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Abstract. An optimal algorithm for the reconstruction of a surface from its shading image is presented. The
algorithm solves the 3D reconstruction from a single shading image problem. The shading image is treated as a
penalty function and the height of the reconstructed surface is a weighted distance. A consistent numerical scheme
based on Sethian’s fast marching method is used to compute the reconstructed surface. The surface is a viscosity
solution of an Eikonal equation for the vertical light source case. For the oblique light source case, the reconstructed
surface is the viscosity solution to a different partial differential equation. A modification of the fast marching
method yields a numerically consistent, computationally optimal, and practically fast algorithm for the classical
shape from shading problem. Next, the fast marching method coupled with a back tracking via gradient descent
along the reconstructed surface is shown to solve the path planning problem in robot navigation.
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1. Introduction

One of the earliest problems in the field of computer
vision is the reconstruction of a three dimensional ob-
ject from its single gray level image. The problem, for
the case of a diffusive reflectance model of the surface,
also known as Lambertian reflectance, is recognized
as the ‘shape from shading problem’ [10, 11]. Various
numerical schemes were proposed over the years, most
of these methods were based on variational principles
that require additional regularization terms that intro-
duce second order derivatives into the minimization
process. These terms yield over-smoothed reconstruc-
tions, see e.g. [12]. Only two early direct models for the
shape from shading did not incorporate extra smooth-
ness terms, the first is the characteristic strips expan-
sion method that Horn used when he first introduced
the problem [10], the second is Bruckstein’s equal
height contours tracking model [3]. Unfortunately, the

first implementations of these algorithms suffered from
numerical instabilities.

New numerical algorithms based on recent results in
curve evolution theory, control theory, and the viscosity
framework [5], were applied to the shape from shading
problem in [8, 15, 16, 24]. In these advanced numeri-
cal algorithms the smoothness assumption is embed-
ded within the scheme without the need for an extra
smoothness as a penalty.

Recently, Sethian [26, 27] introduced an O(N logN )

computational steps sequential steps algorithm for
solving the Eikonal equation on a rectangular grid,
where N is the total number of grid points. This al-
gorithm, known as the ‘Fast Marching Method,’ re-
lies on a systematic causality relationship based on up-
winding, coupled with a heap structure for efficiently
ordering the updated points. The method was applied
to segmentation in 3D in [23] and to edge integration
in [4].
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An important property of Sethian’s Fast Marching
Method that distinguishes it from graph search based
methods is that it converges to the continuous physical
(viscosity) solution as the rectangular numerical grid is
refined. Sethian’s method is a finite difference scheme,
based on upwind monotone schemes, and has been ex-
tended to higher order in Sethian SIAM Review arti-
cle [28]. In [29], Tsitsiklis gives a different, first order
Dijkstra-like algorithm which obtains the viscosity so-
lution through a control-theoretic discretization using a
causality relationship based on the optimality criterion.

In this note we first modify Sethian’s fast march-
ing method to construct a numerical solution for the
oblique light source shape from shading problem. Next,
the method is used for path planning in robotic naviga-
tion with small number of degrees of freedom.

2. Shape from Shading

Let us first review the shading image formation model
for a 3D Lambertian object. Assume, that the object
we try to reconstruct is given as a function z(x, y) : R2

→ R, whose surface normal at each point is given by
�n(x, y) : R2 → S2. Next, let the light source direction
be given by �l ∈ S2. Then, the intensity image, I (x, y) :
R2 → R, for an orthographic. projection of the object
is given by the inner product I (x, y) = �l · �n(x, y).

For the simple vertical light source case �l = (0, 0, 1),
in which the light source is located near the viewer,
the shading image is given by I (x, y) = 1√

1+z2
x +z2

y

.

The problem in hand is the reconstruction of z(x, y)

from its gradient magnitude at each point that is given
by |∇z(x, y)| =

√
(I (x, y))−2 − 1. This equation is

known as the Eikonal equation. See [30] for a ‘shading
from shape’ Eikonal based technique.

