digital signal processing, quantization is the process of
approximating a continuous or very wide range of values (or
a very large set of possible discrete values) by a relatively
small set of discrete symbols or integer values. Basically, it is
truncation of bits and keeping only a selected number of the
most significant bits. As such, it causes losses. The number of
bits kept is programmable in most embodiments but can be
fixed in some embodiments.

[0069] The quantization can either be scalar quantization or
vector quantization; however, nearly all practical designs use
scalar quantization because of its greater simplicity. Quanti-
zation plays a major part in lossy data compression. In many
cases, quantization can be viewed as the fundamental element
that distinguishes lossy data compression from lossless data
compression, and the use of quantization is nearly always
motivated by the need to reduce the amount of data needed to
represent a signal.

[0070] A typical digital video codec design starts with con-
version of camera-input video from RGB color format to
YCbCr color format, and often also chroma subsampling to
produce a 4:2:0 (or sometimes 4:2:2 in the case of interlaced
video) sampling grid pattern. The conversion to YCbCr pro-
vides two benefits: first, it improves compressibility by pro-
viding decorrelation of the color signals; and second, it sepa-
rates the luma signal, which is perceptually much more
important, from the chroma signal, which is less perceptually
important and which can be represented at lower resolution.
[0071] Many different video codec designs exist in the prior
art. Of these, the most significant recent development is video
codecs technically aligned with the standard MPEG-4 Part 10
(a technically aligned standard with the ITU-T"s H.264 and
often also referred to as AVC). This emerging new standard is
the current state of the art of ITU-T and MPEG standardized
compression technology, and is rapidly gaining adoption into
a wide variety of applications. It contains a number of sig-
nificant advances in compression capability, and it has
recently been adopted into a number of company products,
including for example the PlayStation Portable, iPod, the
Nero Digital product suite, Mac OS X v10.4, as well as HD
DVD/Blu-ray Disc.

[0072] H.264 encoding and decoding are very computa-
tionally intensive, so it is advantageous to be able to perform
them on a parallel processing architecture to speed the pro-
cess up and enable real time encoding and decoding of digital
video signals even if they are High Definition format. To do
H.264 encoding and decoding on a parallel processing com-
puting platform (any parallel processing platform with any
number of parallel computing channels will suffice to practice



US 2008/0123750 Al

the invention), it is necessary to break the encoding and
decoding problems down into parts that can be computed
simultaneously and which are data independent, i.e., no
dependencies between data which would prevent parallel pro-
cessing.

The Basics of H.264 Video Codec

[0073] Inthe main profile of the H.264 codec, compression
is usually performed on video in the YCbCr 4:2:0 format with
8 bits per channel representation. The luminance component
of the frame is divided into 16x16 pixel blocks called luma
macroblocks and the chrominance Cb and Cr channels are
divided into 8x8 Cb and Cr blocks of pixels, collectively
referred to as chroma macroblocks.

[0074] Referring to FIG. 1, there is shown a block diagram
of a prior art video data encoder to compress raw video pixel
luminance data down to a smaller size. Chrominance data is
compressed in a very similar manner and will not be dis-
cussed in detail. The raw video input pixel data in RGB
format arrives on line 10. RGB format signals have redun-
dancy between the red, green and blue channels, so converter
12 converts this color space into a stream of pixel data 14 in
YCbCr format. The Y pixels are luminance only and have no
color information. The color information is contained in the
Cb and Cr channels. Since the eye is less sensitive to color
changes, the Cb and Cr channels are sampled at one fourth the
resolution of the Y channel. A buffer 16 stores a frame of
YCbCr data. This original frame data is applied on line 18
adder 20. The other input 22 to the summer is the predicted
frame which is generated by predictor 24 from a previous
frame of pixels stored in buffer 26.

[0075] Like the previous MPEG standards, H.264 codec
employs temporal redundancy. The H.264 has introduced the
following main novelties:

[0076] 1) macroblock-based prediction: each macroblock
is treated as a stand-alone unit, and the choice between I and
P modes is on macroblock rather than entire frame level, such
that a single frame can contain both I and P blocks. Macrob-
locks can be grouped into slices.

[0077] 2) an additional level of spatial redundancy utiliza-
tion was added by means of inter-prediction. The main idea is
to predict the macroblock pixel from neighbor macroblocks
within the same frame, and apply transform coding to the
difference between the actual and the predicted values.
[0078] 3) P macroblocks, even within the same frame, can
use different reference frames.

[0079] The residual macroblock is encoded in encoder 30
and the encoded data on line 32 is transmitted to a decoder
elsewhere or some media for storage. Encoder 30 does a
Discrete Cosine Transform (DCT) on the error image data to
convert the functions defined by the error image samples. The
integer luminance difference numbers of the error image
define a function in the time domain (because the pixels are
raster scanned sequentially) which can be transformed to the
frequency domain for greater compression efficiency and
fewer artifacts. The DCT transform outputs integer coeffi-
cients that define the amplitude of each of a plurality of
different frequency components, which when added together,
would reconstitute the original time domain function. Each
coefficient is quantized, i.e., only some number of the most
significant bits are kept of each coefficient and the rest are
discarded. This cause losses in the original picture quality, but
makes the transmitted signal more compact without signifi-
cant visual impairment of the reconstructed picture. For the
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coefficients of the higher frequency components, more
aggressive quantization can be performed (fewer bits kept)
because the human eye is less sensitive to the higher frequen-
cies. More bits are kept for the DC (zero frequency) and lower
frequency components because of the eye’s higher sensitiv-
ity.

[0080] All the circuitry inside box 34 is the encoder, but the
predicted frame on line 22 is generated by a decoder 36 within
the encoder.

[0081] FIG. 2 is a block diagram of the decoder circuitry
which decompresses the received compressed signal on line
38 and outputs the reconstructed frame on line 42. Decoder 40
peforms an inverse DCT and inverse quantization on the
incoming compressed data on line 38. This results in a recon-
structed error image on line 44. This is applied to summer 46
which adds each error image pixel to the corresponding pixel
in the predicted frame on line 48. The predicted frame is
exactly the same predicted frame as was created on line 22 in
FIG. 1 because the decoder 36 there is the same decoder as the
circuitry within box 50 in FIG. 2. The error plus the predicted
pixel equals the original pixel luminance.

[0082] Ininter-prediction mode, each P-block (or each sub-
division thereof) has a motion vector which points to the same
size block of pixels in a previous frame using a Cartesian X,y
coordinate set which are the closest in luminance values to the
pixel luminance values of the macroblock. The differences
between the reference macroblock luminance values and the
reference block luminance values are encoded as a macrob-
lock of error values which are integers which range from -255
to +255. The data transmitted for the compressed macroblock
is these error values and the motion vector. The motion vector
points to the set of pixels in the reference frame which will be
the predicted pixel values in the block being reconstructed in
the decoder. This P-block encoding is the form of compres-
sion that is used most because it uses the fewest bits.

[0083] The differences between the luma values of the
block being encoded and the reference pixels are then
encoded using DCT and quantization. In the preferred
embodiment, the macroblock of error values is divided into
four 4x4 blocks of error numbers. Each error number is the
number of bits it takes to represent an integer ranging from
-255 to +255. Chroma encoding is slightly different because
the macroblocks are only half the resolution of the luma
macroblocks.

[0084] The DCT, and in particular the DCT-II, is often used
in signal and image processing, especially for lossy data
compression, because it has a strong “energy compaction”
property: most of the signal information tends to be concen-
trated in a few low-frequency components of the DCT. This
allows compression by quantization because more bits of the
less significant high frequency components can be removed
and more bits of the more significant low frequency compo-
nents can be kept. For example, suppose 16 bits are output for
every frequency component coefficient. For the less signifi-
cant higher frequency components, only two bits might be
kept, whereas for the most significant component, the DC
component, all 16 bits might be kept. Typically, quantization
is done by using a quantization mask which is used to multi-
ply the output matrix of the DCT transform. The quantization
mask does scaling so that more bits of the lower frequency
components will be retained.
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[0085] The discrete cosine transform is defined mathemati-
cally as follows.

2. 2. 1
bu, v) = Z Z a(x, y)cos W;ﬂcos vy47r M
x oy

[0086] AsanexampleofaDCT transform,a DCT is used in
JPEG image compression, MIPEG, MPEG, and DV video
compression. In these compression schemes, the two-dimen-
sional DCT-II of NxN blocks is computed and the results are
quantized and entropy coded. In this example, N is typically
8 50 an 8x8 block of error numbers is the input to the trans-
form, and the DCT-II formula is applied to each row and
column of the block. The result is an 8x8 transform coeffi-
cient array in which the (0,0) element is the DC (zero-fre-
quency) component and entries with increasing vertical and
horizontal index values represent higher vertical and horizon-
tal spatial frequencies. The DC component contains the most
information so in more aggressive quantization, the bits
required to express the higher frequency coefficients can be
discarded.

[0087] In H.264, the macroblock is divided into 16 4x4
blocks, each of which is transformed using a 4x4 DCT. In
some intra prediction modes, a second level of transform
coding is applied to DC coefficients of the macroblocks, in
order to reduce the remaining redundancy. The 16 DC coet-
ficients are arranged into a 4x4 matrix, which is transformed
using the Hadamard transform.

[0088] Also, only luminance values will be discussed
unless otherwise indicated although the same ideas apply to
the chroma pixels as well.

[0089] Referring to FIG. 3, there is shown a block diagram
of a prior art H.264 encoder. The raw incoming video to be
compressed is represented by frame 60. Each pixel of each
macroblocks of the incoming frame 60 is subtracted in sum-
mer 62 from a corresponding pixel of a predicted macroblock
on line 64.

[0090] The predicted frame macroblock is generated either
as an I-block by intraframe prediction circuit 66 or motion
compensation circuit 68.

[0091] The resulting per pixel error in luminance results in
a stream of integers on line 70 to a transformation, scaling and
quantization circuit 72. There a Discrete Cosine Transform is
performed on the error numbers and scaling and quantization
is done to compress the resulting frequency domain coeffi-
cients output by the DCT. The resulting compressed lumi-
nance data is output on line 74.

[0092] A coder control block 76 controls the transforma-
tion process and the scaling and quantization and outputs
control data on line 78 which is transmitted with the quantized
error image transform coefficients. The control data includes
which mode was used for prediction (I or P), how strong the
quantization is, settings for the deblocking filter, etc.

[0093] For each macroblock either intra-frame prediction
(which generates an I-block macroblock) is used or inter-
frame prediction (which generates a P-block macroblock) is
used to generate the macroblock. A control signal on line 80
controls which type of predicted macroblock is supplied to
summer 62.

[0094] To generate a predicted macroblock, a reference
frame is used. The reference frame is the just previous frame
and is generated by an H.264 decoder within the encoder. The
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H.264 decoder is the circuitry within block 82. Circuit 84
dequantizes the compressed data on line 74, and does inverse
scaling and an inverse DCT transformation.

[0095] The resulting pixel luminance reconstructed error
numbers on line 86 are summed in summer 88 with the
predicted pixel values in the predicted macroblock on line 64.
The resulting reconstructed macroblocks are processed in
deblocking filter 90 which outputs the reconstructed pixels of
a video frame shown at 92. Video frame 92 is basically the
previous frame to the frame being encoded and serves as the
reference frame for use by motion estimation circuit 94 which
generated motion vectors on line 96.

