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ABSTRACT A two-dimensional variational explanation for the Marr-
Hildreth and the Haralick-Canny like edge detectors was recently presented
in [16, 17]. For example, the zero crossings of the image Laplacian were
shown to be optimal edge integration curves that solve a geometric prob-
lem. These are the curves whose normals best align with the image gradi-
ent field. Based on these observations, an improved active contour model
was suggested, and its performances were shown to be better than classi-
cal geodesic active contours when directional information about the edge
location is provided. We present a general model that incorporates the
alignment as part of other driving forces of an active contour, together
with the geodesic active contour model for regularization, and the minimal
variance criterion suggested by Chan and Vese [5]. The minimal variance
functional is related to segmentation by a threshold and to the Max-Lloyd
quantization procedure. Here, we integrate all these geometric measures as
part of one unified framework. Finally, we introduce unconditionally stable
and simple numerical schemes for efficiently implementing the improved
geometric active contour edge integration procedure.

1 Introduction

We start with a brief history of edge detection and relate it to modern
geometry and variational principles. The most simple edge detectors try
to locate points defined by local maxima of the image gradient magnitude.
The Marr and Hildreth edges are a bit more sophisticated, and were de-
fined as the zero crossing curves of a Laplacian of Gaussian (LoG) applied
to the image [22, 21]. The Marr-Hildreth edge detection and integration
process can be regarded as a way to determine curves in the image plane
that pass through points where the gradient is high and whose normal di-
rection best aligns with the local edge direction as predicted by the image
gradient. This observation was first presented in [16]. The importance of
orientation information in a variational setting for delicate segmentation
tasks was recently also thought of by Vasilevskiy and Siddigi [28]. They
used alignment with a general vector field as a segmentation criterion of
complicated closed thin structures in 3D medical images. In [17] it was
shown that the Haralick edge detector [14, 2], which is the main procedure
in the Canny edge detector, can be interpreted as a solution of a two—
dimensional variational principle that combines the alignment term with
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a topological homogeneity measure. We will not explore this observation
here, as we have found the geodesic active contour to have somewhat better
regularization performances in most cases of geometric active contour edge
integration processes, which is the main topic of this chapter.

Section 2 introduces some of the mathematical notations we use in this
chapter. In Section 3, we formulate the idea of geometric curve evolution for
segmentation, and review various types of variational measures (geometric
functionals). These functionals describe an integral quantity defined by
the curve. Our goal would be to search for a curve that maximizes or
minimizes these integral measures. Next, in Section 4 we compute the first
variation of each of these functionals, and comment on how to use it in a
dynamic gradient descent curve evolution process. Section 5 gives the level
set formulation for the various curve evolution procedures. In Section 6,
motivated by [12], we present an efficient numerical scheme that couples
an alternating direction implicit multiplicative scheme, with narrow band
[8, 1], and re-distancing via the fast marching method [26]. The scheme is
unconditionally stable and thus allows large time steps for fast convergence.

2 Mathematical Notations

Consider a gray level image as a function I : @ — IRT where Q € IR? is
the image domain. The image gradient vector field is given by VI(z,y) =
{I;,I,}, were we used subscripts to denote the partial derivatives in this
case, e.g., I, = dI(x,y)/dx. We search for a contour, C' : [0,L] — IR?,
given in a parametric form C(s) = {z(s),y(s)}, where s is an arclength
parameter, and whose normal is defined by 7i(s) = {—ys(s), zs(s)}. This
contour somehow interacts with the given image, for example, a curve whose
normal aligns with the gradient vector field, where the alignment of the two
vectors can be measured by their inner product that we denote by (7, VI).
We also use subscripts to denote full derivatives, such that the curve tangent
is given by Cs = {zs,ys} = {dz(s)/ds,dy(s)/ds}. In some cases we will
also use p to indicate an arbitrary (non-geometric) parameterization of the
planar curve. In which case, the tangent is C; = C},/|Cp|, and the normal
can be written as

= {_yI” SL'p} ,
|Cl
where |Cp| = /22 + y2. We have the relation between the arclength s and

a general arbitrary parameter p, given by

o= vamwar = | (52) « (52) - o

Define, as usual, & to be the curvature of the curve C, and the curvature
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vector kit = Css. We also define Q¢ to be the domain inside the curve C,
see Figure 1.