The fast marching method is an O(N log N ) numeri-
cal algorithm for solving the Eikonal equation, e.g.
|∇z(x, y)| = f (x, y). The first version of the algo-
rithm is based on the following numerical approxima-
tion of the Eikonal equation

(
max

(
D−x

ij z, −D+x
ij z, 0

))2

+ (
max

(
D−y

ij z, −D+y
ij z, 0

))2 = f 2
ij , (1)

where zij = z(i�x, j�y), and D−x
ij z = (zij −

zi−1, j )/�x is the standard backwards derivative ap-
proximation, D+x

ij z = (zi+1, j − zij)/�x is the stan-
dard forward derivative approximation in the x direc-
tion, and similarly for the y direction. This numerical

approximation selects the correct viscosity solution for
the shape from shading problem as proven by Rouy and
Tourin [24]. One important observation is that informa-
tion always flow form small to large values of the so-
lution z. Therefore, the surface z may be reconstructed
by first setting all z values to ∞, and the correct height
value at the local minimum points. In case the height
values at these locations are unknown, then a global
topology solver can be applied [2, 17].

Assume, for simplicity, that we deal with a single
known minimum point. An alternate scanning direc-
tions of the numerical grid, while solving the quadratic
equation (1) for zij at each visited grid point, would
eventually converge. Yet, the rate of convergence de-
pends on the complexity of the surface zij. If we recon-
struct a connected spirals like surface, then there is a
need for O(N ) scans in the worst case, that yields a
complexity bounded by O(N 2), see e.g. [1, 8]. Note
that this is a worst case analysis. That is, for alternating
scanning directions based methods the complexity is
data dependent and ranges between O(N ) and O(N 2).
For simple surfaces, convergence can be achieved in
few iterations.

Assume without loss of generality that �x =
�y = 1, and initiate all zij = ∞ besides the mini-
mum point that is set to zero. Then, the update step for
zij can be written as the following simple procedure

– Let z1 = min{zi−1, j , zi+1, j }; and z2 = min{zi, j−1,

zi, j+1};
– If |z1 − z2| < fij then zij = z1+z2+

√
2 f 2

ij −(z1−z2)2

2 ;
else zij = min{z1, z2} + fij;

The fast marching method introduces order to these
update steps. Points are updated and accepted by their
values from small to large. The selection of the smallest
point among the set of candidate points and the update
of its neighboring grid points involves an O(log N )

worst case complexity, that yields a total of O(N log N )

worst case computational complexity. The order of up-
dates is similar to that of Dijkstra’s graph search algo-
rithm [7, 25], and is based on a heap structure of the
points at the front. The main difference from Dijkstra’s
method is the numerical update step. Actually, one may
use the finite numerical accuracy to avoid the ordering
and reduce the total complexity to O(N ).

Our shading image is usually given on a rectangu-
lar pixels grid. Therefore, the fast marching method
can be directly applied to solve the shape from shading
problem with a vertical light source. However, for the
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general oblique light source, the model to be solved
reads |∇z(x, y)| = f (x, y, z(x, y)). For this more gen-
eral case, the right hand side depends on z(x, y). The
question is how to include this partial differential equa-
tion, which is not an Eikonal equation anymore, within
the fast marching framework.

Let us focus on the oblique light source case in which
the light source direction is different than that of the
viewer. The shading image for this case is

I (x, y) = �l · �n = (l1, l2, l3).
(−zx , −zy, 1)√

1 + z2
x + z2

y

.

W.l.o.g. we choose l2 = 0. The shading image is then
given by

I (x, y) = (l1, 0, l3) · �n, (2)

where l2
1 + l2

3 = 1. Equation (2) involves the term zx . It
requires some additional thought to construct a mono-
tonic approximation to this term and an appropriate
update rule.

If we could have the brightness image in the light
source coordinates Ĩ (x̃), then the problem would have
become the vertical light source case, which is given
by the Eikonal equation

z̃2
x̃ + z̃2

y = 1

Ĩ (x̃, y)2
− 1. (3)

Lee and Rosenfeld [21] suggested the light source
coordinates ‘to improve’ early shape from shading al-
gorithms. Adopting their suggestion, we view the re-
flectance map as an ‘almost’ Eikonal equation which
can be solved efficiently. In the light source coordinate
system, the right hand side depends on the surface itself
via

Ĩ (x̃, y) = I (l3 x̃ + l1 z̃, y). (4)

Figure 1. The reconstruction of the surface at the left, from its shading image, with
→
l = (0.2, 0, 0.96). Right is the difference between the

original surface and its reconstruction.