[0096] The motion estimation circuit 94 compares each
macroblock of the incoming video on line 61 to the macrob-
locks in the reference frame 92 and generates a motion vector
which is a vector to the coordinates of the origin of a mac-
roblock in the reference frame whose pixels are the closest in
luminance values to the pixels of the macroblock to which the
motion vector pertains. This motion vector per macroblock
on line 96 is used by the motion compensation circuit 68 to
generate a P-block mode predicted macroblock whose pixels
have the same luminance values at the pixels in the macrob-
lock of the reference frame to which the motion vector points.
[0097] The intraframe prediction circuit 66 just uses the
values of neighboring pixels to the macroblock to be encoded
to predict the luminance values of the pixels in the I-block
mode predicted macroblock output on line 64.

Deblocking Filter in H.264 Codec

[0098] A particularly computationally intensive part of the
H.264 codec is the deblocking filter, also referred to as the
in-loop filter, whose main purpose is the reduction of artifacts
(referred to as the blocking effect) resulting from transform-
domain quantization, often visible in the decoded video and
disturbing the viewer. In the H.264 ecoder, the deblocking
filter also allows improving the accuracy of inter-prediction,
since the reference blocks are taken after the deblocking filter
is applied.

[0099] In state-of-the-art implementation of the H.264
decoder, the deblocking filter can take up to 30% of the
computational complexity. The H.264 standard defines a spe-
cific deblocking filter, which is an adaptive process acting like
a low pass filter to smooth out abrupt edges and does more
smoothing if the edges between 4x4 blocks of pixels are more
abrupt. The deblocking smoothes the edges between macrob-
locks so that they become less noticeable in the reconstructed
image. In MPEG2 and MPEG4, deblocking filter is not part of
the standard codec, but can be applied as a post-processing
operation on the decoded video.

[0100] The H.264 standard introduced the deblocking filter
as part of the codec loop after the prediction. In the decoder of
FIG. 2, the deblocking filter is block 52. This means that a
deblocking filter must also be included in the position of
block 54 in the prior art H.264 encoder in FIG. 1 since the
H.264 encoder implicitly includes a decoder and that decoder
must act exactly like the decoder at the receiver end of the
transmission or in the playback circuit that decompresses
video data stored on a media such as a DVD.

[0101] Because the DCT transform in the H.264 standard is
done on 4x4 blocks, the boundaries between 4x4 blocks
inside a macroblock and between neighbor macroblocks may
be visible (edge refers to a boundary between two blocks). In
order to reduce this effect, a filter must be applied on the 16
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vertical edges and 16 horizontal edges for the luma compo-
nent and on 4 vertical and 4 horizontal edges for each of the
chroma components.

[0102] When we say edge filtering, we refer to changing the
pixels in the blocks on the left and the right of the edge. For
vertical edge, each of the 4 lines of 4 pixels in the 4x4 block
on the left and each of the 4 lines in the block on the right from
the edge must undergo filtering. Each filtering operation
affects up to three pixels on either side of the edge. The
amount of filtering applied to each edge is governed by
boundary strength ranging from 0 to 4, and depending on the
current quantization parameter and the coding modes of the
neighboring blocks. This setting applies to the entire edge
(i.e. to four rows or columns belonging to the same edge).
Two 4x4 matrices with boundary strengths for vertical and
horizontal edges are computed for this purpose. The actual
amount of filtering also depends on the gradient of intensities
across the edge, and is decided for each row or column of
pixels crossing the edge.

[0103] In the H.264 standard, in order to account for the
need to do filtering of different strength, two different filters
may be applied to a line of pixels. These filters are referred to
as a long filter (involving the weighted sum of six pixels, three
on each side of the edge) and the short filter (involving the
weighted sum of four pixels, two on each side of the edge).
The decision of which filter to use is separate for each line in
the block. Each line can be filtered with the long filter, the
short filtered, or not filtered at all.

Prior Art Implementations of Parallel Deblocking Filters for
H.264 Codec

[0104] The H.264 does not prescribe any parallelization of
the deblocking filter. It only requires that the vertical luma
and chroma edges are deblocked prior to the horizontal ones.
However, parallelization to accomplish this order of calcula-
tion is an implementation detail left up to the designer, and
that is essential to achieving the advantages the invention
achieves.

[0105] Inseveral prior art implementations of the deblock-
ing filter for the H.264 codec, this data dependency was used
to some extent in order to improve the computational effi-
ciency of the deblocking filter. Here, we refer to the following
prior art:

[0106] 1. Y.-W. Huang et al., Architecture design for
deblocking filter in H.264/JVT/AVC, Proceeding IEEE Inter-
national Conference on Multimedia and Expo (2003), pro-
posed an architecture in which two adjacent blocks are stored
in a 4x8 pixel array, from which the lines of pixels are fed into
a one-dimensional filter, which performed the processing of
pixels. The processing is first applied to the vertical luma
edges in raster scan order, then to the horizontal luma edges,
in raster scan order. Afterwards, the chroma edges are filtered.
The order in which the horizontal and luma vertical and
horizontal edges are deblocked is as shown in FIG. 5A. All the
edges are processed in 48 iterations. In each block, the pro-
cessing of each line of pixels is performed sequentially by the
one-dimensional filter (i.e., for each block, it takes another 4
“internal” iterations to carry out the filtering).

[0107] 2. V. Venkatraman et al., Architecture for Deblock-
ing Filter in H.264, Proceedings Picture Coding Symposium
(2004) showed a pipeline architecture, which is an improve-
ment to the architecture of Huang et al., in which two one-
dimensional filters are operated in parallel, processing verti-
cal edges in raster scan order and simultaneously, with a delay
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of two iterations, horizontal edges, in pipeline manner in the
order shown in FIG. 5B. The order in which the horizontal and
luma vertical and horizontal edges are deblocked is as shown
in FIG. 5B. All the edges are processed in 24 iterations. Like
in the method of Huang et al., in each block, the processing of
each line of pixels is performed sequentially by the one-
dimensional filter.

[0108] 3. Another pipelined deblocking filter is taught by
Y.-K. Kim et al., Pipeline Deblocking Filter, U.S. Patent
Application Publication 20060115002 (June 2006 Samsumg
Electronics). The vertical and horizontal edges are filtered in
the order presented in FIG. 5C, in the total of 48 iterations,
where in each block, the processing of each line of pixels is
performed sequentially by the one-dimensional filter. The
order in which the horizontal and luma vertical and horizontal
edges are deblocked is as shown in FIG. 5C.

[0109] 4. A multi-stage pipeline architecture is taught by P.
P. Dang, Method and Apparatus for Parallel Processing of
In-Loop Deblocking Filter for H.264 Video Compression
Standard, U.S. Patent Application Publication 20060078052
(December 2005). In this approach, sequential filtering of
luma and chroma edges takes 30 iterations. The filtering order
is presented in FIG. 5D.

A Deblocking Filter Process According to the Invention

[0110] The invention claimed herein is a method and appa-
ratus to do deblocking filtering on any parallel processing
platform, utilizing in the best way the data dependency.
[0111] We identify three levels of parallelization in the
deblocking filter process:

[0112] 1. Edge filtering consists of processing four lines
of pixels in the blocks on two sides of the edge. All the
lines within the blocks can be processed in parallel, as
opposed to filtering each line separately.

[0113] 2. Several edges can be deblocked simulta-
neously, as the data dependency allows.

[0114] 3. Deblocking of luma and chroma components
can be performed simultaneously, as there is no data
dependency between them.

[0115] All luma and chroma horizontal and vertical edges
are filtered in 8 iterations in the order shown in FIG. 5E in the
most preferred embodiment. The particular edges which are
deblocked during each iteration are identified by the iteration
numbers written in the blocks superimposed on each edge.
Edges are designated by the block numbers that bound them
where the block number are the numbered blocks in FIG. 4
(these same block numbers are repeated in FIG. 5E). In our
notation convention used hereinafter, vertical edges (i.e.,
edges between two horizontally stacked block) are denoted
by I, e.g., 10111 denotes a vertical edge between the blocks
numbered 10 and 11; horizontal edges are denoted by , e.g.,
01-11 denotes a horizontal edge between the blocks num-
bered 01 and 11. As an example, the edges which are simul-
taneously deblocked during the first iteration are: vertical
luma edge 10/11; vertical luma edge 20121; vertical luma
edge 30131; vertical luma edge 40141; vertical chroma edge
10111 in the Cb channel; vertical chroma edge 20121 in the Cb
channel; vertical chroma edge 10/11 in the Cr channel; ver-
tical chroma edge 20121 in the Cr channel. Study of which
edges are deblocked during each iteration indicates data
dependency is respected but that maximum use of the three
above identified forms of parallelism are utilized to reduce the
total number of iterations to 8.
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[0116] The general notion here is to speed up the deblock-
ing process by dividing the problem up into sub-problems
which are data independent of each other such that each
sub-problem can be solved on a separate computational path
in any parallel processing architecture.

[0117] A possible order of edge processing according to
our invention, utilizing in the best way the data dependency is
shown in FIG. 5E. Using a parallel processing architecture
computer described elsewhere herein, all the luma and
chroma vertical and horizontal edges can processed in at most
eight iterations utilizing all the three levels of parallelism.
This offers a significant speed advantage over prior art imple-
mentations. This is the theoretically best possible paralleliza-
tion of the deblocking filter.

[0118] FIG. 6, comprised of FIGS. 6A and 6B, depicts the
data flow in a parallel system implementing this processing
order for deblocking of luma (FIG. 6 A) and chroma (FIG. 6B)
edges. This data flow of FIGS. 6 A and 6B represents either a
hardwired system implemented in hardware, or a software
system implemented on a programmable parallel architec-
ture, or both. In other words, each vertical filter and each
horizontal filter in FIGS. 6 A and 6 B may be: 1) a separate gate
array or hard wired circuit; 2) a cluster or computational unit
of a parallel processing computer which is programmed to
carry out the filtering process; 3) a separate thread or process
on a sequential computer. The terminology “iteration” in the
claims means an interval in time during which the deblocking
of'the specified edges for the iteration is being performed. The
following terminology in the claims directed to the sequence
of processing the vertical and horizontal luma and chroma
edges means the following things: 1) “first means” means
either hardware circuitry or one or more programmed com-
puters or a combination of both deblocking the edges speci-
fied in FIG. 10 in the first and second iterations according to
the data flow of FIGS. 6 A and 6B; 2) “second means” means
either hardware circuitry or one or more programmed com-
puters or a combination of both deblocking the edges speci-
fied in FIG. 10 in the third and fourth iterations according to
the data flow of FIGS. 6A and 6B; 3) “third means” means
either hardware circuitry or one or more programmed com-
puters or a combination of both deblocking the edges speci-
fied in FIG. 10 in the fifth and sixth iterations according to the
data flow of FIGS. 6 A and 6B; 4) “fourth means™ means either
hardware circuitry or one or more programmed computers or
a combination of both deblocking the edges specified in FIG.
10 in the seventh and eighth iterations according to the data
flow of FIGS. 6 A and 6B. The system comprises independent
filter units 500 for vertical edge filtering and filter units 502
for horizontal edge filtering. The filters operate in parallel,
processing the blocks in the order shown in FIG. 5E. In a
hardwired implementation, each filter unit 500 and 502 is a
dedicated hardware unit. In a software implementation, each
filter unit 500 and 502 is implemented in software and its
execution is carried out by a programmable processing unit.
The numbered input lines carry data corresponding to the
pixels in the block indicated by the number on the input line.
The specific blocks identified by the numbers on each input
line are specified in FIG. 4. Each filter receives the data from
two blocks that define the edge being deblocked. Each col-
umn of filters represents one iteration. There are only 8 itera-
tions total. There are only four iterations to deblock all
chroma edges, as illustrated in FIG. 6B, but these iterations
overlap with luma iterations using processors of the AVIOR
architecture specified later in FIGS. 9A, 9B and 9C which
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would otherwise be idle during these iterations. The best way
to visualize which luma and chroma edges are being simul-
taneously deblocked is in the diagram of FIG. 10.