C(s

FIGURE 1. A closed curve C, with C; the unit tangent, kit = C,s the curvature
vector, and ¢ the area inside the curve.

In this chapter we deal with two types of integral measures that are
related via the Green theorem. The first is defined along the curve by the
general form of

The second functional integrates the values of the function f(z,y) inside
the curve, and is usually referred to as a region based measure,

B0 - [  Jwy)dady.

where Q¢ is the region inside the curve C. Formally, we search for the
optimal planar curve C, such that

C = argmaxE(C).

3 Geometric Integral Measures for Active Contours

The evolution of dynamic edge integration processes and active contours
started with the classical snakes [15], followed by non-variational geometric
active contours [20, 3], and more recent geodesic active contours [4]. Here,
we restrict our discussion to parameterization invariant (geometric) func-
tionals, that do dot depend on the internal parameterization of the curve,
but rather on its geometry and the properties of the image. From these
functionals we extract the first variation, and use it as a gradient descent
process, also known as geometric active contour.
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3.1 Alignment Term

Consider the geometric functional

L
E(C) = / (VI(2(s),y(s)), 71(s))ds,
or in its ‘robust’ form
L
Ean(C) = / (VI(a(s), y(s)), 7(s))]ds,

where the absolute value of the inner product between the image gradient
and the curve normal is our alignment measure. See Figure 2. The motiva-

FIGURE 2. The curve C, its normal 7 at a specific point, and the image gradient
VI at that point. The alignment term integrates the projection of VI on the
normal along the curve.

tion is the fact that in many cases, the gradient direction is a good estimator
for the orientation of the edge contour. The inner product gets high values
if the curve normal aligns with the image gradient direction. This measure
also uses the gradient magnitude as an edge indicator. Therefore, our goal
would be to find curves that maximize this geometric functional.

3.2 Weighted Region

In some cases we have a quantity we would like to maximize by integration
inside the region ¢, defined by the curve C. In its most general setting,
this weighted area measure is

Ew(©)= [  ftay)dady,

where f(x,y) is any scalar function. A simple example is f(z,y) = 1, for
which the functional E(C) measures the area inside the curve C, that is,
the area of the region Q¢ that we also denote by |Q¢|.
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3.3 Minimal Variance

In [5], Chan and Vese proposed a minimal variance criterion, given by
1 1

Buv(Coones) = 3 [[ - (w-e?dody [ (160,0)-co)dady.
2 Q¢ 2JJ a\ac

As we will see, in the optimal case, the two constants, ¢; and co, get the
mean intensities in the interior (inside) and the exterior (outside) the con-
tour C, respectively. The optimal curve would best separate the interior and
exterior with respect to their relative average values. In the optimization
process we look for the best separating curve, as well as for the optimal ex-
pected values ¢; and ca. Such optimization problems, in higher dimensions,
are often encountered in color quantization and classification problems.
In order to control the smoothness of their active contour, Chan and Vese
also included the arclength [ ds as a regularization term. Here we propose
to use the more general weighted arclength, [ g(C(s))ds, also known as
the geodesic active contour functional [4], as a data sensitive regularization
term. It can be shown to yield better results in most cases and simplifies
to the regularization used by Chan and Vese for the selection of g = 1.
One could consider more generic region based measures like

B(C) = / / T 0) il dady + / / o T el dedy

where T' is a general transformation of the image, the norm || - ||z, can
be chosen according to the problem in hand, and & and é are vectors of
possible parameters. One such example is the robust measure

Erarv(C) = / / () = cnldody + / / o ) esldady.
[0} (o}

3.4  Geodesic Active Contour

The geodesic active contour [4] model is defined by the functional

L
EGAO(C)=/0 g(C(s))ds.

