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geodesic curvature flow, the embedding property is pre-
served and the evolving curve exists for all times and eitherA scale space for images painted on surfaces is introduced.

Based on the geodesic curvature flow of the iso-gray level con- becomes a geodesic or shrinks into a point. We will limit
tours of an image painted on the given surface, the image our discussion to smooth Riemannian surfaces which are
is evolved and forms the natural geometric scale space. Its convex at infinity (the convex hull of every compact subset
geometrical properties are discussed as well as the intrinsic is compact). Moreover, we shall deal only with surfaces
nature of the proposed flow; i.e., the flow is invariant to the which are given as a parameterized function in a bounded
bending of the surface.  1997 Academic Press domain. Given these conditions, one can apply Grayson’s

theorem 0.1 in [8] that states that the �g flow shrinks closed
curves to points while embedding is preserved. Open1. INTRODUCTION
curves’ behavior depends on the boundary conditions and
could either disappear at a point in finite time or convergeIn this paper we introduce and study a geometric scale
to a geodesic in the C � norm, i.e., the geodesic curvaturespace for images painted on a given surface. We show
converges to zero. By open curves we refer to curves thatthat a natural scale for images painted on surfaces can be
connect two points on the boundary of our finite domainconstructed by considering the iso-gray levels of the image
(two points on the image boundaries).as curves on the surface and finding the proper geometric

We use the equations developed for curves in [11], gener-heat flow in the metric induced by the immersion. Specifi-
alize them, and formulate the natural scale space for imagescally, we study the properties of the geodesic curvature
painted on surfaces. This generalization is based on thescale space (�g scale space) for images that are painted on
observation that any gray level image can be expressed asa given surface.
a set of curves that correspond to its iso-gray level curves.Recently, surface curves flow by their geodesic curvature
Thus, evolving each of these curves according to the �gwas studied in [8], numerically implemented for curves
flow leads to the evolution of the whole image and thewith and without fixed endpoints [2, 11], and used for
construction of the �g scale space.refinement of initial curves into geodesics (shortest paths

Since the �g flow is intrinsic, so is the image flow. Givenon surfaces) in [10]. In [8] Grayson studies the evolution
a surface and an image that is painted on that surface, theof smooth curves immersed in Riemannian surfaces ac-
�g flow will be invariant to bending (isometric mapping)cording to their geodesic curvature flow (�g flow). The �g of the surface. A simple example is an image painted onflow is often called curve shortening flow since the flow lines a plane. In this planar case, the �g flow is equivalent to

in the space of closed curves are tangent to the gradient of the planar curvature flow. It was proven in [6, 7] to shrink
the length functional. It is the fastest way to shrink curves any planar curve into a convex one and then into a circular
using only local (geometrical) information. The curvature point, while embedding is preserved. By assuming that the
flow is also referred to as the heat flow on isometric immer- plane with the image painted on it is bent into a cylinder,
sion since it is the heat equation as long as the heat operator applying the �g flow on the new image obtained by taking
is computed in the metric induced by the immersion. a picture of the cylinder guarantees that the sequence of

Grayson showed that as curves evolve according to the evolved images on the surface can be mapped into the
sequence of the evolved images on the plane. This mapping
is the same one that mapped the initial planar image onto1 This work was supported in part by the Applied Mathematics Subpro-
the cylinder. The result is a flow which is invariant to thegram of the Office of Energy Research under DE-AC03-76SFOOO98

and ONR Grant NOOO14-96-1-0381. bending of the surface.
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2. RELATION TO EXISTING SCALE SPACES

Exploring the whole theory and history of scale space
and its various applications in image processing and com-
puter vision is beyond the scope of this paper. We refer
to [14] for a recent collection of papers dealing with linear
and nonlinear scale spaces.

