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Abstract. In this paper, we address the problem of partial comparison
of non-rigid objects. We introduce a new class of set-valued distances,
related to the concept of Pareto optimality in economics. Such distances
allow to capture intrinsic geometric similarity between parts of non-rigid
objects, obtaining semantically meaningful comparison results. The nu-
merical implementation of our method is computationally efficient and is
similar to GMDS, a multidimensional scaling-like continuous optimiza-
tion problem.

1 Introduction

Analysis of non-rigid objects is an important field emerging in the pattern recog-
nition community [16, 25, 14, 28]. Such problems arise, for example, in face recog-
nition [6, 7], matching of articulated objects [27, 21, 30, 24, 5], image segmentation
[20], texture mapping and morphing [9, 3]. A central problem is defining a mean-
ingful criterion of similarity between non-rigid objects. Such a criterion should
be invariant to deformations, have metric properties and allow for consistent
discretization and efficient computation.

Theoretically, many natural deformations of objects can be modeled as near-
isometric (distance preserving) transformations. The problem in this setting is
translated into finding intrinsic geometric similarity between the objects. Early
attempts of approximate isometry-invariant comparison were presented by Elad
and Kimmel [16]. The authors proposed representing the intrinsic geometry of
objects in a common metric space with simple geometry, thereby allowing to
undo the degrees of freedom resulting from isometries. Representations obtained
in such a way were called the bending-invariant canonical forms and were com-
puted using multidimensional scaling (MDS) [1]. The Elad-Kimmel method is
not exactly isometry-invariant because of the inherent error introduced by such
an embedding.

Mémoli and Sapiro [25] used the Gromov-Hausdorff distance, introduced in
[18] for the comparison of metric spaces. This distance has appealing theoretical
properties but its computation is NP-hard. The authors proposed an algorithm
that approximates the Gromov-Hausdorff distance in polynomial time by com-
puting a different distance related to it by a probabilistic bound. In follow-up



2

works, Bronstein et al. showed a different approach, according to which the com-
putation of the Gromov-Hausdorff distance is formulated as a continuous MDS-
like problem and solved efficiently using a local minimization algorithm [10, 8].
This numerical framework was given the name of generalized MDS (GMDS).

Here, we address an even more challenging setting of the non-rigid object
analysis problem – partial comparison of non-rigid objects. In this setting, we
need to find similarity between non-rigid objects having similar subsets. Such
a situation is very common in practice, for example, in three-dimensional face
recognition, where due to imperfect data acquisition, use of eyeglasses, or changes
in the facial hair, parts of the objects may be missing or differ substantially [2].
Attempts to cope with such artifacts were presented in [4]. In two-dimensional
shape recognition, partial comparison is an underlying problem of many shape
similarity methods, attempting to divide the objects into meaningful parts, com-
pare the parts separately and then integrate the partial similarities together [26].
Psychophysical research suggests there is strong evidence that such a “recogni-
tion by parts” mechanism is employed by the human vision [19]. Unfortunately,
we do not have a clear understanding of how our brain partitions the objects
we see into meaningful parts, and therefore, cannot give a precise definition of
a part [27]. The recent work of Latecki et al. [23] allows to avoid the ambiguous
definition of a part by finding a simplification of shapes which minimizes some
criterion of similarity.

The main contribution of this paper is a new class of set-valued distances,
related to the concept of Pareto optimality in economics. Such distances allow
to capture intrinsic geometric similarity between parts of non-rigid objects. We
show that the Paretian similarity can be efficiently computed using numerics
resembling the GMDS. This paper is organized as follows. In Section 2, we
present the theoretical background and briefly overview the properties of the
Gromov-Hausdorff distance. In Section 3 we introduce the Paretian similarity,
and in Section 4 show how to efficiently compute it. Section 5 demonstrates
some experimental results. Though we deal with three-dimensional objects, the
method is generic and can be applied to two-dimensional non-rigid objects as well
(see for example [24, 5]). Section 6 concludes the paper. Due to space limitations,
we do not prove our results here. The proofs will be published in the extended
version of this paper.