It is an integration of an inverse edge indicator function, like g(x,y) =
1/(1 4 |VI|?), along the contour. The search, in this case, would be for
a curve along which the inverse edge indicator gets the smallest possible
values. That is, we would like to find the curve C' that minimizes this
functional. The geodesic active contour was shown in [16, 17] to serve as
a good regularization for other dominant terms like the minimal variance
in noisy images, or the alignment term in cases we have good orientation
estimation of the edge. A well studied example is g(z,y) = 1, for which the
functional measures the total arclength of the curve.
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4  Calculus of Variations for Geometric Measures

Given a curve integral of the general form,

B(C) = ;{J L(C,, C)dp,

where p is an arbitrary parameter, we compute the first variation by

SE(C 240

The extremals of the functional E(C) can be identified by the Euler La-
grange equation dE(C)/dC = 0. A dynamic process known as gradient
descent, that takes an arbitrary curve towards a maximum of E(C), is
given by the curve evolution equation

oC _dE(C)

ot &C
where we added a virtual ‘time’ parameter ¢ to our curve to allow its evolu-
tion into a family of planar curves C(s,t). Our hope is that this evolution
process would take an almost arbitrary initial curve into a desired configu-
ration, which gives a significant extremum of our functional. In this chapter,
we restrict ourselves to closed contours. When considering open contours,

one should also handle the end points and add additional constraints to
determine their optimal locations, as done for example in [11, 16].

Lemma 1 Given the vector field V(z,y) = {u(z,y),v(z,y)}, we have the
alignment measure,

EA(C) = 74 (7, @yds
C
for which the first variation is given by

SECC) . o
T = le(V)TL

Proof. We first change the integration variable from an arclength s to an
arbitrary parameter p.

L L
EA(C) = / (7, Ayds / ([, 0}, {—ys, 22} )ds

/0 (twop 122 10,

- / (vap — uyy)dp.
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Next, we compute the first variation for the z component,

SE4(C) 8 d d
fo o\ " dpli, ) (e ) e et -

—
dp

= Uplp — UgYp — UaTp — UyYp
= —yp(ug +vy) = —ypdiv(V).

Similarly, for the y component we have ‘sf—y“ = mpdiv(V) By freedom of
parameterization, we end up with the first variation, 65—0 = dlv(V)ﬁ. [ ]

An important example is V=VI , for which we have as first variation

dEA(C)
oC

where AI = I, + 1, is the image Laplacian. The Euler Lagrange equation
0E4/6C = 0 gives a variational explanation for Marr-Hildreth edge detec-
tor that is defined by the zero crossings of the Laplacian, as first reported
in [16].

N

Lemma 2 The robust alignment term given by

EAR f | ,’I’_I: |d$,

yields the first variation

dEsr(C)
oC

Proof. We start by changing to an arbitrary parameter,
{=Yp, zp}
| 222

/ \/ (uzy — vyp)2dp.

Next, we compute the first variation for the £ component,

= sign((V, 7i(s)))div(V)#,

L
Bar(C) :/0 (T, 7)|ds

6Bar(C) _ (0 _ 49 (vz) — uy,)?
ox N Oz dpdzp b Y
= —ypsign(ve, — uyp)(us + vy) = —ypsign((V,7))div(V).
Similarly, for the y component we have JE(SJ;“ = z,sign((V,7))div(V). By
freedom of parameterization, we end up with the first variation,
8Ban = sign((V,))div(V)7. [

An important example is V=VI , for which we have

dEAr(C)

50 = sign((V1I,7(s)))AI.



8 Ron Kimmel

Lemma 3 The weighted region functional

Ew(©)= [[ @ y)dedy,

yields the first variation

BV -ty

Proof. Following [30], we define the two functions P(z,y) and Q(z,y),

such that Py(z,y) = —% (z,y) and Q, = %f(x,y). We readily have that
f(z,y) = Qz — P,. Next, using Green’s theorem we can write

B = [ S ydady = // (@~ Ry)dady
/C (Pd + Qdy)

/ (Pzy + Qya)ds = / ({(~Q. P}, fiyds,
C C

for which the first variation is given by Lemma 1, for V = {-Q, P}, as

SE(C) _ . L L
¢ = W@, PHi = —(Qa — By)ii = — fii.