Originally, the classical heat equation It � �I (where
�I � Ixx � Iyy) was considered to be a good candidate for
the description of scale. Its linear properties led to efficient
implementations that could be realized in the Fourier do-
main with low computational effort. The observation that
the complexity of the image topology can increase when

FIG. 1. The geometry of the geodesic curvature vector, �g Nˆ.applying the heat equation (local maximum points can
be formed) as well as the need for invariant flows under
different transformation groups led to the consideration 3. THE GEODESIC CURVATURE �g

of other, nonlinear, scale spaces [1, 15]. Most of these
Let the surface S � (x, y, z(x, y)) be defined as a parame-nonlinear flows have a simple and natural mathematical

terized function. Next, consider the surface curve C(s) �relation to the evolution of the gray level sets of the image.
(x(s), y(s), z(x(s), y(s))) where s is the arc-length parameterThe obvious reason is the requirement for preserving the
of the curve �Cs� � 1. The geodesic curvature vector �g Nˆembedding of the gray level sets along the evolution, as
is defined aswell as the smoothing of the level sets with the scale param-

eter, so that the topology of the image is simplified along
�g Nˆ � Css � �Css, N �N,the scale. This links Gage, Hamilton, and Grayson results

of the curvature flow of planar curves to Gabor’s historical
where Css (the curvature vector) is the second derivativeimage enhancement algorithm [5, 12]. We shall use this
of the curve according to s, and N is the normal to thenatural link between level sets and the image evolution,
surface; see Fig. 1.and the nice properties of the geodesic curvature flow of

A geodesic curve is a curve along which the geodesiccurves on surfaces, to construct the natural flow for images
curvature is equal to zero. Thus, any small perturbationon surfaces.
of a geodesic curve increases its length. Geodesics areIn [4] the second differential operator of Beltrami is
locally the shortest paths on a given surface, and in caseconsidered as a possible operator for the general heat equa-
there exists a straight line on a surfaces it is obviously ation under a given fixed metric g, namely It � �g I. In [17,
geodesic curve. Evolving a curve on the surface by its18] a new scale space for images in which the image is
geodesic curvature vector field is the fastest way to shrinkconsidered as a surface was introduced; i.e., the metric g
the curve’s length and thereby evolve it into a geodesic.is the induced metric (the metric of the image surface). It
Another important geometrical property is the invariancewas shown to give promising results as a selective smooth- of the geodesic curvature to bending of the surface. We

ing operator in color, movies, and texture. In that case �gI will use these two properties, as well as the nice characteris-
is the projection of the mean curvature vector onto the tics of this flow that were shown by Grayson [8], to con-
intensity coordinate. struct the �g scale space.

When setting the metric to the identity gij � �ij , �gI
boils down to the classical heat equation for the 2D case. 4. FROM CURVE TO IMAGE EVOLUTION
The relation between the �g flow and the �k flow is analog ON A SURFACE
to the relation between the classical heat equation, It �
�I, and the 2D geometrical heat equation, It � (IxxI 2

y � Our input is an image I(x, y) that is painted on the given
2Ix Iy Ixy � IyyI 2

x)/(I 2
x � I 2

y), i.e., the planar curvature (�) surface S � (x, y, z(x, y)); see Fig. 2. Using the fact that
flow. This is a natural analogy since considering a plane the embedding is preserved under geodesic curvature flow
as the underlying surface, �g becomes the Laplacian opera- of curves on surfaces, we may consider the image as an
tor �, and �g becomes the planar curvature �. Although implicit representation of its iso-gray levels. This is just a
the geometric heat equation (� flow) was explored and mental exercise that will help us derive the geodesic curva-
used for several applications, to the best of our knowledge, ture evolution of the image I(x, y) as a function of its first
the geodesic curvature flow as a scale space has not yet and second derivatives, as well as the surface derivatives.

Let t be the scale variable. Then the main result of thisbeen explored nor has any other bending invariant flows.
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The iso-gray level curve C̃(s̃) is the projection onto the
(image) coordinate plane of the 3D surface curve C(s̃) �
(x(s̃), y(s̃), z(x(s̃), y(s̃))); i.e., C̃(s̃) � � � C(s̃), where � is
the projection operation (a, b) � � � (a, b, c). See Fig. 3.

Let us first show a simple connection between an image
and its level sets evolution.

LEMMA 1. Let C̃(s̃) � (x(s̃), y(s̃)) be the level curve of
I(x, y). Assume that the planar curve C̃ is evolving in the
coordinate plane according to the smooth velocity field V :

C̃t � V.

FIG. 2. The image I(x, y) is painted on the parameterized surface Then the image follows the evolutionS � (x, y, z(x, y)); i.e., the surface point (x, y, z(x, y)) has the gray level
I(x, y).