2 Theoretical background

We model the objects as two-dimensional smooth compact connected and com-
plete Riemannian manifolds (surfaces), possibly with boundary. We will denote
the space of such objects by M. An object S ∈ M is equipped with the metric
dS : S ×S → R, induced by the Riemannian structure; dS(s, s′) is referred to as
the geodesic distance between the points s, s′. The Riemannian structure of the
surface also defines a measure µS(S ′), which measures the area of the set S ′ ⊂ S.
We denote the corresponding σ-algebra (a collection of subsets of S closed under
countable union and complement, on which the measure µS is defined) by ΣS .
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A property will be said to hold almost everywhere (abbreviated as a.e.) on S if
it holds on a subset S ′ ⊆ S with µS(S ′c) = µS(S \ S ′) = 0.

The pair (S, dS) can be thought of as a metric space. In a broad sense, we
refer to the distance structure of S as to its intrinsic geometry, to distinguish it
from the way in which the surface is embedded into the ambient space, which
is called the extrinsic geometry. Given a subset S ′ ⊂ S, we have two meaning-
ful ways to define a metric on it. One possibility is to restrict the metric dS
to S ′, i.e., dS |S′(s, s′) = dS(s, s′) for all s, s′ in Sr. Such metric is called the
restricted metric. Another possibility is to derive the metric from the Rieman-
nian structure of S ′; we call it the induced metric and denote it by dS′ . dS′
coincides with dS |S′ if S ′ is geodesically convex. A subset Sr ⊂ S with the re-
stricted metric dS |Sr is called an r-covering of S if S =

⋃
s∈Sr BS(s, r), where

BS(s0, r) = {s ∈ S : dS(s, s0) < r} is a ball of radius r around s0 in S. In prac-
tical applications, finite coverings of S are of particular interest. Such coverings
always exist assuming that S is compact.

Two objects S and Q are said to be isometric if they are identical from the
point of view of their intrinsic geometry. This implies the existence of a bijective
bi-Lipschitz continuous distance preserving map called an isometry. In practice,
genuine isometries rarely exist, and objects encountered in the real life may be
only nearly-isometric. A map f : S → Q is said to have distortion ε if

dis f = sup
s,s′∈S

|dS(s, s′)− dQ(f(s), f(s′))| = ε. (1)

We say that S is ε-isometrically embeddable into Q if dis f ≤ ε. Such f is called
an ε-isometric embedding. If in addition f is ε-surjectivie (i.e. dQ(q, f(S)) ≤ ε
for all q ∈ Q, where the set-to-point distance is defined as dQ(q, f(S)) =
infs∈SdQ(q, f(s))), it is called an ε-isometry, and S and Q are called ε-isometric.
In [18], Mikhail Gromov introduced a criterion of similarity between metric
spaces, commonly known today as the Gromov-Hausdorff distance. For compact
spaces, it can be written in the following way:

dGH(Q,S) =
1
2

inf
f :S→Q
g:Q→S

max{dis f, dis g, dis (f, g)}, (2)

where dis (f, g) = sups∈S,q∈Q |dS(s, g(q))− dQ(q, f(s))|. The Gromov-Hausdorff
distance is a metric on the quotient space M\ Iso(M), the space in which a point
represents the equivalence class of all the self-isometries of an object. Another
property of dGH will be of fundamental importance for us: (i) if dGH(S,Q) ≤ ε,
then S and Q are 2ε-isometric; (ii) if S and Q are ε-isometric, then dGH(S,Q) ≤
2ε. Particularly, for ε = 0 we have the isometry invariance property: dGH(S,Q) =
0 if and only if S and Q are isometric [13].