This term is sometimes called the weighted area [30] term, and for f
constant, its resulting variation is known as the ‘balloon’ [9] force. If we set
f =1, the gradient descent curve evolution process is the constant flow. It
generates offset curves via Cy = i, and its efficient implementation is closely
related to Euclidean distance maps [10, 6] and fast marching methods [26].

Lemma 4 The geodesic active contour model is

Foac(C) = f 9(C(s))ds,

C

for which the first variation is given by

0Ecac(C)

50 = —(kg — (Vg,))ii.

Proof.

L 1
Foac(C) = / 9(C(s))ds = / 9(C1))|Cyldp

9(C(p))y/ =3 + yadp.

Il
S~
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Next, we compute the first variation for the £ component,

M — o 49 [2 1 .2
ig Tp
dp 2 + yz
\V p P .
= 9w|Cp| - (gzxp + gyyp)m
P

_gwpp|cp| — Tp(TpTpp + YpYpp) /| Cpl
|Cp?

9z|Cp| —

= yp(kg — (Vg,7)).
where we used the curvature defined by

LppYp — YppTp

|Cpl?

K=

Similarly, for the y component we have 2£g¢4c = —g, (kg — (Vg,)). By
freedom of parameterization we end up with the above first variation. H

We will use this term mainly for regularization. If we set ¢ = 1, the
gradient descent curve evolution result given by Cy = —0Egac(C)/dC is
the well known curvature flow, Cy = ki or equivalently C; = Cs,, also
known as the geometric heat equation.

Lemma 5 The Chan-Vese minimal variance criterion [5] is given by

1 1
Buv(Crer,es) = & / / (I~ cr)dedy + / / (I = e2)’dady,
Q¢ 2\Qe

for which the first variation is

SE
C (c2 = 1) (I -

E
M // Idxdy — cl/ dxdy
(501 Q¢ Q¢

0Emy = // Idxdy — cz// dxdy.
dco Q\Q¢ Q\Q¢

Proof. Using Lemma 3, we have the first variation given by

cpte
7

0Eyv
oC

((I- c1)? — (I - 62)2) s
(I —2Icy+§ — I +2Ic; — c3) it
(es— )] — (c1 +¢2)(e2 — cl)> 7

2

Il
| —RO | =
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— (-a) (I— 01‘2”2>ﬁ.

The optimal ¢; and ¢, extracted from §Epy /dcr = 0 and §Epry /dea =
0, are the average intensities of the image inside and outside the contour,
respectively. [ ]

One could recognize the variational interpretation of segmentation by the
threshold (c1 + ¢2)/2 given by the Euler Lagrange equation § Epy /6C = 0.
Finally, we treat the robust minimal deviation measure Erpsy .

Lemma 6 The robust minimal total deviation criterion is given by

Ermv(C,c1,e2) = // [T — ¢ |dzdy + // [T — co|dzdy,
Qc 2\Qc

for which the first variation is

0E .

6E§(§”V = (I-al=T-cl)i
RMV - _ // sign(I — ¢1)dzdy
561 Q¢

0Brmy = // sign(I — co)dxdy
502 Q\QC

Proof. Using Lemma 3, we have the first variation $ErMy (C)

The optimal ¢; and ¢z, extracted from § Egary /dc1 = 0 and §Egpry /dca =
0, are the median intensities of the image inside and outside the contour,
respectively:

5ERMV — i// /(I_cl)2dwdy
(501 d01 Qo

I— C1
= — dzdy
//Qc [T —c1
- sign(I — ¢1)dzdy.
Qc

We have that [, sign(I — c1)dedy = 0 for the selection of ¢; as the
value of I(z,y) in Q¢ that splits its area into two equal parts. From obvious
reasons we refer to this value as the median of I in Q¢, or formally,

¢a = mediang,I(z,y)
c2 = mediang\q.I(z,y).

The computation of ¢; and cs can be efficiently implemented via the
intensity histograms in the interior or the exterior of the contour. One



1. Fast Edge Integration 11

rough discrete approximation is the median of the pixels inside or outside
the contour.

The robust minimal deviation term should be preferred when the penalty
for isolated pixels with wrong affiliation is insignificant. The minimal vari-
ance measure penalizes large deviations in a quadratic fashion and would
tend to over-segment such events or require large regularization that could
over-smooth the desired boundaries.

