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Abstract. We present a novel 3D face recognition approach based on
geometric invariants introduced by Elad and Kimmel. The key idea of
the proposed algorithm is a representation of the facial surface, invari-
ant to isometric deformations, such as those resulting from different
expressions and postures of the face. The obtained geometric invariants
allow mapping 2D facial texture images into special images that incor-
porate the 3D geometry of the face. These signature images are then
decomposed into their principal components. The result is an efficient
and accurate face recognition algorithm that is robust to facial expres-
sions. We demonstrate the results of our method and compare it to ex-
isting 2D and 3D face recognition algorithms.

1 Introduction

Face recognition is a biometric method that unlike other biometrics, is non-intrusive
and can be used even without the subject’s knowledge. State-of-the-art face recogni-
tion systems are based on a 40-year heritage of 2D algorithms, dating back to the
early 1960s [1]. The first face recognition methods used the geometry of key points
(like the eyes, nose and mouth) and their geometric relationships (angles, length,
ratios, etc.). In 1991, Turk and Pentland introduced the revolutionary idea of applying
principal component analysis (PCA) to face imaging [2]. This has become known as
the eigenface algorithm and is now a golden standard in face recognition. Later, algo-
rithms inspired by eigenfaces that use similar ideas were proposed (see [3], [4], [5]).

However, all the 2D (image-based) face recognition methods appear to be sensitive
to illuminations conditions, head orientations, facial expressions and makeup. These
limitations of 2D methods stem directly from the limited information about the face
contained in a 2D image. Recently, it became evident that the use of 3D data of the
face can be of great help as 3D information is viewpoint- and lighting-condition in-
dependent, i.e. lacks the “intrinsic” weaknesses of 2D approaches.

Gordon showed that combining frontal and profile views can improve recognition
accuracy [6]. This idea was extended by Beumier and Acheroy, who compared cen-
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tral and lateral profiles from the 3D facial surface, acquired by a structured light
range camera [7]. This approach demonstrated better robustness to head orientations.
Another attempt to cope with the problem of head pose using 3D morphable head
models is presented in [8], [9]. Mavridis et al. incorporated a range map of the face
into the classical face recognition algorithms based on PCA and hidden Markov mod-
els [10]. Particularly, this approach showed robustness to large variations in color and
illumination and use of cosmetics, and also allowed separating the face from cluttered
background.

However, none of the approaches proposed heretofore was able to overcome the
problems resulting from the non-rigid nature of the human face. For example, Beu-
mier and Acheroy failed to perform accurate global surface matching, and observed
that the recognition accuracy decreased when too many profiles were used [7]. The
difficulty in performing accurate surface matching of facial surfaces was one of the
primary limiting factors of other 3D face recognition algorithms as well.

In this work, we present a geometric framework for efficient and accurate face
recognition using 3D data (patented, [11]). Our method is based on geometric invari-
ants of the human face and performs a non-rigid surface comparison, allowing defor-
mations, typical to the human face due to facial expressions.

2 Non-rigid Surface Matching

Classical surface matching methods, based on finding a Euclidean transformation of
two surfaces which maximizes some shape similarity criterion (see, for example, [12],
[13], [14]), are suitable mainly for rigid objects. Human face can not be considered a
rigid object since it undergoes deformations resulting from facial expressions. On the
other hand, the class of transformations that a facial surface can undergo is not arbi-
trary, and empirical observations show that facial expressions can be modeled as
isometric (or length-preserving) transformations. Such transformations do not stretch
and do not tear the surface, or more rigorously, preserve the surface metric. The fam-
ily of surfaces resulting from such transformations is called isometric surfaces. The
requirement of a deformable surface matching algorithm is to find a representation,
which is the same for all isometric surfaces.

Schwartz et al. were the first to use multidimensional scaling (MDS) as a tool for
studying curved surfaces by planar models. In their pioneering work, they applied an
MDS technique to flatten convoluted cortical surfaces of the brain, onto a plane, in
order to study their functional architecture [15]. Zigelman et al. [16] and Grossman et
al. [17] extended some of these ideas to the problem of texture mapping and voxel-
based cortex flattening. A generalization of this approach was introduced in the recent
work of Elad and Kimmel [18], as a framework for object recognition. They intro-
duced an efficient algorithm to construct a signature for isometric surfaces. This
method, referred to as bending-invariant canonical forms, is the core of our 3D face
recognition framework.
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2.1 Bending-Invariant Canonical Forms