It may happen that S and Q are not ε-isometric, but parts of them are.
To describe such a situation, we introduce the notion of (λ, ε)-isometry : S
and Q are said to be (λ, ε)-isometric if there exist S ′ ⊆ S and Q′ ⊆ Q with
max{µS(S ′c), µQ(Q′c)} ≤ λ, such that (S ′, dS′ |S) and (Q′, dQ′ |Q) are ε-isometric.
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3 Paretian similarity

We can define partial similarity by saying that two objects are partially similar if
they have large similar parts. What is implied by the words “similar” and “large”
is a semantic question. Formally, we define a part S ′ as a subset of S belonging
to the σ-algebra ΣS (this condition is necessary in order for the part to be
measurable). In our problem, it is natural to use intrinsic geometric similarity of
parts, quantified by the Gromov-Hausdorff distance. The part size is quantified
by the absolute or the normalized measure on the surface. We can give a more
precise definition to partial similarity in the following way: two objects S and Q
are partially similar if they have parts S ′ ∈ ΣS and Q′ ∈ ΣQ of large measure
µS(S ′) and µQ(Q′), such that (S ′, dS |S′) and (Q′, dQ|Q′) are nearly isometric.
Note that we use the restricted metric on S ′ and Q′; this fact will allow pre-
compute the distances only ones and not recompute them every time for each
S ′ and Q′.

We will denote by ε(S ′,Q′) = dGH(S ′,Q′) the similarity of S ′ and Q′, and by
λ(S ′,Q′) = max{µS(S ′c), µQ(Q′c)} the partiality, representing the size of the re-
gion we crop off from the objects.1 The computation of partial similarity can be
formulated as a multicriterion optimization problem: among all the possible pairs
(S ′,Q′) ∈ ΣS ×ΣQ, find one that simultaneously minimizes ε and λ. In this for-
mulation, our approach can be seen as a generalization of [23]. Obviously, in most
cases it is impossible to bring both criteria to zero because they are competing.
Each (S ′,Q′) can be represented as a point (λ(S ′,Q′), ε(S ′,Q′)) in the plane. At
certain points, improving one criterion inevitably compromises the other. Such
solutions, representing the best tradeoff between the criteria, are called Pareto
optimal in economics. This notion is closely related to rate-distortion analysis
in information theory [15] and to receiver operation characteristics in pattern
recognition [17]. We say that (S∗,Q∗) is a Pareto optimum if at least one of the
following holds,

ε(S∗,Q∗) ≤ ε(S ′,Q′); or,
λ(S∗,Q∗) ≤ λ(S ′,Q′), (3)

for all S ′ ⊆ S and Q′ ⊆ Q. The set of all the Pareto optimal solutions is called
the Pareto frontier and can be visualized as a planar curve (see Figures 1–2).
Solutions below this curve do not exist.

The fundamental difference between the Paretian similarity and similarity
in the traditional sense (which can be quantified by a scalar “distance” value),
is the fact that we have a multitude of similarities, each corresponding to a
Pareto optimum. We can think of the Pareto frontier as of a generalized, set-
valued distance, which is denoted here by dP. Set-valued distance requires a
redefinition of notions commonly associated with scalar-valued distances. For
instance, it is usually impossible to establish a full order relation between the
distances dP(Q,S) and dP(Q,R), since they may be mutually incompatible. We

1 Partiality can be defined in other ways, for example, λ(S ′,Q′) = µS(S ′c)+µQ(Q′c).
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can only define point-wise order relations in the following way: if (λ0, ε0) is above
dP(Q,S), we will write dP(Q,S) < (λ0, ε0); other strong and weak inequalities
are defined in a similar way. The notation (λ0, ε0) ∈ dP(Q,S) will be used to say
that (λ0, ε0) is a Pareto optimum. Using this definition, we can summarize the
properties of Paretian similarity as follows:

Theorem 1 (Properties of dP). The distance dP satisfies:

(P1) Non-negativity: dP(Q,S) ⊆ [0,∞)× [0,∞).
(P2) Symmetry: dP(Q,S) = dP(S,Q).
(P3) Monotonicity: If dP(Q,S) ≤ (λ, ε), then dP(Q,S) ≤ (λ′, ε) for every
λ′ ≥ λ, and dP(Q,S) ≤ (λ, ε′) for every ε′ ≥ ε.
(P4) Partial similarity: (i) If dP(Q,S) ≤ (λ, ε), then S and Q are (λ, 2ε)-
isometric; (ii) if S and Q are (λ, ε)-isometric, then dP(Q,S) ≤ (λ, 2ε).
(P5) Consistency to sampling: If Sr and Qr are finite r-coverings of two
shapes of bounded curvature S and Q, respectively, then limr→0 dP(Q,Sr) =
dP(Q,S).