[0119] A schematic filter unit for vertical edge filtering is
depicted in FIG. 7. It consists of the long filter 600 and the
short filter 602. The long filter 600 and the short filter 602 can
be performed simultaneously, for example, if they are imple-
mented as dedicated hardware units. The pixel data from left
4x4 block (numbered 342 in FIG. 13A and denoted as P
hereinafter) and right 4x4 block (numbered 344 in FIG. 13A
and denoted Q hereinafter) that bound the edge being
deblocked are fed to the filters as illustrated in the diagram.
The terminology “means for doing the long filter and short
filter deblocking calculation” in the claims means either gate
arrays, hard wired circuits, computational clusters of a paral-
lel processing computer or separate strings of a sequential
multitasking computer that perform the long filter and short
filter calculations specified in the H.264 specification on the
left or right block of pixels (left or right as further specified in
the claim) that define an edge. Each filter computes the
respective result assuming that for each line of pixels, this
outcome is used. In FIG. 7, the outcomes of the long filters are
4x4 filtered blocks denoted by Pl and Ql, and the outcomes of
the short filters are 4x4 filtered blocks denoted by Ps and Qs.
At the end, for each line of pixels, one of the results (long
filter, short filter, or no filter) is selected by matrix selector
604, according to the boundary strength and availability and
boundary strength parameters. That is, the final outcomes,
denoted by Pf and Qf in FIG. 7 are 4x4 blocks, formed as
follows: each line of 4 pixels in Pf and the corresponding line
of'4 pixels in Qf are taken as the corresponding lines either in
Pl and Ql. or in Ps and Qs, or in P and Q, according to the
selection made for this line.

[0120] The selection of which result to chose for each line
of'pixels is defined in the H.264 standard and depends both on
the boundary strength and the pixel values in the line. For
example, for boundary strength equal to 4, the long filter is
selected for the first line of four pixels p, 5 . . . p;o in FIG. 13A
if Ip;o—p;,l<p and Ip,o-q;0l<(a>>2+2). Here o and f§ are
scalar parameters pre-computed according to the H.264 stan-
dard specifications.

[0121] The operation of the long filter 600 and the short
filter 602 and the selection 604 thereof can be represented as
a sequence of tensor operations on 4x4 matrices (where by
tensor we imply a matrix or a vector, and tensor operations
refer to operations performed on matrix, its columns, rows, or
elements), and carried out on appropriate processing units
implemented either in hardware or in software. This approach
is used in the preferred embodiment, but computational units
with tensor operation capability are not required in all
embodiments.

[0122] A one-dimensional filter, used in prior art imple-
mentation of the deblocking filter, processes the lines in the
4x4 blocks sequentially in four iterations. For example, refer-
ring to the notation in FIG. 13 A, the lines of pixels p;5 .. . p1q
and q,g - . . q; 5 will be filtered in the first iteration, the lines of
pixels pos . . - Pag and qug - - - qp5 Will be filtered in the second
iteration, the lines of pixels p5; . . . psgand q,, . . . 55 Will be
filtered in the third iteration, and the lines p,; . . . p4o and q,q
.. . quqs will be filtered in the fourth iteration. Unlikely, a
two-dimensional filter represented as a tensor operation is
applied to the entire 4x4 matrices P and Q, and in a single
computation produces all the four lines of pixels within the
4x4 blocks.
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[0123] The filtering unit 502 used for horizontal edge fil-
tering can be obtained from the vertical edge filtering unit 500
by means of a transposition operation 700, as shown in FIG.
8. Here, by transposition we imply an operation applied to a
4x4 matrix, in which the columns and the rows are switched,
that is, the columns of the input matrix, become the rows of
the output matrix.

The Preferred Embodiment of a Deblocking Filter Process
According to the Invention

[0124] The preferred platform upon which to practice the
parallel deblocking filter process is a massively-parallel,
computer with multiple independent computation units
capable of performing tensor operations on 4x4 matrix data.
An example of a parallel computer having these capabilities is
the AVIOR (Advanced VIdeo ORiented) architecture, shown
in FIG. 9A.

[0125] Inthis architecture, the basic computational unit is a
cluster 820 (depicted in FIG. 9C) a processor consisting of 16
processing elements 854 arranged into a a 4x4 array. This
array is referred to as a tensor processor 852. It is capable of
working with tensor data in both SIMD (single instruction
multiple data) and MIMD (multiple instruction multiple data)
modes. Particularly efficient are operations on 4x4 matrices
(arithmetic and logical element-wise operations and matrix
multiplications) and 4x1 or 1x4 vectors. Each cluster has a
local memory 846 and special hardware designated for tensor
operations, like the permutation unit 850, capable, for
example, of performing efficiently the transposition opera-
tion.

[0126] A plurality of clusters form a group 810, depicted in
FIG. 9B. Each group has alocal memory 824, a controller 822
and a DMA (direct memory access) unit, allowing the clusters
to operate simultaneously and independently of each other.
[0127] The entire architecture consists of a plurality of
groups. In the configuration shown in FIG. 9A, the number of
clusters in each group is 8 and the total number of groups is 4.
In other embodiments, larger or smaller numbers of groups
may be employed, and each group may employ larger or
smaller numbers of clusters. As clusters, any processors can
be used, though processors capable of performing operations
on matrix data are preferred.

[0128] Inthe embodiment presented here, we employ only
one group for the deblocking filter, while the other groups are
free to carry out other processing needed in the H.264 codec
or perform deblocking of other video streams in a multiple
stream decoding scenario.

[0129] In the preferred embodiment of this invention, the
parallel deblocking filter employing the parallelization
described in FIG. 5E is implemented on the AVIOR architec-
ture. Each cluster is assigned the process of luma or chroma
edge deblocking as shown in FIG. 10. During the first itera-
tion, clusters 0 through 7 are assigned to deblock the luma and
chroma vertical edges as shown in the first column of FIG. 10.
During the second iteration (the second column), all 8 clusters
are assigned to deblock the edges defined in the second col-
umn of FIG. 10. The assignment of edges for the last six
iterations are as defined in FIG. 10, columns 3, 4, 5, 6, 7 and
8. All the relevant blocks are stored in the cluster memory
846. This requires loading two 4x4 blocks denoted by P and
Q (numbered 342 and 344 in case of deblocking a vertical
edge in FIG. 13A, or 343 and 345 in case of deblocking a
horizontal edge in FIG. 13B), performing the necessary ten-
sor operations and writing the filtered blocks Pf and Qfto the
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cluster memory 846. The order of processing of edges is
dictated by the data dependency order presented in FIG. 5E.
The processed blocks are collected from all the clusters in the
group memory 824.

[0130] In actual implementation, the order of edge
deblocking may differ from the one presented in FIG. 5E due
to reasons of computational unit availability and optimization
of allocation of computations on different units. In the most
generic case, we can group the edges into the following six
sets:

[0131] 1. Vertical luma edges (Y 10111, . ..,Y 43144);
[0132] 2. Horizontal luma edges (Y 01-11, . ..,Y 34-44);
[0133] 3. Vertical Cb edges (Cb 10111, . . ., Cb 21122);
[0134] 4. Horizontal Cb edges (Cb 01-11, . .., Cb 12-22);
[0135] 5. Vertical Cr edges (Cr 10111, . . ., Cr 21122);
[0136] 6. Horizontal Cr edges (Cr 01-11, . . ., Cr 12-12).
[0137] Each of the 6 sets of edges is allocated to a set of

computational units, on which it is deblocked in a set of
iterations. If two sets of edges are executed in overlapping
sets of iterations, this implies that they are executed in paral-
lel. If a set of edges is allocated to a non-singleton set of
computational units (i.e., more than a single computational
unit), this implies an internal parallelization in the processing
of said set of edges.

[0138] The actual allocation and order of processing is
subject to availability of computational units and data depen-
dency. In the following, we show allocation of processing in
the preferred embodiments of the invention, though other
allocations are also possible.

Specific Example of the Process Carried out on a Parallel
Architecture with Eight Independent Processing Units

[0139] The most computationally-efficient embodiment of
the parallel deblocking filter according to our invention is
possible on a parallel architecture consisting of at least eight
independent processing units. In the AVIOR architecture, this
corresponds to one group in the eight-cluster configuration.
[0140] FIG. 10 is a diagram illustrating one possible paral-
lelization of luma and chroma edge deblocking on the AVIOR
architecture with 8 clusters or any other parallel processing
architecture with 8 clusters and similar capabilities to the
AVIOR architecture. Iterations go to the right on the horizon-
tal axis, and the cluster number is indicated on the vertical
axis. The process goes as follows:

[0141] In the first iteration, four vertical luma edges (Y
10111, . . ., Y 40141 according to the edge numbering con-
vention presented in FIG. 4) can be deblocked in parallel on
clusters 0-3. On the remaining clusters 4-7, vertical chroma
edges (Cb 10111, Cb 20121 and Cr 10111, Cr 20121) are
deblocked.

[0142] In the second iteration, the next four vertical luma
edges to the right (Y 11112, . . ., Y 41142) are deblocked in
parallel on clusters 0-3. On the remaining clusters 4-7, verti-
cal chroma edges (Cb 11112, Cb 21122 and Cr 11112, Cr
21122) are deblocked.

[0143] In the third iteration, the next four vertical luma
edges to the right (Y 12113, .. .,Y 42143) are processed in
parallel on clusters 0-3. On one of the remaining clusters, e.g.
4, a data independent horizontal luma edge Y 01-11 can be
deblocked.

[0144] In the fourth iteration, the last four vertical luma
edges (Y 13114, . . ., Y 43144) are deblocked in parallel on
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clusters 0-3. On two of the remaining clusters, e.g. 4-5, data
independent horizontal luma edges Y 11-21 and Y 02-12 can
be deblocked.

[0145] Inthe fifthiteration, luma edgesY 21-31,Y 12-22Y
03-13 and Y 04-14 are deblocked in parallel on clusters 4-7.
On the remaining clusters 0-3, horizontal chroma edges (Cb
01-11, Cb 02-12 and Cr 01-11, Cr 02-12) are deblocked.
[0146] In the sixth iteration, luma edges Y 31-41,Y 22-32,
Y 13-23 andY 14-24 are deblocked in parallel on clusters 4-7.
On the remaining clusters 0-3, horizontal chroma edges (Cb
11-21, Cb 12-22 and Cr 11-21, Cr 12-22) are deblocked.
[0147] In the seventh iteration, luma edges Y 3242, Y
23-33 and Y 24-34 are deblocked in parallel on any three of
the available clusters 0-7, e.g., on clusters 5-7.