5 Gradient Descent in Level Set Formulation

We embed a closed curve in a higher dimensional ¢(x,y) function, which
implicitly represents the curve C' as a zero set, i.e., C = {{z,y} : ¢(z,y) =
0}. This way, the well known Osher-Sethian [23] level-set method can be
employed to implement the curve propagation toward its optimal location.
Figure 3 presents a planar curve, and two implicit representations for this
curve, displayed in two different ways.

FIGURE 3. Left: A given planar curve. Middle: An implicit representation of the
curve as a threshold set of a gray level image. Right: An implicit representation
of the curve as a level set of a smooth function displayed by its level set contours.

Given the curve evolution equation Cy = i, its implicit level set evolu-
tion equation reads

oy = 7|V¢|-

The equivalence of these two evolutions can be easily verified using the
chain rule and the relation 7 = V¢/|Vd|,

Vo
|

Those familiar with the optical flow problem in image analysis could eas-
ily recognize this derivation. There is an interesting relation between the
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classical optical flow problem and the level set method. Level set formula-
tion for the evolution of a family of embedded curves can be interpreted
as a dynamic image synthesis process. On the other hand, optical flow in
image analysis is a search for the motion of features in the image. These
two inverse problems share the same fundamental equation. Computing a
vector field that represents the flow of the gray level sets from a given se-
quence of images is known as the ‘normal flow’ computation. Next, at a
higher level of image understanding, the motion field of objects in an image
is known as the ‘optical flow’. On the other hand in the level set formula-
tion, the goal is to compute the dynamics of an arbitrary image, in which
one level set represents a specific curve, from a given motion vector field of
that specific level set. The image in this case is an implicit representation
of its level sets, while the vector field itself could be extracted from either
the geometric properties of the level sets, or from another image or external
data.

As a first example, consider the explicit curve evolution as a gradient
descent flow for the robust alignment term, given by

Cy = sign((VI, 7)) AIT.
The corresponding level set evolution is
¢ = sign((VI, V) AI|V|.

We can now add to our model the geodesic active contour term, the
threshold term, or its dynamic expectation version defined by the minimal
variance criterion. The optimization problem takes the form of

argmaxe ., ,czE(C7 C1, C2)7
for the functional

E(C,Cl,CQ) = EAR(C,Cl,Cz)—aEGAc(C)—ﬂEMv(C)
74 |(VI,ﬁ)|ds—a}1{ 9(C(s))ds

C C
_ﬂ% (//QC (I = ¢1)2dwdy + //Q\QC - c2)2da:dy) :

where a and 8 are constants, and « is small so that the geodesic active
contour term is used mainly for regularization. The first variation as a
gradient descent process, is

Co = [sgn(( VINAL +a(g(z,y)s — (Vg, )
+ Blea —c1) (I — (c1 + c2)/2)] 7.

=1
— I(z,y)dzdy
1Qcl)) ao (=:9)

C1



1. Fast Edge Integration 13

il
o = TV I(x,y)dzdy,
* = il e, Y

where |Q¢| denotes the area of the regions Q. One could recognize the
relation to Max-Lloyd quantization method, as the simplest implementa-
tion for this system is a sequential process that involves a change of the
segmentation set followed by an update of the mean representing each set.
The difference is the additional penalties and resulting forces we use for
the smoothness and alignment of the boundary contours.

The level set formulation of the curve evolution equation is

b = |sign((Ve, VD)AT + adiv (g(m’y)%)
+ Bl — c1) (I_ . -;-62)] vl

Efficient solutions for this equation can use either AOS [18, 19, 29] or ADI
methods, coupled with a narrow band approach [7, 1], as first introduced
in [12] for the geodesic active contour. In the next section we use a simple

first order implicit alternating direction multiplicative scheme.
The following table summarizes the functionals, the resulting first vari-
ation for each functional, and the level set formulations for these terms.