Properties (P1)-(P5) follow from the properties of the Gromov-Hausdorff dis-
tance (see e.g. [8]). Due to space limitations, we do not give a formal proof
of this theorem. (0, 0) ∈ dP(Q,S) if and only if there exists an a.e. isometry
between S and Q.

3.1 Converting set-valued distances into scalar-valued distances

In order to be able to compare similarities, we need to convert the set-valued
distance into a traditional, scalar-valued one. The easiest way to do it is by
considering a single point on the Pareto frontier. For example, we can fix the
value of λ and use the corresponding distortion ε as the distance. We obtain a
scalar-valued distance, to which we refer as the λ-Gromov-Hausdorff distance:

dλ
GH(Q,S) =

1
2

inf
f :S′→Q′
g:Q′→S′

S′ : µS(S′c)≤λ

Q′ : µQ(Q′c)≤λ

max{dis f, dis g, dis (f, g)}.

The particular case of d0
GH(Q,S) can be thought of as an a.e. Gromov-Hausdorff

distance. Alternatively, we can fix the value of ε; a scalar distance obtained this
way may be useful in a practical situation when we know a priory the accuracy
of surface acquisition and distance measurement. A third possibility is to take
the area under the Pareto frontier as a scalar-valued distance.

We should note, however, that both of the above choices are rather arbitrary.
A slightly more motivated selection of a single point out of the set of Pareto op-
timal solutions was proposed by Salukwadze [29] in the context of multicriterion
optimization problems arising in control theory. Salukwadze suggested choosing
a Pareto optimum, which is the closest (in sense of some norm) to some optimal,
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usually non-achievable point. In our case, such an optimal point is (0, 0). Given
a Pareto frontier dP(S,Q), we define the Salukwadze similarity as

dSAL(Q,S) = inf
(λ,ε)∈dP(S,Q)

‖(λ, ε)‖. (4)

Depending on the choice of the norm ‖ · ‖ in (4), we obtain different solutions,
some of which have an explicit form. For instance, choosing the Lp-norm, we can
define the Lp-Salukwadze distance as follows:

dp
SAL(Q,S) = inf

f :S′→Q′
g:Q′→S′
S′,Q′

{
1
2p

max{dis f, dis g, dis (f, g)}p + max{µS(S ′c), µQ(Q′c)}p

}
.

This formulation is a very intuitive interpretation of the multicriterion optimiza-
tion problem: we are simultaneously minimizing dGH(S ′,Q′) and maximizing the
measures of S ′ and Q′. In order to avoid scaling ambiguity between the distor-
tion and the measure, a normalization factor α · dGH(S ′,Q′) (where α has units
of distance) can be used.

3.2 Relaxed Paretian similarity

The computation of dP(Q,S) requires optimization over ΣS × ΣQ and is im-
practical, since in the discrete case it gives rise to a combinatorial optimization
problem with complexity growing exponentially in the sample size of S and Q.
However, the problem can be relaxed by resorting to fuzzy representation of
parts as continuous membership functions mS : S → [0, 1] and mQ : Q → [0, 1].
The value of mS measures the degree to which a point belongs to the part of
S (zero implies exclusion, one implies inclusion). Instead of λ(S ′,Q′), we define
the fuzzy partiality

λ̃(mS ,mQ) = max
{∫

S
(1−mS(s))dµS ,

∫

Q
(1−mQ(q))dµQ

}
(5)

and instead of ε(S ′,Q′), use a fuzzy version of the Gromov-Hausdorff distance,

ε̃(mS ,mQ) =
1
2

inf
f :S→Q
g:Q→S

max





sup
s,s′∈S

mS(s)mS(s′)|dS(s, s′)− dQ(f(s), f(s′))|
sup

q,q′∈Q
mQ(q)mQ(q′)|dQ(q, q′)− dS(g(q), g(q′))|

sup
s∈S,q∈Q

mS(s)mQ(q)|dS(s, g(q))− dQ(f(s), q)|
sup
s∈S

D (1−mQ(f(s)))mS(s)

sup
q∈Q

D (1−mS(g(q)))mQ(q)