[0148] In the eight iteration, the last luma edges Y 33-43
and Y 34-44 are deblocked in parallel on any three of the
available clusters 0-7, e.g., on clusters 6-7. The total number
of iterations is 8.

[0149] Using our notation of edge, iteration and cluster
sets, we have:

[0150] 1. thefirstset of edges (vertical luma) is allocated
on the set of clusters 0-3, and processed in the set of
iterations 1-4, with full utilization;

[0151] 2. the second set of edges (horizontal luma) is
allocated on the set of clusters 4-7, and processed in the
set of iterations 3-8. The utilization is not full, due to data
dependency with the first set of edges;

[0152] 3. the third set of edges (vertical Cb) is allocated
on the set of clusters 4-5; and processed in the set of
iterations 1-2, with full utilization;

[0153] 4. the fourth set of edges (horizontal Cb) is allo-
cated on the set of clusters 0-1, and processed in the set
of iterations 5-6, with full utilization;

[0154] 5. thefifthset of edges (vertical Cr)is allocated on
the set of clusters 6-7, and processed in the set of itera-
tions 1-2, with full utilization;

[0155] 6. the sixth set of edges (horizontal Cr) is allo-
cated on the set of clusters 2-3, and processed in the set
of iterations 5-6, with full utilization.

[0156] Other allocations are possible as well, with the same
efficiency. For example, the allocation of Cb and Cr blocks
processing can be exchanged.

Specific Example of the Process Carried out on a Parallel
Architecture with Four Independent Processing Units

[0157] FIGS. 11A and 11B are a diagram illustrating a
possible parallelization of luma and chroma edge deblocking
on the AVIOR architecture with 4 clusters. FIG. 11A illus-
trates the luma edges deblocked during the first 8 iterations,
and FIG. 11B illustrates the chroma edges deblocked during
the las four iterations. The process goes as follows:

[0158] In the first iteration, four vertical luma edges (Y
10111, . . ., Y 40141 according to the edge numbering con-
vention presented in FIG. 4) are deblocked in parallel on
clusters 0-3.

[0159] In the second iteration, the next four vertical luma
edges to the right (Y 11112, .. ., Y 41142) are deblocked in
parallel on clusters 0-3.

[0160] In the third iteration, the next four vertical luma
edges to the right (Y 12113, .. .,Y 42143) are processed in
parallel on clusters 0-3.

[0161] In the fourth iteration, the last four vertical luma
edges (Y 13114, . . ., Y 43144) are deblocked in parallel on
clusters 0-3. This finishes the vertical luma edges.
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[0162] In the fifth iteration, four horizontal luma edges (Y
01-11,...,Y 04-14) are deblocked in parallel on clusters 0-3.
[0163] In the sixth iteration, the next four horizontal luma
edges to the right (Y 11-21, .. ., Y 14-24) are deblocked in
parallel on clusters 0-3.

[0164] In the seventh iteration, the next four horizontal
luma edges to the right (Y 21-31, ...,Y 24-34) are processed
in parallel on clusters 0-3.

[0165] In the eighth iteration, the last four horizontal luma
edges (Y 31-41, . . .,Y 34-44) are deblocked in parallel on
clusters 0-3. This finishes the horizontal luma edges.

[0166] Inthe ninth iteration, two vertical chroma edges (Cb
10111 and Cb 20121) are deblocked in parallel on clusters 0-1,
and two vertical chroma edges (Cr 10111 and Cr 20121) are
deblocked in parallel on clusters 2-3.

[0167] Inthe tenth iteration, two vertical chroma edges (Cb
11112 and Cb 21122) are deblocked in parallel on clusters 0-1,
and two vertical chroma edges (Cr 11112 and Cr 21122) are
deblocked in parallel on clusters 2-3. This finishes the vertical
chroma edges.

[0168] In the eleventh iteration, two horizontal chroma
edges (Cb 01-11 and Cb 02-12) are deblocked in parallel on
clusters 0-1, and two horizontal chroma edges (Cr 01-11 and
Cr 02-12) are deblocked in parallel on clusters 2-3.

[0169] In the twelfth iteration, two horizontal chroma
edges (Cb 11-21 and Cb 12-22) are deblocked in parallel on
clusters 0-1, and two horizontal chroma edges (Cr 11-21 and
Cr 12-22) are deblocked in parallel on clusters 2-3. This
finishes the horizontal chroma edges. The total number of
iterations is 12.

[0170] Using our notation of edge, iteration and cluster
sets, we have:

[0171] 1. thefirstset of edges (vertical luma) is allocated
on the set of clusters 0-3, and processed in the set of
iterations 1-4, with full utilization;

[0172] 2. the second set of edges (horizontal luma) is
allocated on the set of clusters 0-3, and processed in the
set of iterations 5-8, with full utilization;

[0173] 3. the third set of edges (vertical Cb) is allocated
on the set of clusters 0-1, and processed in the set of
iterations 9-10, with full utilization;

[0174] 4. the fourth set of edges (horizontal Cb) is allo-
cated on the set of clusters 0-1, and processed in the set
of iterations 11-12, with full utilization;

[0175] 5.thefifthset ofedges (vertical Cr)is allocated on
the set of clusters 2-3, and processed in the set of itera-
tions 9-10, with full utilization;

[0176] 6. the sixth set of edges (horizontal Cr) is allo-
cated on the set of clusters 2-3, and processed in the set
of iterations 11-12, with full utilization.

[0177] Other allocations are possible as well, with the same
efficiency.

Specific Example of the Process Carried out on a Parallel
Architecture with Two Independent Processing Units

[0178] FIG. 12 is a diagram illustrating a possible parallel-
ization of luma and chroma edge deblocking on the AVIOR
architecture with 2 clusters. The process goes as follows:
[0179] In the first iteration, two top vertical luma edges
from the first column (Y 10111 andY 20121, according to the
edge numbering convention presented in FIG. 4) are
deblocked in parallel on clusters 0-1.
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[0180] In the second iteration, two bottom vertical luma
edges from the first column (Y 30131 and Y 40141) are
deblocked in parallel on clusters 0-1.

[0181] In the third iteration, two top vertical luma edges
from the second column (Y 11112 andY 21122) are deblocked
in parallel on clusters 0-1.

[0182] In the fourth iteration, two bottom vertical luma
edges from the second column (Y 31132 and Y 41142) are
deblocked in parallel on clusters 0-1.

[0183] In the fifth iteration, two top vertical luma edges
from the third column (Y 12113 and Y 2223) are deblocked in
parallel on clusters 0-1.

[0184] In the sixth iteration, two bottom vertical luma
edges from the third column (Y 32133 and Y 42143) are
deblocked in parallel on clusters 0-1.

[0185] Inthe seventh iteration, two top vertical luma edges
from the fourth column (Y 13114 and Y 23124) are deblocked
in parallel on clusters 0-1.

[0186] In the eighth iteration, two bottom vertical luma
edges from the fourth column (Y 33134 and Y 43144) are
deblocked in parallel on clusters 0-1. This finishes the vertical
luma edges.

[0187] Inthe ninth iteration, two left horizontal luma edges
from the first row (Y 01-11 and Y 02-12) are deblocked in
parallel on clusters 0-1.

[0188] In the tenth iteration, two right horizontal luma
edges from the first row (Y 03-13 andY 04-14) are deblocked
in parallel on clusters 0-1.

[0189] In the eleventh iteration, two left horizontal luma
edges from the second row (Y 11-21 and Y 12-22) are
deblocked in parallel on clusters 0-1.

[0190] In the twelfth iteration, two right horizontal luma
edges from the second row (Y 13-23 and Y 14-24) are
deblocked in parallel on clusters 0-1.

[0191] In the thirteenth iteration, two left horizontal luma
edges from the third row (Y 21-31 andY 22-32) are deblocked
in parallel on clusters 0-1.

[0192] Inthe fourteenth iteration, two right horizontal luma
edges from the third row (Y 23-33 andY 24-34) are deblocked
in parallel on clusters 0-1.

[0193] In the fifteenth iteration, two left horizontal luma
edges from the fourth row (Y 31-41 and Y 32-42) are
deblocked in parallel on clusters 0-1.

[0194] In the sixteenth iteration, two right horizontal luma
edges from the fourth row (Y 3343 and Y 34-44) are
deblocked in parallel on clusters 0-1. This finishes the hori-
zontal luma edges.

[0195] In the seventeenth iteration, two vertical Cb chroma
edges from the first column (Cb 10111 and Cb 20121) are
deblocked in parallel on clusters 0-1.

[0196] In the eighteenth iteration, two vertical Cb chroma
edges from the second column (Cb 11112 and Cb 21122) are
deblocked in parallel on clusters 0-1. This finishes the vertical
Cb chroma edges.

[0197] In the nineteenth iteration, two horizontal Cb
chroma edges from the first row (Cb 01-11 and Cb 02-12) are
deblocked in parallel on clusters 0-1.

[0198] Inthe twentieth iteration, two horizontal Cb chroma
edges from the second row (Cb 11-21 and Cb 12-22) are
deblocked in parallel on clusters 0-1. This finishes the hori-
zontal Cb chroma edges.

[0199] In the twenty-first iteration, two vertical Cr chroma
edges from the first column (Cr 10111 and Cr 20121) are
deblocked in parallel on clusters 0-1.
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[0200] In the twenty-second iteration, two vertical Cr
chroma edges from the second column (Cr 11112 and Cr
21122) are deblocked in parallel on clusters 0-1. This finishes
the vertical Cr chroma edges.

[0201] In the twenty-third iteration, two horizontal Cr
chroma edges from the first row (Cr 01-11 and Cr 02-12) are
deblocked in parallel on clusters 0-1.

[0202] In the twenty-fourth iteration, two horizontal Cr
chroma edges from the second row (Cr 11-21 and Cr 12-22)
are deblocked in parallel on clusters 0-1. This finishes the
horizontal Cr chroma edges. The total number of iterations is
24.

[0203] Using our notation of edge, iteration and cluster
sets, we have:

[0204] 1. thefirstset of edges (vertical luma) is allocated
on the set of clusters 0-1, and processed in the set of
iterations 1-8, with full utilization;

[0205] 2. the second set of edges (horizontal luma) is
allocated on the set of clusters 0-1, and processed in the
set of iterations 9-16, with full utilization;

[0206] 3. the third set of edges (vertical Cb) is allocated
on the set of clusters 0-1, and processed in the set of
iterations 17-18, with full utilization;

[0207] 4. the fourth set of edges (horizontal Cb) is allo-
cated on the set of clusters 0-1, and processed in the set
of iterations 19-20, with full utilization;

[0208] 5.thefifthset ofedges (vertical Cr)is allocated on
the set of clusters 0-1, and processed in the set of itera-
tions 21-22, with full utilization;

[0209] 6. the sixth set of edges (horizontal Cr) is allo-
cated on the set of clusters 0-1, and processed in the set
of iterations 23-24, with full utilization.