Consider a polyhedral approximation of the facial surface, S. One can think of such
an approximation as if obtained by sampling the underlying continuous surface on a
finite set of points pi (i = 1,…,n), and discretizing the metric δ associated with the
surface

( )p , pi j ijδ = δ . (1)

Writing the values of δij in matrix form, we obtain the matrix of mutual distances
between the surface points. For convenience, we define squared mutual distances,

( ) 2
ijij∆ = δ . (2)

The matrix ∆ is invariant under isometric surface deformations, but it is not a
unique representation of isometric surfaces, since it depends on arbitrary ordering of
the points. We would like to obtain a geometric invariant, which is unique for isomet-
ric surfaces on one hand, and allows using simple rigid surface matching algorithms
to compare such invariants on the other. Treating the squared mutual distances as a
particular case of dissimilarities, one can apply a dimensionality-reduction technique
called multidimensional scaling (MDS) in order to embed the surface into a low-
dimensional Euclidean space Rm. This is equivalent to finding a mapping between
two metric spaces,

( ) ( ) ( ): S, R ,d   ;   p xm
i iϕ δ → ϕ = , (3)

which minimizes the embedding error

( ) 2
f d    ;   d x xij ij ij i jε = δ − = − . (4)

The obtained m-dimensional representation is a set of points xi ∈ Rm (i = 1,…,n),
corresponding to the surface points pi. Different MDS methods can be derived using
different embedding error criteria [19].

A particular case is the classical scaling, introduced by Young and Householder
[20]. The embedding in Rm is performed by double-centering the matrix ∆

1
2B J J= − ∆ . (5)

(here J = I - ½U; I is a n×n identity matrix, and U is a matrix consisting entirely of
ones). The first m eigenvectors ei, corresponding to the m largest eigenvalues of B,
are used as the embedding coordinates

x e    ;   =1,..., ;  =1,...,j j
i i i n j m= , (6)

where x j
i  denotes the j-th coordinate of the vector xi. Eigenvectors are computed

using a standard eigendecomposition method. Since only m eigenvectors are required
(usually, m=3), the computation can be done efficiently (e.g. by power methods).
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We will refer to the set of points xi obtained by MDS as the bending-invariant ca-
nonical form of the surface; when m=3, it can be plotted as a surface. Standard rigid
surface matching methods can be used in order to compare between two deformable
surfaces, using their bending-invariant representations instead of the surfaces them-
selves. Since the canonical form is computed up to a translation, rotation, and reflec-
tion transformation, to allow comparison between canonical forms, they must be
aligned. This is possible, for example, by setting the first-order moments (center of
mass) and the mixed second-order moments to zero (see [21]).

2.2 Measuring Geodesic Distances on Triangulated Manifolds

One of the crucial steps in the construction of the canonical form of a given surface,
is an efficient algorithm for the computation of the geodesic distances on surfaces,
that is, δij. A computationally inefficient distance computation algorithm was one of
the disadvantages of the work of Schwartz et al. and actually limited practical appli-
cations of their method.

A numerically consistent algorithm for distance computation on triangulated do-
mains, henceforth referred to as fast marching on triangulated domains (FMTD), was
used by Elad and Kimmel [18]. FMTD was proposed by Kimmel and Sethian [22] as
a generalization of the fast marching method [23]. Using FMTD, the geodesic dis-
tances between a surface vertex and the rest of the n surface vertices can be computed
in O(n) operations. We use this method for the bending invariant canonical form
computation.

3 Range Image Acquisition

Accurate acquisition of the facial surface is crucial for 3D face recognition. Many of
commercial range cameras that are available in the market today are suitable for face
recognition application. Roughly, we distinguish between active and passive range
sensors. The majority of passive range cameras exploit stereo vision, that is, the 3D
information is established from correspondence between pixels in images viewed
from different points. Due to the computational complexity of the correspondence
problem, passive stereo is usually unable to produce range images in real time.

Active range image acquisition techniques usually use controlled illumination con-
ditions for object reconstruction. One of the most popular approaches known as
structured light, is based on projecting a pattern on the object surface and extracting
the object geometry from the deformations of the pattern [24]. A more robust and
accurate version of this approach uses a series of black and white stripes projected
sequentially and is known as coded light. The patterns form a binary code, that allows
the reconstruction of the angle of each point on the surface with respect to the optical
axis of the camera. Then one can compute the depth using triangulation.

In this paper, we use the coded light technique for 3D surface acquisition. Using 8
binary patterns, we obtained 256 depth levels which yielded depth resolution of about
1 mm. In our setup, we used an LCD projector with refresh rate of 70Hz controlled
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via the DV interface. Images were acquired at the rate of 30 frames per second by a
black-and-white FireWire CCD camera with a resolution of 640×480 pixels, 8 bit.