That is, we need to evaluate the value of the surface at
a point in order to find the ‘brightness’ and only then
plug it to Eq. (4) and use the fast marching method to
solve Eq. (3).

In order to overcome this dependence, we use the
directional propagation and ‘adopt’ the smallest z̃value
from all the neighbors of the updated grid point. The
new update step then reads

– Let z̃1 = min{z̃i−1, j , z̃i+1, j } and z̃2 = min{z̃i, j−1,

z̃i, j+1};
– Let k = l3i + l1 min{z̃1, z̃2};
– If |z̃1 − z̃2| < fk j then z̃i j = z̃1+z̃2+

√
2 f 2

k j −(z̃1−z̃2)2

2 ;
else z̃i j = min{z̃1, z̃2} + fk j ;

Where z̃i j = z(i�x̃, j�y), and fk j = f (k�x,

j�y). Again, w.l.o.g. we assume �x̃ = �y = 1, and
f (x, y) = I (x, y)−2 − 1. The numerical algorithm in
this case is still consistent, one pass since the small-
est z̃ neighbor will never change its value, and is thus
within the fast marching framework. The map between
the light source coordinates (x̃, y, z̃) and the image co-
ordinates (x, y, z) is a rotation given by




x

y

z


 =




l3 0 l1

0 1 0

−l1 0 l3







x̃

y

z


.

We have thereby extended the fast marching method
to the case of |∇z| = F(z) relevant to the oblique
light source shape from shading problem. A consistent
solution can be computed with O(N log N ), where N
is the total number of pixels (grid points).

We tested the algorithm on a synthetic shading im-
age, see Fig. 1. Observe that we do not deal here with
self casting shadows (see [22]), nor with solving the
global topological structure (see [2, 8, 17]).



240 Kimmel and Sethian

3. Fast Marching Methods for Path Planning

In this section, we apply the fast marching method to
construct optimal paths for navigation problems with
relatively few degrees of freedom. We begin with a two-
dimensional path planning problem with constraints;
and consider a point robot in a uniform domain with
obstacles. Here, we treat obstacles by simply setting
the possible speed of the robot g(x, y) to be infinity
inside the obstacles. Thus, given a starting point A and
end point B, the robot is allowed to come arbitrarily
close to the obstacles.

The optimal path is defined by the weighted arc-
length ds̃2 = g(x, y)2 ds2, where ds2 = dx2 + dy2

is the Euclidean arclength, and g(x, y) is the weight
over the domain. We search for the path C(s) =
{x(s), y(s)}, with C(0) = A and C(L) = B, where L is
the total arclength, that minimizes minC

∫
g(C(s)) ds.

For an arbitrary parameterization p of the curve, the
above geometric functional reads

∫ 1

0
g(C(p))|C p(p)| dp, (5)

for which the Euler-Lagrange geometric equation is

κg = 〈∇g, �N 〉.

Where κ = 〈Css, �N 〉 is the curvature of the curve C ,
and �N its normal. In order to link between the shape
from shading and the path planning problem we show
that the optimal paths are the gradient descent contours
of a specific Eikonal equation.

Lemma 1. The optimal paths between two points A
and B, i.e. the curves that minimize Eq. (5) are the
gradient descent contours of the function u that satisfies
the Eikonal equation

|∇u| = g, and u(A) = 0.

Proof: Let us prove that the EL equation gκ =
〈∇g, �N 〉 holds for the ‘flow lines’ of the function u
that satisfies |∇u| = g.

The curve tangent of the flow lines is defined by
�T = Cs = ∇u

|∇u| , thus �N = ∇̄u
|∇u| = {−uy ,ux }

|∇u| . The curvature
is defined as

κ = 〈Css, �N 〉 = 〈∂s �T , �N 〉
=

〈
∂s

∇u

g
,
∇̄u

g

〉

= 1

g

〈{〈
∇

(
ux

g

)
, Cs

〉
,

〈
∇

(
uy

g

)
, Cs

〉}
, {−uy, ux }

〉

= 1

g3

(
ux uy(uyy − uxx ) + uxy

(
u2

x − u2
y

))
.