[0210] Other allocations are possible as well, with the same
efficiency (for example, the order of Cb and Cr processing can
be exchanged).

Parallelization in a Single Edge Deblocking Process by Math-
ematical Tensor Operations Applied on Pixel Values in
Blocks

[0211] Though the H.264 standard defines the derivation
process for the computation of all the filters in the filtering
unit 500, it does not define the exact implementation of these
mathematical operations. To do them on a sequential proces-
sor may require many sequential scalar operations, and thus
be inefficient.

[0212] According to the teachings of the invention, it is
novel to perform the edge deblocking process by expressing
the filter in terms of mathematical tensor operations on two
4x4 blocks of pixels denoted by P and Q in FIGS. 13A and
13B, using any processor capable of doing such operations. In
the following, we exemplify the operations assuming that
such a processor is an AVIOR cluster.

[0213] FIGS. 13A and 13B depict the data used in the
deblocking of a vertical edge 340 or a horizontal edge 341.
Without loss of generality, we will present the teaching of this
invention on the process of vertical edge deblocking, pre-
sented schematically in FIG. 300, though it similarly applies
to horizontal edge deblocking, with appropriate transposition
of the blocks.

[0214] In order to deblock vertical edge 340, each of the
four rows of pixels (comprising a row of 4 pixels to the left of
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the edge 340 in the block 342 and a row of 4 pixels to the right
of the edge 340 in the block 344) must be filtered. The filter
output is computed as a weighted sum of the pixels in the
rows. The actual filtering process and the weights are defined
in the H.264 standard and depend on parameters computed
separately. For each row of pixels, there are three possible
outcomes: long filter result, short filter result and no filter at
all.

[0215] According to the teachings of this invention, a
generic edge filtering is performed using a process with data
flow schematically represented in FIG. 7. All the possible
outcomes for each row of pixels are computed, and then for
each row, one of the outcomes is selected. Though the long
and the short filters can operate in parallel, in the preferred
embodiment on the AVIOR architecture, the computation of
the long filter outputs (P1, Q1) and short filter outputs (Ps, Qs)
and the selectors are implemented on a single cluster as
sequential operations.

Example of Luma Filter Implementation Using Tensor
Operations The following is an example of vertical edge
deblocking filter corresponding to boundary strength value of
4, as defined in the H.264 standard. The process goes as
follows:
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and + is the addition operation, applied element-wise to
a 4x4 matrix, as a SIMD operation, as follows:

ayl arp aiz a4

a1 Ay O3 Qo4

A>>3 = >>3

asp dzp 433 a3q

Q41 Qa2 Q43 Q44

a11>>3 a12>>3 a13>>3 a14>>3
an>>3 ap>>3 axn>>3 ap>>3

a3 >>3 az>>3 azp>>3 az>>3

ayn>>3 ap>>3 a>>3 ag>>3

a)p ap @3 a4 by b bz by

@y ap a3 an by by by by
A+B= +

as; axm a3 as4 by by by bag

a4l Q4 O43 Q44 byy bay bz by
arr+b1y an+by a+biz a+ by
ay +by app+byp ap+by an+by

asp+bsy asa+bsy ass+bs as+by

aqr +by1 ap +byy apt+a agy+by

[0218] Onthe AVIOR cluster, an element-wise operation
on 4x4 matrix is carried out efficiently in a single
instruction Tensor operation, that is, for example, 16
elements of a 4x4 matrix can be added to 16 elements of
another 4x4 matrix as a single instruction.

[0219] The notation A B, where A and B are 4x4 matri-
ces, is used to denote matrix multiplication, whose result
is a 4x4 matrix, computed by adding up element-wise
products of the rows of matrix A by the columns of
matrix B, as follows:

ayrbry +apby +aibsy +aby anbiy +anby +aisbsn +auby  anbis + apbys + aibss +auby anbia +arnbay + aizbis +

by +anba + apbsy +aabar  anbiy +anbn + absy + anbiy  a21b13 + anbys + azsbss + azabaz azbia + apba + azsbsa +

a31bry + aspbyy + assbsy +azabyy  azibiy + asnbyn + assbs + asbay  asibis + asby + assbsz + azabys a3 bia +azpbas + azzbia +

aqrbiy + aabay + aszbsy +asabyy  aqbiy +aanbay + aizbsy + aanbyy  aq1bis + agabys + agzbss + agbas Garbig + aanbag + aazbag +

[0216] 1. Compute the long filter result (two 4x4 blocks, P1
and Ql):
8 200 0122 04 44
0321 0001 04 44
Pl=|P +Q- + >>3
0122 0000 04 44
0122 0000 04 44
0000 221 0) (4440
0000 2210 4 4 40
Ql=|P- +Q- + >>3
1000 1230[74440
2210 0028) laaao0
ayy anp a3 an) (b b bz by
A pe| B @2 s an| by by bys by |
as ax ass as | | bs1 b2 bss baa
Ay Qg Qa3 G4 ) \ba1 byy biz by
[0217] In other words, the long filter output 4x4 matrix

Pl is the P matrix in FIG. 13 A times a weighting matrix
W1, plus the Q matrix in FIG. 13B times a weighting
matrix W2, plus a predetermined third matrix W3, with
the overall result divided by integer 8 on an each element
basis. The same is true for the long filter output 4x4
matrix QI but the weighting matrices are different (71,
72 and 73 replace W1, W2 and W3 above). Here >>3
denotes arithmetic shift right by 3 (integer division by 8)

[0220] The computation results Pl and QI (the long fil-
tered blocks) are 4x4 blocks, in which each row is the
result of the application of the long filter.

[0221] 2.Computethe short filter result (two 4x4 blocks, Ps
and Qs):

Ps=(papp (2p1+potq1+2)>>2)

Os=(2q,+q0+p1+2)>>29,9>93)
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[0222] Ps and Qs are 4x4 matrices formed of four 4x1
vectors, in which each row is the result of the application
of'the short filter. Here ps, p,, p;, P, refer to the columns
of'the 4x4 block P in FIG. 13A, e.g.,

P11
P21
P31
Pa1

and q3,95,9;,9, refer to the columns of the 4x4 block Q
in FIG. 13A, e.g.,

as shown in FIG. 13A.

[0223] The notation p+q refers to element-wise addition
of' 4x1 vectors p and q (columns of pixels 4x4 blocks);
notation 2p implies element-wise multiplication of the
4x1 vector p by 2 and >>2 implies arithmetic right shift
applied element-wise to the 4x1 vector, as follows:

pu pu>>3
pa >>3
p1>>3= Pa >>3 = 8
P31 p3>>3
P41 pay >>3
pu 2pu
pa1 2pu
2p1 =2 = 8
P31 2ps1
pat 2pay
pPu 2pu
2p) =2 pu | _ 2p21 .
P31 2ps1
pat 2pay

[0224] The computation results Ps and Qs are 4x4
blocks, in which each row is the result of the application
of the short filter.

[0225] 3. Compute the masking matrices, which represent
the selection operations:

[0226] DELTA=I(p, po Po Po)-(do 90 9o 90)!
[0227] C1=DELTA<c.
[0228] C2=I(q; q; q; 9:)-(9o 9o 9o 90)!<P

[0229] C3=I(p; p1 P1 P1)~(Po Po Po Po)I<P
[0230] MO=C1&C2&C3

[0231] C6=DELTA<(0>>2+2)
[0232] Mp=I(p, P P2 P2)~(Po Po Po Po)<P &C6

[0233] Mg=1(q; 9, 9> 92)-(do 9o 9o 9o)I<P & C6

[0234] Here o and [ are scalar parameters computed
separately, as defined in the H.264 standard. || denotes
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absolute value applied element-wise to a 4x4 matrix as a
SIMD operation, as follows: [text missing or illeg-
ible when filed]

laitl a2l lasl lagal

laail a2l lazsl laal

ayp app a3 a

=

Al = a1 axp Gz @& _
a31 axm a3 as4 lasil lasal lassl lasal

)
X

Q41 Q42 Q43 Ga4 laatl lagal laas| lasal

[0235] < denotes comparison operation, applied element-
wise to a 4x4 matrix as a SIMD operation and resulting in a
binary matrix, in which, each element equals [text missing
or illegible when filed]if the conditions holds and equal 0
otherwise, For example,

-3 -2 0 -1 1100
1 11 0 2 0000
<0=
2 -10 0 4 0100
6 1 1 0 0000

[0236] & denotes logical AND operation, applied element-
wise to a binary 4x4 matrix (i.e., matrix whose elements are
either 1 or 0) as a SIMD operation. For example,

==}
-0 O O
-0 O O
o o o O
&
==}
o o o O
-0 O O
o o o O

[0237] The matrices MO, Mp and mq are 4x4 matrices with
binary rows (i.e., containing rows equal to either 1 or 0) and
are used as a mathematical representation of the selector 604
in FIG. 7. In mask MO, the value of 0 in a row implies that no
filter should be applied for this row in blocks P and Q. In mask
Mp, the value of 0 in a row implies that the long filter should
be applied for this row in block P. In mask Mq, the value of 0
in a row implies that the long filter should be applied for this
row in block Q.

[0238] 4. combine the long and short filtered results using
the masks:

PF=MO&(Mp&P1+(!Mp)&Ps)+(1MO)&P

Of=MO&(Mq&QI+(1Mq)&Qs)+( MO)&Q

[0239] Here ! denotes logical NOT operation, applied
element-wise to a 4x4 binary matrix as a SIMD opera-
tion. For example, [text missing or illegible when
filed]

[ =
- o o o
- o o o
S = = =
S = = =
—_ — = =

[0240] The result of this computation are the 4x4 matri-
ces Pf and Qf, containing the filtered blocks of pixels
around the edge. This completes the edge deblocking
filtering process.



US 2008/0123750 Al

[0241] Other filtering processes according to the H.264
standard are implemented in a similar manner.

[0242] Although the invention has been disclosed in terms
of the preferred and alternative embodiments disclosed
herein, those skilled in the art will appreciate other alternative
embodiments which do not depart from the ideas expressed
herein. All such alternatives embodiments are intended to be
included within the scope of the claims appended hereto.

What is claimed:
1. A process for carrying out the deblocking filter defined
by the H.264 video coding standard, operating by simulta-
neously deblocking edges in a luma macroblock and Cb and
Cr chroma macroblocks, wherein an edge is a boundary
between two blocks, and vertical edge filtering refers to
changing the pixels in the blocks on the left and the right of the
edge, and horizontal edge filtering refers to changing the
pixels inthe blocks above and below the edge, using a parallel
processing architecture computer having a plurality of com-
putational units (hereafter called clusters);
wherein the vertical luma edges form the first set of edges,
the horizontal luma edges form the second set of edges,
the vertical Cb chroma edges form the third set of edges,
the horizontal Cb chroma edges form the fourth set of
edges, the vertical Cr chroma edges form the fifth set of
edges, the horizontal Cb chroma edges form the sixth set
of'edges; and
wherein the processing of each set of edges is carried on a
plurality of computational units referred to as a set of
clusters, in a set of iterations determined by the data
dependency within the set of edges and with other sets of
edges, such that the first set of edges is processed on the
first set of clusters in the first set of iterations, and so on
for the rest of the sets of edges, mutatis mutandis; and

wherein said sets of clusters and sets of iterations may be
partially or completely overlapping or completely dis-
joint, wherein overlap of the sets of iterations implies
simultaneous processing of parts or entire sets of edges,
and overlap of the sets of clusters implies that processing
of different parts of sets of edges is allocated to the same
computational units.