,

where D is some large constant. The computation of the relaxed partial similarity
requires minimization of (λ̃(mS ,mQ), ε̃(mS , mQ)) on all the pairs of membership
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functions (mS ,mQ), which is computationally tractable, as will be described in
Section 4. The Pareto optimum of this problem is defined in the same way as in
equation (3); we will henceforth denote the relaxed Pareto frontier by d̃P. The
following relation between dP and d̃P holds:

Theorem 2 (Relation of dP and d̃P). Let D = max{diamS, diamQ}/δ(1−
δ), for some 0 < δ < 1. Then, d̃P(S,Q) ≤ (

(1− δ)−1, δ−2
) · dP(S,Q), where the

inequality is interpreted in the vector sense.

The proof is based on the Chebyshev inequality and is not given here due to
space limitations.

4 Computational framework

Practical computation of the Paretian similarity is performed on discretized ob-
jects. The surface S is represented as a triangular mesh, whose vertices constitute
a finite r-sampling SN = {s1, ..., sN}. A point s on S is represented as a pair
(t, u), where t is the index of the triangular face enclosing it, and u is the vector of
barycentric coordinates with respect to the vertices of that triangle. The metric
on S is discretized by numerically approximating the geodesic distances between
the samples si on the triangular mesh, using the fast marching method (FMM)
[22]. Geodesic distances between two arbitrary points on the mesh are interpo-
lated from dS(si, sj)’s using the three-point interpolation approach presented in
[8]. The measure on S is discretized as {µSN

(s1), ..., µSN
(sN )}, assigning to each

si ∈ SN the area of the corresponding Voronoi cell.
Given two discretized surfaces SN and QM , we compute the relaxed Paretian

similarity as the solution to

min
q′1,...,q′N∈Q
s′1,...,s′M∈S

mSN
(s1),...,mSN

(sN )∈[0,1]

mQM
(q1),...,mQM

(qM )∈[0,1]

max





max
i,j

mSN
(si)mSN

(sj)|dS(si, sj)− dQ(q′i, q
′
k)|

max
k,l

mQM
(qk)mQM

(ql)|dQ(qk, ql)− dS(s′k, s′l)|
max
i,k

mSN
(si)mQM

(qk)|dS(si, s
′
k)− dQ(qk, q′i)|

max
i

D (1−mSN
(s′i))mSN

(si)

max
k

D (1−mQM (q′k))mQM (qk)





s.t.
∑

mSN (si)µSN (si) ≥ 1− λ
∑

mQM (qk)µQM (qk) ≥ 1− λ, (6)

for a fixed set of values of λ, each λ giving a different point on the Pareto frontier
d̃P. Here, mSN

(si) and mQM
(qk) denote the discretized membership functions

computed on si and qk, respectively. mSN
(s) and mQM

(q) denote the interpo-
lated weights for arbitrary points s ∈ S and q ∈ Q. Note that the minimization
over all mappings f : S → Q and g : Q → S is replaced by minimization over
the images q′i = f(si) and s′k = g(qk), in the spirit of multidimensional scaling.
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The minimization problem (6) can be solved by alternatingly solving two
smaller problems, namely the minimization of (6) with respect to mS(si) and
mQ(qk) for fixed s′k and q′i, which can be cast as the following constrained min-
imization problem

min
ε≥0

mSN
(s1),...,mSN

(sN )∈[0,1]

mQM
(q1),...,mQM

(qM )∈[0,1]

ε s.t.