We also have that

〈∇g, �N 〉
=

〈
∇g,

∇̄u

g

〉

= 1

g

〈 {ux uxx + uyuxy, ux uxy + uyuyy}
g

, {−uy, ux }
〉

= 1

g2

(
ux uy(uyy − uxx ) + uxy

(
u2

x − u2
y

))
. ✷

We just showed that by solving the Eikonal equation
for the function u anchored at the initial location, we
can backtrack the optimal path by flowing along the
gradient descent of that function from any given ‘final’
location. Note that for g = 1, the function u is the dis-
tance map and the flow lines are straight lines, which
are indeed the optimal paths between two points in a
Euclidean domain. This backtracking idea was used in
[4, 6, 14] for finding the optimal paths in 2D and 3D
domains.

Next, we add one more dimension to the problem
and allow the robot to rotate. Instead of the point robot,
we now consider a two-dimensional rectangle with a
given width and length. Thus, the initial position A of
the robot in the configuration space is specified by the
position of the center of the rectangle, plus an orienta-
tion angle θ between 0 and 2π . The final configuration
B is similarly specified, and the goal is to construct the
optimal path from A to B, that minimizes the integra-
tion along the arclength ds2 = dx2 + dy2 + dψ2.

In the absence of obstacles, a completely straightfor-
ward application of the fast marching method is possi-
ble; one discretizes the configuration space into a three-
dimensional grid, that is, we similarly grid both R

2 and
θ between 0 and 2π , employing periodic boundary con-
ditions in θ . Then, we solve the Eikonal equation

[
u2

x + u2
y + u2

θ

]1/2 = 1, (6)

with u(A) = 0. Back tracking along the gradient de-
scent of u yields the optimal path. In the presence of
obstacles, we first apply the classical shrinking ap-
proach, where the robot is shrank into a point. For
every discretized angle θi , we dilate the shape of the
obstacles with a ‘structuring element’ corresponding
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Figure 2. Navigating a rectangle with rotation in 2D (3DOF).

Figure 3. Path planning under different potentials of the free configuration space.

to the robot at the given angle. This 3D configura-
tion space construction can be done in O(N ) using
the fast morphological operations methods in [9]. In
Fig. 2, we show several examples of a two-dimensional
robot with rotational angle, navigating in a plane with
obstacles.

We now turn to examples in which the goal is to
compute the optimal path, and imagine trying to not
simply avoid obstacles, but to navigate under a potential
function which weights the free work space [13, 20],
or even the whole free C-space. Now, the “tuneven”
terrain weighting is determined by the distance from
the obstacles.

Figure 3 presents the effect of the potential defined
in C-space on the course of the optimal path. We have
tested several potentials that are functions of the dis-
tance map: a constant potential P1(x, y, θ) = 1, and
P1(x, y, θ) = d8(x, y, θ), where d(x, y, θ) is the dis-
tance from the point (x, y, θ) to the closest obstacle.
The solution to the Eikonal equation |∇u(x, y, θ)| =
1/(1+ P(x, y, θ)) via the fast marching method yields

the desired input for a back propagation (via an in-
verse gradient descent) procedure. We note, that in this
case, we used the fast marching method itself to de-
termine the value of the distance map d(x, y, θ) by
computing the distance map d(x, y, θ) in the R2 × S1

C-space.
Figure 4 presents the optimal path for a four joints

arm robot (4 DOF). The optimal path is defined via
the arclength ds2 = dψ2

1 + dψ2
2 + dψ2

3 + dψ2
4 , where

ψi is the angle between the stick i , and stick i − 1
along the robot arm. In the appendix we derive a use-
ful algorithm for the update stage of the fast march-
ing numerical method for an n dimensional Eikonal
equation.

Finally, we present results of an extension of the
fast marching method to non-rectangular grids that
was presented in [18]. The method extends the nu-
merical monotonic approximation to the Eikonal equa-
tion through a geometric interpretation of the update
procedure. We applied this method to path planning
on curved domains with possible weights, and to
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Figure 4. Navigation with 4 DOF: Left to right top to bottom.

computation of Voronoi diagrams, and offset curves on
non-flat triangulated domains [19]. Figure 5 presents
minimal geodesics as optimal paths, Voronoi diagram
and offset curves on a curved triangulated surface.