2. The process of claim 1 wherein each cluster is itself a
parallel processing unit capable of performing operations
simultaneously on luma or chroma block data elements.

3. The process of claim 2 wherein the operations are tensor
operations, which refers to any mathematical arithmetic or
logical operation applied to a matrix on element-wise, col-
umn-wise or row-wise basis, and tensor is a general term
referring to matrices or vectors.

4. The process of claim 1 wherein maximum parallel pro-
cessing of all sets of said edges is performed to achieve
maximum simultaneous deblocking in the fewest number of
iterations such that

during a first set of one or more iterations, all vertical luma

and all vertical chroma edges defined by a predeter-
mined first set of columns are simultaneously
deblocked, and
during a second set of iterations, all vertical luma and all
vertical chroma edges defined by a predetermined sec-
ond set of columns are simultaneously deblocked, and

during a third set of iterations, all vertical luma edges
defined by a predetermined third set of columns and a
predetermined first set of horizontal luma edges defined
by a predetermined first set of rows are simultaneously
deblocked, and
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during a fourth set of iterations, all vertical luma edges
defined by a predetermined fourth set of columns and a
predetermined second set of horizontal luma edges
defined by a predetermined second set of rows are simul-
taneously deblocked, and

during a fitth set of iterations, all horizontal chroma edges

defined by a predetermined first set of rows of said Cb
and Cr chroma macroblocks and a predetermined set of
horizontal luma edges defined by a predetermined set of
rows of said luma macroblock are simultaneously
deblocked, and

during a sixth set of iterations, all horizontal chroma edges

defined by a predetermined second set of rows of said Cb
and Cr chroma macroblocks and a predetermined set of
horizontal luma edges defined by a predetermined set of
rows of said luma macroblock are simultaneously
deblocked, and

during a seventh set of iterations, a predetermined set of

horizontal luma edges defined by a predetermined set of
rows of said luma macroblock and data dependency and
luma edges previous deblocked are simultaneously
deblocked, and [text missing or illegible when
filed]

during an eighth set of iterations, a predetermined set of

horizontal luma edges defined by a predetermined set of
rows of said luma macroblock and data dependency and
luma edges previous deblocked are simultaneously
deblocked to complete the deblocking process,

and wherein simultaneous means all specified edges are

deblocked in one or more iterations but preferably one
iteration but more than one iteration can be used if there
are idle clusters during some iterations and data depen-
dency allows the use of more than one iteration to
deblock the specified set of edges, and wherein sets of
columns and sets of rows means the columns and rows of
luma and Cb and Cr macroblocks defined by data depen-
dency so as to achieve full deblocking of all luma and
chroma edges in the fewest number of iterations.

5. The process of claim 1 wherein said luma macroblock
has a left neighbor macroblock of the same size and an upper
neighbor macroblock of the same size, and wherein said
parallel architecture computer has four clusters, all of which
are used to simultaneously deblock said luma data in the
following sequence:

the vertical edges between the column of 4 blocks in the left

neighbor macroblock and the first and leftmost column
of 4 blocks in the current macroblock in a first iteration,
wherein each of the four edge filtering processes is car-
ried out independently by each cluster;

the vertical edges between the first and the second columns

of 4 blocks in the current macroblock in a second itera-
tion, wherein each of the four edge filtering processes is
carried out independently by each cluster;

the vertical edges between the second and the third col-

umns of 4 blocks in the current macroblock in a third
iteration, wherein each of the four edge filtering pro-
cesses is carried out independently by each cluster;

the vertical edges between the third and the fourth columns

of 4 blocks in the current macroblock in a fourth itera-
tion, wherein each of the four edge filtering processes is
carried out independently by each cluster;
and, the same process applied to horizontal edges, as follows:
A
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the horizontal edges between the row of 4 blocks in the
upper neighbor macroblock and the first and topmost
column of 4 blocks in the current macroblock in a fifth
iteration, wherein each of the four edge filtering pro-
cesses is carried out independently by each cluster;

the horizontal edges between the first and the second rows

of 4 blocks in the current macroblock in a sixth iteration,
wherein each of the four edge filtering processes is car-
ried out independently by each cluster;

the horizontal edges between the second and the third rows

of 4 blocks in the current macroblock in a seventh itera-
tion, wherein each of the four edge filtering processes is
carried out independently by each cluster;

the horizontal edges between the third and the fourth rows

of 4 blocks in the current macroblock in a eighth itera-
tion, wherein each of the four edge filtering processes is
carried out independently by each cluster.

6. The process of claim 1 wherein said luma macroblock
has a left neighbor macroblock of the same size and an upper
neighbor macroblock of the same size, and wherein said
parallel architecture computer has two clusters, all of which
are used to simultaneously deblock said luma data in the
following sequence:

the 2 vertical edges between the upper half of column of

blocks in the left neighbor macroblock and the upper
half of the first and leftmost column of blocks in the
current macroblock in a first iteration, wherein each of
the two edge filtering processes is carried out indepen-
dently by each cluster;

the 2 vertical edges between the lower half of column of

blocks in the left neighbor macroblock and the lower
half of the first and leftmost column of blocks in the
current macroblock in a second iteration, wherein each
of the two edge filtering processes is carried out inde-
pendently by each cluster;

the 2 vertical edges between the upper half of the first

column of blocks and the upper half of the second col-
umn of blocks in the current macroblock in a third itera-
tion, wherein each of the two edge filtering processes is
carried out independently by each cluster;

the 2 vertical edges between the lower half of the first

column of blocks and the lower half of the second col-
umn of blocks in the current macroblock in a fourth
iteration, wherein each of the two edge filtering pro-
cesses is carried out independently by each cluster,

the 2 vertical edges between the upper half of the second

column of blocks and the upper half of the third column
of blocks in the current macroblock in a fifth iteration,
wherein each of the two edge filtering processes is car-
ried out independently by each cluster,

the 2 vertical edges between the lower half of the second

column of blocks and the lower half of the third column
of blocks in the current macroblock in a sixth iteration,
wherein each of the two edge filtering processes is car-
ried out independently by each cluster;

the 2 vertical edges between the upper half of the third

column ofblocks and the upper half of the fourth column
of blocks in the current macroblock in a seventh itera-
tion, wherein each of the two edge filtering processes is
carried out independently by each cluster;

the 2 vertical edges between the lower half of the third

column of blocks and the lower half of the fourth column
of'blocks in the current macroblock in a eighth iteration,
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wherein each of the two edge filtering processes is car-
ried out independently by each cluster,
and, the same process applied to horizontal edges, as follows:
the 2 horizontal edges between the left half of row ofblocks
in the upper neighbor macroblock and the left half of the
first and topmost row of blocks in the current macrob-
lock in a ninth iteration, wherein each of the two edge
filtering processes is carried out independently by each
cluster,

the 2 horizontal edges between the right half of row of
blocks in the upper neighbor macroblock and the right
half of the first and topmost row of blocks in the current
macroblock in a tenth iteration, wherein each of the two
edge filtering processes is carried out independently by
each cluster;

the 2 horizontal edges between the left half of the first row
of blocks and the left half of the second row of blocks in
the current macroblock in an eleventh iteration, wherein
each of the two edge filtering processes is carried out
independently by each cluster;

the 2 horizontal edges between the right half of the first row
of blocks and the right half of the second row of blocks
in the current macroblock in an twelfth iteration,
wherein each of the two edge filtering processes is car-
ried out independently by each cluster;

the 2 horizontal edges between the left half of the second
row of blocks and the left half of the third row of blocks
in the current macroblock in an thirteenth iteration,
wherein each of the two edge filtering processes is car-
ried out independently by each cluster;

the 2 horizontal edges between the right half of the second
row of blocks and the right half of the third row ofblocks
in the current macroblock in an fourteenth iteration,
wherein each of the two edge filtering processes is car-
ried out independently by each cluster;

the 2 horizontal edges between the left half of the third row
of blocks and the left half of the fourth row of blocks in
the current macroblock in an fifteenth iteration, wherein
each of the two edge filtering processes is carried out
independently by each cluster;

the 2 horizontal edges between the right half of the third
row of blocks and the right half of the fourth row of
blocks in the current macroblock in an sixteenth itera-
tion, wherein each of the two edge filtering processes is
carried out independently by each cluster.

7. The process of claim 1 wherein said luma macroblock
has a left neighbor macroblock of the same size and an upper
neighbor macroblock of the same size, and wherein said
parallel architecture computer has eight clusters, all of which
are used to simultaneously deblock said luma data in the
following sequence:

A) a first set of four of said clusters are used to simulta-
neously deblock the 4 vertical luma edges between col-
umn of 4 blocks in the left neighbor macroblock and the
first and leftmost column of 4 blocks in the current
macroblock in a first iteration;

B) the same first set of four of said clusters as were used in
step A are used in a second iteration to simultaneously
deblock the vertical luma edges between the first column
of blocks and the second column of blocks;

C) the same first set of four of said clusters as were used in
step A are used in a second iteration to simultaneously
deblock the vertical luma edges between the second
column of blocks and the third column of blocks; and
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one cluster in the second set of the remaining four clusters
is used to deblock the first, leftmost horizontal luma
edge between row of 4 blocks in the upper neighbor
macroblock and the first topmost row of the current
macroblock during said third iteration; and
D) two cluster of the same first set of four of said clusters as
were used in step A are used in a fourth iteration to
simultaneously deblock the vertical luma edges between
the third column of blocks and the fourth column of
blocks; and
two clusters in the same second set of the remaining four
clusters as were used in step C are used to simulta-
neously deblock:
the first, leftmost horizontal luma edge between the first
row of 4 blocks and the second row of 4 blocks; and
the second from left horizontal luma edge between row
of'4 blocks in the upper neighbor macroblock and the
first topmost row of the current macroblock, during
said fourth iteration; and
E) the same second set of the remaining four clusters as
were used in step C are used to simultaneously deblock:
the first, leftmost horizontal luma edge between the sec-
ond row of 4 blocks and the third row of 4 blocks; and
the second from left horizontal luma edge between the
fisrt row of 4 blocks and the second row of 4 blocks;
and
the third from left horizontal luma edge between row of
4 blocks in the upper neighbor macroblock and the
first topmost row of the current macroblock,
the fourth from left horizontal luma edge between row of
4 blocks in the upper neighbor macroblock and the
first topmost row of the current macroblock, during
said fifth iteration; and
F) the same second set of the remaining four clusters as
were used in step C are used to simultaneously deblock:
the first, leftmost horizontal luma edge between the third
row of 4 blocks and the fourth row of 4 blocks; and
the second from left horizontal luma edge between the
second row of 4 blocks and the third row of 4 blocks;
and
the third from left horizontal luma edge between the
edge between the first row of 4 blocks and the second
row of 4 blocks; and
the fourth from left horizontal luma edge between the
first row of 4 blocks and the second row of 4 blocks;
during a sixth iteration; and
() three of the same second set of the remaining four
clusters as were used in step C are used to simulta-
neously deblock:
the second from left horizontal luma edge between the
third row of 4 blocks and the fourth row of 4 blocks;
and
the third from left horizontal luma edge between the
second row of 4 blocks and the third row of 4 blocks;
and
the fourth from left horizontal luma edge between the
second row of 4 blocks and the third row of 4 blocks;
during a seventh iteration; and
H) two of the same second set of the remaining four clus-
ters as were used in step C are used to simultaneously
deblock:
the third from left horizontal luma edge between the
third row of 4 blocks and the fourth row of 4 blocks;
and
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the fourth from left horizontal luma edge between the
third row of 4 blocks and the fourth row of 4 blocks
during an eighth iteration.