[[ Measure | E(C) | 6E/6C | level set form [
Weighted [ [f) f(z,y)dzdy —f(z,y)it —f(z,y)| V|
Area
Minimal ffﬂc (I — c1)?dzdy+ | (ca —ec1)x (c2 —c1)x%
Variance ffﬂ\nc (I —c2)?dzdy | (I —(c1+c2)/2) | (I —(c1+c2)/2)|Ve
GAC $., 9(C(s))ds (Vg,7) —kg) | —div (g257) [Vl
Alignment f [(V1,i)|ds sign((VI,@))AI7 | sign((VI,V¢))AI|V|

6 Efficient Numerical Schemes

In [29] Weickert et al. used an unconditionally stable, and thus efficient,
numerical scheme for non-linear isotropic image diffusion known as additive
operator splitting (AOS), that was first introduced in [18, 19], and has some
nice symmetry and parallel properties. Goldenberg et al. [12] coupled the
AOS with Sethian’s fast marching on regular grids [25] (see [27, 6] for
related approaches), with multi-resolution [24], and with the narrow band
approach [7, 1], as part of their fast geodesic active contour model for
segmentation and object tracking in video sequences. Here, motivated by
these results, we extend the efficient numerical methods for the geodesic
active contour [4] presented in [12], for the variational edge integration
models introduced in [16, 17], and the minimal variance [5]. We review
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efficient numerical schemes and modify them in order to solve the level set
formulation of edge integration and object segmentation problem in image
analysis.

Let us analyze the following level set formulation,

no= (adiv <g<way)%) + (9, w)) Ve,
26, VI) = sign((VI, V)AL + Bca — 1) (I _a ; 02) _

If we assume ¢(z,y;t) to be a distance function of its zero set, then, we
could approximate the short time evolution of the above equation by setting
|V¢| = 1. The short time evolution for a distance function ¢ is thereby

¢ = adév (g(w,y)Vg) + (4, Vaf ) 5
= ag- (g(w,y)a—m¢> +a% (g(w,y)a—y¢) +n(¢, VI).

Note, that when using a narrow band around the zero set to reduce com-
putational complexity on sequential computers, the distance from the zero
set needs to be recomputed in order to determine the width of the band at
each iteration. Thus, there is no additional computational cost in simpli-
fying the model while considering a distance map rather than an arbitrary
smooth function. We thereby enjoy both the efficiency of the simplified
almost linear model, and the low computational cost of the narrow band.
Denote the operators

0 0
A, = %g(w,y)%—w
Ay = 8_yg(m’y)8_y'

Using these notations we can write the evolution equation as
¢ = a(di+A)é+n(oVI).

Next, we approximate the time derivative using forward approximation
n+l_  n . ..
oy = 3‘5—T¢—, that yields the explicit scheme

e"tt = "+ 7 (a (A + Ap) ¢ + (", VI))
= (Z+7a(Ar + A2)) ¢"™ + (9", VI),

where, after sampling the z,y plane, 7 is the identity matrix and I is
our input image. The operators A; become matrix operators, and ¢" is
represented as a vector in either column or row stack, depending on the
acting operator. This way, the operators A; are tri-diagonal, which makes
its inverse computation fairly simple using Thomas algorithm. Note that
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in the explicit scheme there is no need to invert any operator, yet the
numerical time step is bounded for stability.

Let us first follow [29], and use a simple discretization for the A;, [ €
{1, 2} operators. For a given row, let

0 0 95 + 9i
9z (9(37)%¢) R je;(i) JQT (65 — ¢i)

where N (2) is the set {i—1,i+1}, representing the two horizontal neighbors
of pixel 4, and h is the space between neighboring pixels. The elements of
Aj; are thereby given by

sy L dEND
aij = = Lpeni) ‘st I =1
0 else.

In order to construct an unconditionally stable scheme we use a locally
one-dimensional (LOD) scheme adopted for our problem. We use the fol-
lowing scheme

2

¢"tt = J[@-r1ad)™ (9" + (", VD).