Figure 5. Fast marching on triangulated surfaces: Minimal geodesics, Voronoi diagram, and geodesic offsets.

Figure 6. Fast marching on triangulated surfaces: Minimal geodesics, and minimal weighted geodesics.

Figure 6 presents minimal geodesics as optimal paths
on weighted (right) and unweighted curved surfaces
(left). The darker the texture on the left, the lower the
cost or weight.

4. Conclusion

We presented an optimal algorithm for surface recon-
struction from its shading image. The computational
complexity upper bound, of O(N log N ), is data in-
dependent. It is the most efficient sequential algo-
rithm for Horn’s original formulation of the shape
from shading problem and a natural extension and
application of the fast marching method. Next, we
showed how the fast marching method can be ap-
plied to path planning problems as a consistent nu-
merical method for locating optimal paths in con-
figuration spaces with small number of dimensions.
These two seemingly unrelated problems and their op-
timal solutions are samples of the wide range of pos-
sible applications for the fast marching method and its
extensions.
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Appendix

Let us derive a simple and useful procedure for the up-
date stage of the fast marching numerical method for an
n dimensional Eikonal equation. Consider the numeri-
cal approximation to the Eikonal equation |∇u|−F = 0
in n dimensions that is given by

∑
k∈{1,...,n}

max(D−k, −D+k, 0)2 − F2 = 0.

Where D−k and D+k denote the backwards and forward
partial derivatives with respect to the k coordinate (e.g.
D−1 = ui, j − ui−1, j for the 2D case with �x = 1).

We need to solve for the largest u1,...,n = t , that is a
root of the above quadratic equation. Let us rewrite the
equation, and again search for the largest t that satisfies

∑
k∈{1,...,n}

max(t − min(uk−1, uk+1), 0)2 − F2 = 0,

where uk−1 indicates the value at the −1 point along
the k coordinate (e.g. u1−1 ≡ ui−1, j in the 2D case).

Let ak = min(uk−1, uk+1), where the min is taken
along the k coordinate (e.g. a2 ≡ min(ui, j−1, ui, j+1) in
the 2D case). In case there exists a root bigger than all
ak , the solution is the root of the quadratic equation

∑
k∈{1,...,n}

(t − ak)
2 − F2 = 0,

and is given by

t = 1

n

(
�kak +

√
nF2 + �k�lakal − n�ka2

k

)
.

Let aM = maxk(ak). Inserting the demand t > aM

in the above equation (t should be larger than all the
values that generate it) we end up with the following
simple condition

F2 > �k(aM − ak)
2.

Then, we readily obtain the following lemma that help
us derive a simple selection procedure for the update
stage of the fast marching method.

Lemma 2. Under the condition F2 > �k(aM − ak)
2

the discriminant of Eq. (7) is greater than zero: nF2 +
�k�lakal − n�ka2

k > 0. I.e. the above t is a legitimate
value that satisfies t > aM .

Proof: Let F2 = �k(aM − ak)
2. Then the discrimi-

nant of the cubic root of Eq. (7) is given by

nF2 + �k�lakal − n�ka2
k

= n�k(aM − ak)
2 + �k�lakal − n�ka2

k

= n�k
(
a2

M − 2aM ak + a2
k − a2

k

) + �k�lakal

= n�k
(
a2

M − 2aM ak
) + �k�lakal

= n2a2
M − 2naM�kak + �k�lakal

= (naM)2 − 2(naM)(�kak) + (�kak)
2

= (�kak − naM)2 > 0 ✷

Based on the above lemma, an efficient way of ap-
plying the n dimensional update step of the numerical
approximation to Eikonal equation via the fast march-
ing method is given as follows:

1. Compute {ak}, and sort them in an increasing order,
so that a1 is the smallest, and an is the largest value.
Let m = n.

2. While F2 <
∑

k∈{1,...,m}(am − ak)
2 do m = n − 1.

3. Compute the updated value

t = 1

m

(
�kak +

√
m F2 + �k�lakal − m�ka2

k

)
,

where the
∑

indexes are {1, . . . , m}. Let the point
value be t , if its less than its current value.
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