8. The process of claim 7 wherein the chroma (Cb and Cr)
data is simultaneously deblocked with the luma data as fol-
lows: [text missing or illegible when filed]

1) using the same said second set of the remaining four
clusters as was used in step C to simultaneously deblock
during said first iteration:
the vertical edges of 2 blocks in the first column ofthe Cb

chroma macroblock; and
the vertical edges of 2 blocks in the first column of the Cr
chroma macroblock;
J) using the same said second set of the remaining four
clusters as was used in step C to simultaneously deblock
during said second iteration:
the vertical edges of 2 blocks in the second column next
on the right to said first column of the Cb chroma
macroblock; and

the vertical edges of 2 blocks in the second column next
on the right to said first column of the Cr chroma
macroblock;

K) using the same said first set of four clusters as were used
in step A to simultaneously deblock during said fifth
iteration:
the horizontal edges of 2 blocks in the first topmost row

of the Cb chroma macroblock; and
the horizontal edges of 2 blocks in the first topmost row
of the Cr chroma macroblock;
L) using the same said first set of four clusters as were used
in step A to simultaneously deblock during said sixth
iteration:
the horizontal edges of 2 blocks in the second row next
below said first row of the Cb chroma macroblock;
and

the horizontal edges of 2 blocks in the second row next
below said first row of the Cr chroma macroblock.

9. A process for deblocking in a parallel architecture com-
puter, comprising the steps:

A) determining data independent calculations in the
deblocking process for the vertical edges of a macrob-
lock in a first column of blocks of said macroblock;

B) loading blocks of pixels needed for at least some of the
data independent calculations determined in step A into
clusters of a parallel architecture computer, wherein the
number blocks than can be processed on each iteration is
bounded by the number of available clusters and the data
dependency;

C) simultaneously calculating deblocking of said blocks in
all clusters loaded in step B and storing said filtered pixel
values;

D) repeating steps A through D in multiple iterations until
all vertical edges in all columns of a macroblock have
been deblocked;

E) if any clusters of said parallel architecture are unused
during said iterations of deblocking of said vertical
edges, determining ripeness of horizontal edges for
deblocking by determining if any horizontal edge or
edges in said macroblock can be deblocked because final
values for pixels in the blocks that define said horizontal
edge have been deblocked for the last time during
deblocking of said macroblock, and if it is determined
that one or more horizontal edges of said macroblock are
ripe for deblocking, loading the blocks needed to



US 2008/0123750 Al

deblock said horizontal edge or edges into unused clus-
ters and deblocking said horizontal edge or edges simul-
taneously with deblocking of said vertical edges; and

F) continuing to use clusters of said parallel architecture
computer in a plurality of iterations to deblock filter
horizontal edges of said macroblock as said blocks have
their pixel values finally adjusted during the process of
deblocking said vertical edges and continuing said itera-
tions until all said horizontal edges have been
deblocked.

10. A computer-readable medium having stored therein
computer-readable instructions which, when executed by a
computer, cause said computer to carry out the following
process:

A) determining data independent calculations in the
deblocking process for the vertical edges of a macrob-
lock in a first column of blocks of said macroblock;

B) loading blocks of pixels needed for at least some of the
data independent calculations determined in step A into
clusters of a parallel architecture computer, [text miss-
ing or illegible when filed]wherein the number
blocks than can be processed on each [text missing or
illegible when filed]number of available clusters and
the data dependency;

C) simultaneously calculating deblocking of said blocks in
all clusters loaded in step B and storing said filtered pixel
values;

D) repeating steps A through D in multiple iterations until
all vertical edges in all columns of a macroblock have
been deblocked;

E) if any clusters of said parallel architecture are unused
during said iterations of deblocking of said vertical
edges, determining ripeness of horizontal edges for
deblocking by determining if any horizontal edge or
edges in said macroblock can be deblocked because final
values for pixels in the blocks that define said horizontal
edge have been deblocked for the last time during
deblocking of said macroblock, and if it is determined
that one or more horizontal edges of said macroblock are
ripe for deblocking, loading the blocks needed to
deblock said horizontal edge or edges into unused clus-
ters and deblocking said horizontal edge or edges simul-
taneously with deblocking of said vertical edges; and

F) continuing to use clusters of said parallel architecture
computer in a plurality of iterations to deblock filter
horizontal edges of said macroblock as said blocks have
their pixel values finally adjusted during the process of
deblocking said vertical edges and continuing said itera-
tions until said horizontal edges have been deblocked.

11. A computer programmed to preform deblocking of
horizontal and vertical edges of a luma macroblock, said
computer having a plurality of calculation clusters, compris-
ing:

first means for deblocking all the vertical edges in a luma
macroblock in multiple iterations using a plurality of
computing clusters of a parallel architecture computer,
said means for deblocking the columns of vertical of a
edges in the order determined by their data dependencies
with at least some of the data independence vertical
edges in each iteration being simultaneously deblocked
using multiple ones of said clusters operated simulta-
neously; and [text missing or illegible when filed]

second means for deblocking all the horizontal edges in a
luma macroblock in multiple iterations using a plurality
of computing clusters of a parallel architecture com-
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puter, said second means for deblocking the columns of
horizontal edges in the order determined by their data
dependencies with at least some of the data independent
vertical edges in each iteration being simultaneously
deblocked using multiple ones of said clusters operated
simultaneously.

12. The apparatus of claim 11 further comprising means for
using clusters that are unused during certain iterations to
deblock luma pixel edges to deblock all vertical and horizon-
tal chroma pixel edges in chroma macroblocks associated
with said luma macroblock.

13. A process to calculate filtered pixel values to deblock an
edge, using a computer capable of performing mathematical
tensor operations to perform column-wise, row-wise and ele-
ment-wise multiplication of 4x4 matrices, wherein one or
more matrices of weights defined in the H.264 video coding
standard is multiplied by one or more matrices of luma or
chroma pixel values of a first block and a second block which
define an edge between them which is to be deblocked, and
the matrix multiplication results are combined so as to derive
the deblocking filter output for said first and second blocks.

14. The process of claim 13 wherein the two blocks con-
taining the pixels across the edge to be deblocked (either
vertically or horizontally) are referred to as 4x4 matrices P
and Q, respectively, the filtered blocks are denoted by P' and
Q' respectively, and the computation of the deblocking filter
output for said blocks is performed as follows:

1) computation of the long filter output for block P,

described by the mathematical formula

PI=P-W1+Q-W2+W3

[text missing or illegible when filed]
wherein multiplication is understood as matrix multiplication
and W1, W2 and W3 are constant matrices, derived from the
H.264 video coding standard specifications;
2) computation of the short filter output for the block P,
described by the mathematical formula

Ps=(papp (2p1+potq1+2)>>2)

3) computation of the long filter output for block Q,
described by the mathematical formula

QI=P-Z1+Q-Z2+73

wherein multiplication is understood as matrix multiplication

and 71, 72 and 73 are constant matrices, derived from the
H.264 video coding standard specifications;

4) computation of the short filter output for the block Q,
described by the mathematical formula

Os=(2q,+q0+p1+2)>>29,9>93)

5) computation of a binary row- or column-wise 4x4 mask
matrix Mp, deciding for each row or column of P,
whether the long or the short filter should be operated on
it, according to the specifications of the H.264 video
coding standard, wherein the value of 1 in a row corre-
sponds to the long filter and the value of O corresponds to
the short filter.

6) computation of a binary row- or column-wise 4x4 mask
matrix Mq, deciding for each row or column of Q,
whether the long or the short filter should be operated on
it, according to the specifications of the H.264 video
coding standard, wherein the value of 1 in a row corre-
sponds to the long filter and the value of O corresponds to
the short filter.
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7) computation of a binary row-wise 4x4 mask matrix MO,
deciding for each row of P and Q whether it should be
filtered, according to the specifications of the H.264
video coding standard, wherein the value of 1 in a row
corresponds to operating the filter and the value of 0
corresponds to not operating the filter.

8) combining the long and short filtered results using the
masks:

PF=MO&(Mp&P1+(!Mp)&Ps)+(1MO)&P

Of=MO&(Mq&QI+(1Mg)&Qs)+( MO)&Q

where ! denotes logical NOT operation, applied element-wise
to a 4x4 binary matrix as a SIMD operation. [text missing
or illegible when filed]

15. The process of claim 14, wherein all the [text missing
or illegible when filed]performed in integer arithmetic,
including the operation [text missing or illegible when
filed]by powers of 2 carried out using arithmetic shift.

16. A process for deblocking an edge defined by two 4x4
blocks of pixels comprising:

performing a long filtering process and a short filtering

process on each row of pixels defined by said two 4x4
blocks;
for each row of a deblocked 4x4 output block correspond-
ing to each of said two 4x4 blocks of pixels which are
input to the deblocking process, selecting either the
results calculated by said long filter or the results calcu-
lated by said short filter or the original pixel data of the
row based upon predetermined selection criteria.
17. The process of claim 16 wherein each long filtering
process and each short filtering process is carried out in a
hardwired circuit.
18. The process of claim 16 wherein each long filtering
process and each short filtering process is carried out in a
software process.
19. The process of claim 16 wherein each long filtering
process and each short filtering process is carried out as a
tensor operation in a computational unit of a parallel process-
ing computer wherein said computation unit is capable of
processing 4x4 matrix data and processes all four rows of
pixel data simultaneously in each of said long filter and short
filter processes. [text missing or illegible when filed]
20. The process of claim 16 wherein said long filter pro-
cesses are carried out simultaneously.
21. An apparatus comprising:
first means for simultaneously deblocking a first plurality
of vertical luma edges and a first plurality of Cb and Cr
chroma edges in a first two iterations, all edges being
deblocked in the order required by data dependency;

second means for simultaneously deblocking a second plu-
rality of luma vertical edges and a first plurality of hori-
zontal luma edges during third and fourth iterations, all
edges being deblocked in the order required by data
dependency;

third means for simultaneously deblocking a first plurality

of Cb and Cr chroma horizontal edges and second plu-
rality of horizontal luma edges during fifth and sixth
iterations, all said edges being deblocked in the order
required by data dependency;

fourth means for simultaneously deblocking a third plural-

ity of horizontal luma edges during seventh and eighth
iterations, all edges being deblocked in the order
required by data dependency.
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22. A process comprising:

simultaneously deblocking a first plurality of vertical luma
edges and a first plurality of Cb and Cr chroma edges in
a first two iterations, all edges being deblocked in the
order required by data dependency;
simultaneously deblocking a second plurality of luma ver-
tical edges and a first plurality of horizontal luma edges
during third and fourth iterations, all edges being
deblocked in the order required by data dependency;

simultaneously deblocking a first plurality of Cb and Cr
chroma horizontal edges and second plurality of hori-
zontal luma edges during fifth and sixth iterations, all
said edges being deblocked in the order required by data
dependency; [text missing or illegible when filed]

simultaneously deblocking a third plurality of horizontal
luma edges during seventh and eighth iterations, all
edges being deblocked in the order required by data
dependency.