4 3D Face Recognition Using Eigenforms

As a first step, using the range camera we acquire a 3D image, which includes the
range image (geometry) and the 2D image (texture) of the face. The range image is
converted into a triangulated surface and smoothed using spline. Regions outside the
facial contour are cropped, and the surface is decimated to a size of approximately
2000-2500 vertices. Next, the bending-invariant canonical form of the face is com-
puted and aligned using the procedure described in Section 2.1.

Since there is a full correspondence between the texture image pixels an and the
canonical surface vertices ( )1 2 3x , x , xn n n , the face texture image can be mapped onto

the aligned canonical surface in the canonical form space. By interpolating an and 3xn

onto a Cartesian grid in the X1X2 plane, we obtain the flattened texture a%  and the
canonical image x% , respectively. Both a%  and x%  preserve the invariance of the ca-
nonical form to isometric transformations, and can be represented as images (Fig. 1).

Application of eigendecomposition is straightforward in this representation. Like
in eigenfaces, we have a training set, which is a set of duplets of the form { } 1

x ,a N
n n i=
%% .

Applying eigendecomposition separately on the set of a%  and x% , we produce two sets
of eigenspaces corresponding to the flattened textures and the canonical images. We
term the respective sets of eigenvectors aen  and xen  as eigenforms.

For a new subject represented by ( )x ,a′ ′%% , the decomposition coefficients are com-
puted according to

( )
( )

a a
1

x x
1

e ,..., e a a ,

e ,..., e x x ,

N

N

′ α = − 
′ β = − 

%

%
(10)

where a  and x  denote the average of an%  and xn%  in the training set, respectively.
The distance between two subjects represented by ( )1 1x ,a%%  and ( )2 2x ,a%%  are computed
as a weighted Euclidean distance between the corresponding decomposition coeffi-
cients, (α1,β1) and (α2,β2).

5 Results

The experiments were performed on a 3D face database consisting of 64 children and
93 adults (115 males and 42 females). The texture the range images (acquired at a
resolution of 640×480) were decimated to a scale of 1:8 and cropped outside of the
facial contour. The database contained several instances of identical twins (Alex and
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Mike). Four approaches were compared: (i) eigendecomposition of range images; (ii)
combination of texture and range images in the eigenfaces scheme, as proposed by
Mavridis et al.; (iii) eigendecomposition of canonical images; and (iv) our eigenforms
algorithm.

Fig. 1. Texture flattening by interpolation onto the X1X2 plane: texture mapping on the facial
surface (A) and on the canonical form (B); the resulting flattened texture (C) and the canonical
image (D)

Using each of these four algorithms, we found the closest matches between a ref-
erence subject and the rest of the database. Different instances of identical twins
(Alex and Mike) were chosen as the reference subjects.

Fig. 2 shows significant improvement of the recognition accuracy if canonical im-
ages are used instead of range images. Even without using the texture information, we
obtain an accurate recognition of twins. Fig. 3 compares between the method of
Mavridis et al. (eigendecomposition of texture and range images), and our eigenforms
method (eigendecomposition of flattened textures and canonical images). Our method
made no mistakes in distinguishing between Alex and Mike. One can also observe
that a conventional approach is unable to cope with significant deformations of the
face (e.g. inflated cheeks), and finds a subject with fat cheeks (Robert 090) as the
closest match. This is a result typical for eigenfaces, as well as for straightforward
range image eigendecomposition.
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Fig. 2. The closest matches, obtained by eigendecomposition of range images (A) and canoni-
cal images (B). Wrong matches are italicized

Fig. 3. The closest matches, obtained by the method of Mavridis et al. (A) and eigenforms (B).
Wrong matches are italicized. Note the inability of the conventional method to cope with sub-
jects with exaggerated facial expression (Alex 20, sixth column)

6 Conclusions

We proposed an algorithm capable of extracting the intrinsic geometric features of
facial surfaces using geometric invariants, and applying eigendecomposition to the
resulting representation. We obtained very accurate face recognition results. Unlike
previously proposed solutions, the use of bending-invariant canonical representation
makes our approach robust to facial expressions and transformations typical of non-
rigid objects.
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Experimental results showed that the proposed algorithm outperforms the 2D ei-
genfaces approach, and the straightforward incorporation of range images into the
eigenfaces framework, proposed by Mavridis et al. Particularly, we observed that
even very significant deformations of the face do not confuse our algorithm, unlike
conventional approaches.
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