It � �V, �I �,

paper is the following intrinsic evolution for I(x, y) given
where �I � (Ix, Iy).as initial condition to

Proof. The flow C̃t � V was shown in [3] to be geomet-
rically equivalent to the normal direction evolution C̃t ��I

�t
� Kg(Ix, Iy, Ixx, Ixy, Iyy, zx, zy, zxx, zxy, zyy),

�V, N˜ �N˜, where N˜ is the unit normal or the planar
curve. By the chain rule we have

where Kg is the geodesic curvature scale space function.
The �g scale space has the following properties:

�I
�t

�
�I
�x

�x
�t

�
�I
�y

�y
�t1. Intrinsic: Invariant to bending of the surface.

2. Embedding: The embedding property of the level sets
� ��I, C̃t �of the evolving gray level image is preserved.

3. Existence: The level sets exist for all the evolution � ��I, �V, N˜ �N˜ �.
time and disappear at a point in most cases, or converge
into a geodesic connecting the boundaries in special cases.

Recalling that C̃ is a level set of I(x, y), we can express4. Causality: The total geodesic curvature of the level
the normal N˜ as N˜ � �I/��I �. Using this relationsets is a decreasing function. This is an important property,

since combined with the embedding property, it means that
the topology of the image is simplified along the evolution.

5. Shortening flow: The scale space is a shortening flow
of the level sets of the image painted on the surface.

5. �g SCALE SPACE DERIVATION

As a first step we follow [11] and analyze the single
curve case of evolution under the �g flow. Thus, based on
the fact that embedding is preserved, we generalize and
consider the whole image. Let C̃(s̃) � (x(s̃), y(s̃)) be an
iso-gray level planar curve parameterized by its arc-length
s̃ of the image I(x, y); i.e. I(x, y) is constant along C̃(s̃),

I(C̃(s̃)) � Const,

FIG. 3. The geometry of the geodesic curvature vector projection.or equivalently �I(C̃(s̃))/�s̃ � 0.
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that yields�I
�t

� ��I, �V, N˜ �N˜ �

1
q

� �s
�s̃

� �Cs̃�
� ��I, �V,

�I
��I �� �I

��I ��
� �x2

s̃ � y2
s̃ � z2

s̃

� �V, �I � �
1

��I �2
� ��I, �I � � �(1 � z2

x)x2
s̃ � (1 � z2

y)y2
s̃ � 2zx zy xs̃ys̃ ,

� �V, �I �. � where for the last step we applied the chain rule zs̃ �
zx xs̃ � zy ys̃ .Let us now derive the geodesic curvature scale space For further derivation we also need the following rela-equation tions, which are obtained by the chain rule,

LEMMA 2. The geodesic curvature scale space for the
image I(x, y) painted on the parameterized surface S � zs � zx xs � zy ys
(x, y, z(x, y)) is given by the evolution equation

zss � zxx x2
s � zyyy2

s � 2zxyxs ys � zx xss � zy yss

�I
�t

� �I 2
x Iyy � 2Ix Iy Ixy � I 2

y Ixx �
(zx Ix � zy Iy)
1 � z2

x � z2
y
� Cs � Cs̃

�s̃
�s

� Cs̃ q

� � Cs � � � (qCs̃) � q� � Cs̃ � qC̃s̃�
(zxxI 2

y � 2Ix Iy zxy � zyyI 2
x)

I 2
x(1 � z2

y) � I 2
y(1 � z2

x) � 2zx zy Ix Iy
. (1)

Css � Cs̃s̃g2 � Cs̃qs

Proof. We start from the evolution of the 3D level sets �� � Css, N˜ � � q2�C̃s̃s̃, N˜ � � q2�̃,
of I(x, y) on the surface S � (x, y, z(x, y)) that is given
by the geodesic curvature flow where �̃ � �C̃s̃s̃, N˜ � is the curvature of the planar curve

C̃ : the projection of its second derivative, which is a vector
in the normal direction, onto its normal.�C

�t
� �g Nˆ,

Using the above relations, the projection of the geodesic
curvature vector onto the coordinate plane can be com-

where �g Nˆ is the 3D geodesic curvature vector defined by puted

�g Nˆ � �N � (�N, N �N � � �g Nˆ � � � (Css � �Css, N �N)
� Css � �Css, N �N.