=1

In one-dimension it is also known as fully implicit, or backward Euler
scheme. It is a first order implicit numerical approximation, since we have
that

(T —7A) T =74 (p+m) = (T—7141 =74y +0(>) " (¢ +1n)
= ¢+ 7(4 + A2)p+ 1+ O(r?),

where we applied the Taylor series expansion in the second equality. First
order accuracy is sufficient, as our goal is the steady state solution. We also
included the weighted region-balloon, minimal variance, and the alignment
terms within this implicit scheme, while keeping the first order accuracy
and stability properties of the method. The operators Z — 7A; are positive
definite symmetric operators, which make the implicit process uncondi-
tionally stable, using either the above multiplicative or the additive (AOS)
schemes. If we have an indication that the contour is getting closer to its
final destination, we could switch to an explicit scheme for the final refine-
ment steps with a small time step. In this case, the time step should be
within the stability limits of the explicit scheme. In our implementation we
also use a multi-resolution pyramidal approach, where the coarse grid still
captures the details of the objects we would like to detect.
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FIGURE 4. Test images left to right: numbers with a small amount of noise,
numbers with a large amount of noise, and a number with non-uniform illumina-
tion.

7 Examples

Figure 4 presents a set of simple input images in which the goal is to
segment the numbers from the background. In all examples we used the
image frame as initial condition for the active contour model, and applied
a multi-resolution coarse to fine procedure, as in [24, 12], to speed up the
segmentation process.

Figure 5 shows the segmentation result of the active contour model in the
first case. In this example, the alignment and minimal variance terms were
tuned to play the dominant role in the segmentation. The right frame, here
and in the rest of the examples, shows the final contour in black painted on
the original image in which the dynamic range is mapped into a sub-interval
of the original one.

i

FIGURE 5. The simplest case in which alignment and minimal variance played
the dominant factors in finding the exact location of the edges.

In the next example, shown in Fig. 6, high noise and uniform illumination
calls for minimal variance coupled with regularization of the contour. The
alignment term does not contribute much in such a high noise.

The last example demonstrates the effect of a non-uniform illumination.
In this case, the minimal variance would be of little help, while the align-
ment term leads the active contour to the accurate edge locations, see Fig.
7.

In the appendix we present an oversimplified matlab code for the whole
process. Note that in order to keep the program simple the multi-resolution
is not presented, and the redistancing procedure was only roughly approx-
imated, see [13] for more details.
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FIGURE 6. For noisy images the alignment term is turned off, while the minimal
variance and regularization by the geodesic active contour are the important
factors.

8 Conclusions

We explored fundamental geometric variational measures for edge integra-
tion and uniform region segmentation. Next, we computed the resulting
first variation for these integral measures. The level set formulation for
the resulting curve evolution equations was then implemented by efficient
numerical schemes.

We are still far from the end of the road of implementing low level vision
operators. Good numerical schemes for so-called ‘solved’ problems would
probably change the way we process and analyze images in the future.
Simple operations we take for granted, like edge detection and shape re-
construction, should be revisited and refined for the best possible solution.
The exploration of the basic image analysis tools would improve our under-
standing of these processes and enable faster progress of feature extraction,
learning, and classification procedures. Qur philosophy of geometric vari-
ational interpretation for fundamental low level image analysis operators
seem to be one promising direction for improving existing tools and design-
ing new ones.

FIGURE 7. For non-uniform illumination without noise. The minimal variance
term is turned off, while the alignment term plays the leading role in a good
segmentation of the number from the background. Left: input image. Middle:
Segmentation by threshold yields a meaningless result. Right: Active contour
segmentation with a dominant alignment term.
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Appendix