mSN
(si)mSN

(sj)|dS(si, sj)− dQ(q′i, q
′
k)| ≤ ε

mQM
(qk)mQM

(ql)|dQ(qk, ql)− dS(s′k, s′l)| ≤ ε
mSN

(si)mQM
(qk)|dS(si, s

′
k)− dQ(qk, q′i)| ≤ ε

D (1−mSN
(s′i))mSN

(si) ≤ ε
D (1−mQM

(q′k))mQM
(qk) ≤ ε∑

mSN
(si)µSN

(si) ≥ 1− λ∑
mQM

(qk)µQM
(qk) ≥ 1− λ,

(7)

and the minimization of (6) with respect to s′k and q′i for fixed mS(si) and
mQ(qk), which can be formulated as

min
ε≥0

q′1,...,q′N∈Q
s′1,...,s′M∈S

s.t.





mSN
(si)mSN

(sj)|dS(si, sj)− dQ(q′i, q
′
k)| ≤ ε

mQM
(qk)mQM

(ql)|dQ(qk, ql)− dS(s′k, s′l)| ≤ ε
mSN

(si)mQM
(qk)|dS(si, s

′
k)− dQ(qk, q′i)| ≤ ε

D (1−mSN (s′i))mSN (si) ≤ ε
D (1−mQM (q′k))mQM (qk) ≤ ε

(8)

and solved using the multi-resolution approach proposed in [11, 12, 10, 8] for the
GMDS. Another, more efficient approach, is to solve a weighted L2 approxi-
mation to (8) and use iterative re-weighting as a means of approximating the
original L∞ problem.

4.1 Sensitivity to noise

If the accuracy of geodesic distance measurement is δ (in FMM methods, δ is of
order of the maximum edge length in the mesh), the accuracy of the Gromov-
Hausdorff distance is bounded by 2δ. Using an L2 criterion instead of the L∞ is
advantageous in the case of noise, since it is less influenced by outliers. Like all
the approaches based on the analysis of intrinsic geometry, our method may be
sensitive to topological noise, or in other words, noise in extrinsic geometry that
results in different topology of the surface.

5 Results

We tested our method on a set of partially overlapping objects, created from the
Elad-Kimmel database [16]. Five objects (dog, spider, giraffe, man and crocodile)
were used; a full version of each object appeared, in addition to four different
deformations of which parts were cropped, resulting in five instances per object
(total of 25 objects, see Figure 3). The resulting objects were partially over-
lapping (Figure 2, top). The objects were represented as triangular meshes and
comprised between 1500 to 3000 points. The geodesic distances were computed
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using FMM. Set-valued distances were computed between all the objects using
13 values of λ. We used a multiresolution iteratively re-weighted scheme de-
scribed in Section 4. Six resolution levels with 50 points at the finest level were
used. The algorithms were implemented in MATLAB; the computation of the
Pareto frontier took about a minute on a standard Intel Pentium IV computer.

Figure 2 shows the Pareto frontier corresponding to the set-valued distance
between two instances of the dog object. Shades of red represent the values of
the membership functions. The overlapping regions in the two objects are clearly
visible. Figure 1 shows the Pareto frontiers arising from partial comparison of
different objects. One can observe that the dog-man and the dog-giraffe compar-
isons (red) result in curves above those obtained for the comparison of different
instances of the dog (black). Figure 3 depicts the L1-Salukwadze distance (with
scaling factor α = 200) between the objects, represented as Euclidean similari-
ties. Clusters corresponding to different objects are clearly distinguishable. For
comparison, we refer the reader to [8], where the computation of the Gromov-
Hausdorff distance between the full versions of the same objects presented here
is shown.
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Fig. 1. Pareto similarity between different objects.

6 Conclusions

We presented a method for partial comparison of non-rigid objects. Our ap-
proach suggest quantifying partial similarity as a tradeoff between the intrinsic
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Fig. 2. Example of Paretian similarity. Shown is Pareto frontier corresponding to the
set-valued distance between the dog objects. Colors encode the membership functions
(red corresponding to 1).

geometric similarity and the area of a subset of the objects, using the formalism
of Pareto optimality. Such a construction has a meaningful interpretation; the
set-valued distances resulting from it have appealing theoretical and practical
properties. For the efficient computation of our similarity criteria, we developed
a numerical framework similar to the GMDS algorithm. Experimental results
show that our method is able to recognize non-rigid objects even when large
parts of them are missing or differ.
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