� � � Css �
�xsszx � ysszy � zss

�1 � z2
x � z2

y

(�zx, �zy)

�1 � z2
x � z2

yHere, �N � Css is the 3D curvature vector of the 3D surface
curve C(s), where s is the arc-length parameterization of

� � � Css �
�xsszx � ysszy � zss

1 � z2
x � z2

y
(zx, zy)C. N is the surface normal:

� � � Css �
zxxx2

s � zyyy2
s � 2zxyxsys

1 � z2
x � z2

y
(zx, zy).N �

(�zx, �zy, 1)

�1 � z2
x � z2

y

.

We can project the above velocity field onto the planarThe projection of this 3D evolution onto the 2D coordinate
normal N˜ � (�ys̃, xs̃) eliminating the tangential compo-plane is given by
nent which does not contribute to the geometric evolu-
tion [3]:�C̃

�t
� �� � �g N˜, Nˆ �N˜.

�� � �g, Nˆ, N˜ �
The relation between the arc-length s of the 3D curve

� q2�̃ � q2 (zxxx2
s̃ � zyy y2

s̃ � 2zxy xs̃ys̃)(�ys̃zx � xs̃zy)
1 � z2

x � z2
yC and the arc-length s̃ of its 2D projection C̃ is obtained

from the arc-length definition

�

�̃ �
(�ys̃zx � xs̃zy)

1 � z2
x � z2

y
(zxxx2

s̃ � zyy y2
s̃ � 2zxyxs̃ys̃)

(1 � z2
x)x2

s̃ � (1 � z2
y)y2

s̃ � 2zxzyxs̃ys̃
.s � � �Cs̃� ds̃,
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FIG. 4. (a) The evolution (top to bottom) of the original image and its corresponding �g flow of the planar image mapped onto a cylinder
(cylinder bending). (b) Evolution of the original image and its corresponding cylinder bending.

Introducing the normal and the curvature as functions �I
�t

� �I 2
x Iyy � 2Ix Iy Ixy � I 2

y Ixx �
(zx Ix � zy Iy)
1 � z2

x � z2
y
�of the image in which the curve is embedded as a level set

N˜ � (�ys̃, xs̃) �
�I

��I � �
(zxxI 2

y � 2Ix Iy zxy � zyyI 2
x)

I 2
x(1 � z2

y) � I 2
y(1 � z2

x) � 2zx zy Ix Iy
. �

�̃ � div � �I
��I ��, We note that the relation between curves evolving as

level sets of a higher dimensional function was explored
and used in [13, 16] to construct state of the art numericaland using Lemma 1, we conclude with the desired result
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FIG. 4—Continued



INTRINSIC SCALE SPACE FOR IMAGES ON SURFACES: THE GEODESIC CURVATURE FLOW 371

FIG. 5. The evolution (left to right) of the Lenna image, this time projected onto three surfaces (at the top). The surfaces are also presented
to the left of the evolution sequence. Gray level corresponds to the height.

algorithms for curve evolution. Based on the Osher– I n
i, j � I(i�x, j�y, n�t)

Sethian numerical algorithm, the natural connection be-
tween shape boundaries and their images (a gray level It �

I n�1
i, j � I n

i, j

�timage of a shape is considered as an implicit representa-
tion of the boundary of the shape) was used for the

Ix �
I n

i�1, j � I n
i�1, j

2�xcomputation of offset curves in [9]. The same motivation
led us to the proposed framework for which the numerical
implementation enjoys the same flavor of stability and ac-

Ixx �
I n

i�1, j � 2I n
i, j � I n

i�1, j

(�x)2curacy.

Ixy �
I n

i�1, j�1 � I n
i�1, j�1 � I n

i�1, j�1 � I n
i�1, j�1

(2�x)2 ,

6. RESULTS AND NUMERICAL
of I, and the same central difference approximation forIMPLEMENTATION CONSIDERATIONS
the surface spatial derivatives (zx, . . .). We have chosen
mirror boundary conditions along the boundaries both forWe have implemented the PDE given in Eq. (1) by using

central difference approximation for the spatial derivatives the image I and the surface z.
In the first example we texture mapped the images ofand a forward difference approximation for the time deriv-

ative, Lenna and an image of a hand onto a cylinder. Figures 4a
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