(/74
0

% Locally One-Dimensional (LOD) implicit scheme for closed geometric
% active contour model+minimal variation+GAC+robust alignment.
% I = Input image matrix, Phi = Initial contour matrix (implicit form).
% Balloon = Weighted area factor (scalar)
% Align = Alignment force factor (scalar)
% Max_Lloyd = The Max-Lloyd/Chan-Vese threshold factor (scalar)
% k = The time step (tau scalar)
% iter = Maximal number of iterations (scalar)
function Phi=LOD_Active_Contour(I,Phi,Balloon,Align,Max Lloyd,k,iter)
D2I = Dxx(I)+Dyy(I); P = Dx(I); Q=Dy(I);
g = 1./sqrt(1+P.A24+Q.A2); % example for computing g(x,y)
delta = 2; count=1;
while and(delta >0.0001,count<iter) %check if converged
Phi_old = Phi;
threshold = LloydMax(Phi,I); % Max-Lloyd/Chan-Vese term
alignment = -sign(P.*Dx(Phi)+Q.*Dy(Phi)).*D2I; % Laplacian term
Phi = Phi+k*(Balloon*g+Align*alignment+Max Lloyd*threshold);
for i=1:2, % i=1 => (I-tau*Ax) i=2 => (I-tau*Ay)
Phi = Implicit(g(:),k,Phi); % (1/(I-tau*Ai))Phi
Phi = Phi’; g = g’; % Transpose for Ay
end % for i
Phi = redistance(Phi); % Use fast marching for re-distancing
delta = sum(sum((Phi_old-Phi).A2)) % Compute L2 norm
count = count+1;
imshow(L,[]); hold on; contour(Phi,[0 0],’r’);hold off; drawnow;
end % while and function
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% Compute (1/(I- k*Al))Phi using Thomas algorithm

% k=time step, g=g(x,y) in column stack form

function u = Implicit(g,k,Phi)

gm = -k.*( g + g([end 1:end-1]))/2; % lower diag

ge = 1-k.*(-2*g - g([end 1:end-1]) -g([2:end 1]))/2; % main diag
gp = -k.*( g + g([2:end 1]))/2; % upper diag

u = Thomas(gc,gp(1:end-1),gm(2:end),Phi(:));

u = reshape(u,size(Phi));

%
% Compute the Lloyd-Max/Chan-Vese thresholding

function force = LloydMax(Phi,I)

mask_in = (Phi<0); % inside the contour

mask_out = 1-mask_in; % rest of the domain

Lin = sum(sum(mask.in.*I))/sum(mask-in(:)); % mean value
I.out = sum(sum(mask_out.*I))/sum(mask_out(:));

force = (I_out-I.in).*(I-(I.in+I_out)/2);

07,

0
% ‘Roughly’ correct Phi to be a distance map of its zero set
function u=redistance(Phi);
u = (sign(Phi)+1)*999999; % set to infinity all positive
for i=1:2,
12 = 2;
if i>1 u=(1-sign(Phi))*999999; end % set to infinity all negative
while 12 > 1,
v = Update(u,1);
12 = sum(sum((u-v).A2));
u=v;
end % while
if i>1 u=u-up; else up=u; end %if

end % for
o7

% Solve |grad u|=F(x,y) parallel version of the FMM

function res = Update(u,F)

mx = min(u([2:end end],:), u([1 1:end-1],:));

my = min(u(:,[2:end end)]), u(;,[1 1:end-1]));

delm = (mx -my);

mask = (abs(delm) < F);

res= min(mask.* (mx-+my+sqrt(2.*¥F.A2- delm .A2))./2 + ...
(1-mask).* (min(mx,my)+F) , u);
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07,

function f = Dmx(P)

f =P - P(]1 l:end-1],:);
%

function f = Dpx(P)

f = P([2:end end],:) - P;
%
function f = Dx(P)

f = (Dpx(P)+Dmx(P))/2;
%
function f = Dy(P)

£ = (Dx(P);

%o

function f = Dxx(P)
f = Dpx(P)-Dmx(P);
%
function f = Dyy(P)
£ = (Dxx(P))';

07,

% Thomas Algorithm for trilinear diagonally dominant system:
% B u = d (solve for u); B is given by its 3 diagonals:
% alpha(1:N)=main diagonal, beta(1:N-1)=upper diagonal,
% gamma(1:N-1) = lower diagonal, (Compile first!)
function u = Thomas(alpha,beta,gamma,d)
N = length(alpha); r = beta,;
1 = zeros(N-1,1); u = zeros(N,1);
m = u; % zero
m(1) = alpha(1);
for i=1:N-1,
1(i) = gamma(i)/m(i);
m(i+1) = alpha(i+1)-1(i)*beta(i);
end % for
y = u; % zero
¥(1) = d(1);
for i = 2:N,
y(0) = d(i)-16-1)y(i-1);
end % for
u(N) = y(N) /m(N);
for i = N-1:-1:1,
u() = (y(i)-beta(i) ¥u(i-+1))/m(i);
end % for
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