23. A computer-readable medium having stored thereon
computer-readable instructions which, when executed by one
or more computational units causes said one or more compu-
tational units to perform the following process:

simultaneously deblocking a first plurality of vertical luma

edges and a first plurality of Cb and Cr chroma edges in
a first two iterations, all edges being deblocked in the
order required by data dependency;
simultaneously deblocking a second plurality of luma ver-
tical edges and a first plurality of horizontal luma edges
during third and fourth iterations, all edges being
deblocked in the order required by data dependency;

simultaneously deblocking a first plurality of Cb and Cr
chroma horizontal edges and second plurality of hori-
zontal luma edges during fifth and sixth iterations, all
said edges being deblocked in the order required by data
dependency;

simultaneously deblocking a third plurality of horizontal

luma edges during seventh and eighth iterations, all
edges being deblocked in the order required by data
dependency.

24. An apparatus for deblocking an edge defined by a left
block of pixels and a right block of pixels comprising:

means for doing the long filter and short filter deblocking

calculations simultaneously to deblock a left block of
pixels; and

means for doing the long filter and short filter deblocking

calculations simultaneously to deblock a right block of
pixels. [text missing or illegible when filed]

25. The apparatus of claim 24 wherein each of [text miss-
ing or illegible when filed]programmed computational
unit of a parallel processing computer capable of perfor-
mance tensor operations on matrix data such that all rows of
each of said left and right [text missing or illegible when
filed]pixels are deblocked simultaneously as the deblocking
result for each of said left and right blocks of pixels is calcu-
lated.

26. The apparatus of claim 25 wherein each of said means
includes means to select the long filter result, the short filter
result or not filtering at all for each row of said left or right
block of pixels being deblocked.

27. A process for deblocking an edge defined by left and
right blocks of pixels comprising the steps:

A) doing long filter and short filter deblocking calculations

simultaneously to deblock a left block of pixels; and

B) doing long filter and short filter deblocking calculations

simultaneously to deblock a right block or pixels.
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28. The process of claim 27 wherein steps A and B each
comprise performing tensor operations on matrix data such
that all rows of each of said left and right blocks of pixels are
deblocked simultaneously as the deblocking result for each of
said left and right blocks of pixels is calculated.

29. The process of claim 28 wherein steps A and B each
comprise selecting the long filter result, the short filter result
or no filtering at all for each row of said left or right block of
pixels being deblocked. [text missing or illegible when
filed]

30. A deblocking process carried out on a parallel archi-
tecture computer comprising of a plurality of clusters, which
are capable of operating simultaneously and independently of
each other, wherein the deblocking process has three levels of
parallelization, comprising simultaneously processing mul-
tiple edges of luma and/or chroma data defined by different
blocks of the luma and/or chroma pixel data during predeter-
mined iterations, with the number of edges being simulta-
neously processed and whether the edges are luma, chroma or
both and whether the edges are horizontal or vertical deter-
mined by the number of clusters in said parallel architecture
computer and by the inherent data dependency.

31. A deblocking process carried out in eight iterations on
aparallel architecture computer comprising of eight clusters,
each of which is capable of operating simultaneously and
independently of each other, wherein the deblocking has mul-
tiple levels of parallelization in that both horizontal and ver-
tical edges are processed simultaneously during some itera-
tions, both luma and chroma edges are processed
simultaneously during some iterations and wherein multiple
rows of pixels in each block are processed simultaneously,
wherein said deblocking process comprises:

A) simultaneously processing multiple edges of luma and/
or chroma data defined by different blocks of the luma
and/or chroma pixel data during predetermined itera-
tions, with the number of edges being simultaneously
processed during any particular iteration and whether
the edges are luma, chroma or both during any particular
iteration and whether the edges are horizontal or vertical
during any particular iteration is determined by the num-
ber of clusters in said parallel architecture computer and
by the inherent data dependency;

B) and wherein the horizontal and vertical luma and
chroma edges are divided into 6 predetermined sets and
wherein deblocking of set of edges 1 is carried out dur-
ing iterations 1 through 4, the deblocking of set of edges
2 is carried out in iterations 3 through 8, the deblocking
of set of edges 3 is carried out in iterations 1 and 2, the
deblocking of set of edges 4 is carried out in iterations 5
and 6, the deblocking of set of edges 5 is carried out in
iterations 1 and 2, and the [text missing or illegible
when filed]deblocking of set of edges 6 is carried out in
iterations 5 and 6, wherein when the iterations numbers
of the various sets of edges overlap, it means the edges
are being simultaneously deblocked.

32. A computer-readable medium having stored thereon
computer-readable instructions which, when executed by a
parallel processing computer having a plurality of computa-
tional units called clusters, cause said parallel processing
computer to perform the following deblocking process to
deblock all the vertical and horizontal luma and chroma edges
of'a macroblock in eight iterations, said process comprising:
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1) simultaneously deblocking a predetermined plurality of
vertical luma edges and multiple vertical Cb and Cr
chroma edges on all eight clusters during a first two of
eight iterations; and

2) simultaneously deblocking a plurality of luma vertical
edges and one luma horizontal edge during a third itera-
tion using five of said plurality of clusters;

3) simultaneously deblocking a plurality of luma vertical
edges and two luma horizontal edges during a fourth
iteration using six of said clusters;

4) simultaneously deblocking a plurality of Cb and Cr
chroma horizontal edges and a plurality of luma hori-
zontal edges during a fifth and sixth iteration using all
eight clusters;

5) simultaneously deblocking a plurality of horizontal
luma edges during a seventh iteration using three clus-
ters; and

6) simultaneously deblocking a plurality of horizontal
luma edges during an eighth iteration using two clusters;

and wherein the order of deblocking of luma and chroma
vertical and horizontal edges is determined by data
dependency.

33. A process for simultaneously deblocking luma and
chroma macroblocks over a plurality iterations using a paral-
lel processing computer which has a plurality of computa-
tional units such that some are idle during some of said
iterations, each [text missing or illegible when filed]
computational unit optimized for tensor operations on matrix
data, each computational unit called a cluster, said process
deblocking a luma macroblock and Cb and Cr macroblocks
simultaneously during a plurality of iterations, said process
comprising the steps:

1) simultaneously deblocking a first set vertical luma edges
and a first set of vertical Cb and Cr chroma edges on a
first set of clusters during a first set of said plurality of
iterations; and

2) simultaneously deblocking a second set of vertical luma
edges and a first set of one or more luma horizontal edge
during a second set of one or more iterations using a
second set of said plurality clusters; 3) simultaneously
deblocking a first set of Cb and Cr horizontal chroma
edges and a second set of horizontal luma edges during
a third set iteration using third set of said clusters;

4) simultaneously deblocking a third set ofhorizontal luma
edges during a fourth set of iterations using a fourth set
of clusters;

and wherein the order of deblocking of luma and chroma
vertical and horizontal edges is determined by data
dependency.

34. A parallel processing architecture computer having a
plurality of computational units called clusters, said com-
puter programmed to perform the following process to
deblock luma and chroma macroblocks of a video frame
simultaneously over a plurality of iterations using a plurality
of said clusters:

1) simultaneously deblocking a first set vertical luma edges
and a first set of vertical Cb and Cr chroma edges on a
first set of clusters during a first set of said plurality of
iterations; and

2) simultaneously deblocking a second set of vertical luma
edges and a first set of one or more luma horizontal edge
during a second set of one or more iterations using a
second set of said plurality clusters; [text missing or
illegible when filed]
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3) simultaneously deblocking a first set Cb and Cr horizon-
tal chroma edges and a second set of horizontal luma
edges during a third set iteration using third set of said
clusters;

4) simultaneously deblocking a third set of horizontal luma
edges during a fourth set of iterations using a fourth set
of clusters;

and wherein the order of deblocking of luma and chroma
vertical and horizontal edges is determined by data
dependency.

35. A computer-readable medium having stored thereon
computer-readable instructions which when executed by a
parallel processing architecture computer having a plurality
of computational units called clusters cause said clusters to
perform the following process to deblock luma and chroma
macroblocks of a video frame simultaneously over a plurality
of iterations using a plurality of said clusters:

1) simultaneously deblocking a first set vertical luma edges
and a first set of vertical Cb and Cr chroma edges on a
first set of clusters during a first set of said plurality of
iterations; and

2) simultaneously deblocking a second set of vertical luma
edges and a first set of one or more luma horizontal edge
during a second set of one or more iterations using a
second set of said plurality clusters;

3) simultaneously deblocking a first set of Cb and Cr hori-
zontal chroma edges and a second set of horizontal luma
edges during a third set iteration using third set of said
clusters;

4) simultaneously deblocking a third set of horizontal luma
edges during a fourth set of iterations using a fourth set
of clusters;

and wherein the order of deblocking of luma and chroma
vertical and horizontal edges is determined by data
dependency.

36. An apparatus comprising: [text missing or illegible

when filed]

first means for simultaneously deblocking a first set of
vertical luma edges and a first set of vertical Cb and Cr
chroma edges over a first set of iterations using a first set
of clusters of a parallel processing architecture com-
puter;
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second means for simultaneously deblocking a second set
of vertical luma edges and a first set of horizontal luma
edges over a second set of iterations using a second set of
clusters;
third means for simultaneously deblocking a first set of Cb
and Cr horizontal chroma edges and a second set of
horizontal luma edges over a third set of iterations using
a third set of said clusters;

fourth means for simultaneously deblocking a third set of
horizontal luma edges over a fourth set of iterations
using a fourth set of clusters;

and wherein said first, second, third and fourth means are

structured to deblock said vertical and horizontal luma
and chroma edges in an order determined by data depen-
dency.

37. Aprocess to calculate filtered pixel values to deblock an
edge, using a computer capable of performing mathematical
tensor operations to perform column-wise, row-wise and ele-
ment-wise multiplication of 4x4 matrices, wherein one or
more matrices of weights defined in the H.264 video coding
standard is multiplied by one or more matrices of luma or
chroma pixel values of a first block and a second block which
define an edge between them which is to be deblocked, and
the matrix multiplication results are combined so as to derive
the deblocking filter output for said first and second blocks.

38. A parallel processing computer having a plurality of
computing clusters, and programmed to perform deblocking
of vertical and horizontal edges of luma and/or chroma mac-
roblocks, said program controlling said computer to perform
the following process: [text missing or illegible when
filed

usi:Lg one or more clusters of a parallel processing com-

puter capable of performing matrix mathematical opera-
tions to multiply one or more matrices of weights
defined in the H.264 video coding standard by on or
more matrices of pixel values of a first block and a
second block which define an edge between them which
is to be deblocked, and to combine the matrix multipli-
cation results so as to derive the deblocking filter output
for said and second blocks.
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