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Abstract—Detection and description of affine-invariant features is a cornerstone
component in numerous computer vision applications. In this note, we analyze the
notion of maximally stable extremal regions (MSERs) through the prism of the
curvature scale space, and conclude that in its original definition, MSER prefers
regular (round) regions. Arguing that interesting features in natural images usually
have irregular shapes, we propose alternative definitions of MSER which are free
of this bias, yet maintain their invariance properties.

Index Terms—MSER, feature detector, affine invariance, stable region,
correspondence.

<+

1 INTRODUCTION

IN recent years, feature descriptors extracted through linear scale-
space analysis of an image have proven to be a powerful tool in
object matching and recognition [1]. One of the most popular
descriptor is the scale-invariant feature transform (SIFT) introduced
by Lowe [2]. It first locates points of interest in a linear scale space,
and then assigns a descriptor vector constructed as local histograms
of image gradient orientations around the point. The descriptor
itself is oriented by the dominant gradient direction, which makes it
rotation invariant. SIFT uses linear scale space in order to search for
feature points that appear at multiple resolutions of the image,
which makes the method also scale invariant.

One of the main disadvantages of SIFT is that it is not affine
invariant (see a recent work of Yu and Morel [3] on an affine-
invariant version of SIFT). Affine invariance is important in image
analysis since a more general class of viewpoint transformations
can be approximated as local affine transformations of the image.
An affine-invariant alternative to the SIFT widely used in
computer vision applications is the maximally stable extremal region
(MSER) [4]. This approach extracts stable regions from the image
by considering the change in area with respect to the change in
intensity of a connected component defined by thresholding the
image at a given gray level. The change of area, normalized by the
area of the connected component, is used as the stability criterion.
The area ratio is invariant to affine transformations and so does the
extracted region after appropriate canonization.! Benchmarks
comparing the MSER, SIFT, other approaches, and affine-invariant

1. See [5] and [6] for a closely related approach that also allows for the
analysis of contour segments, as well as [7] and [8] for an axiomatic
framework of differential affine-invariant signatures of planar shapes.
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alternatives thereof [9], [10] show that SIFT performs well for
planar objects (like a graffiti wall) while the MSER performs better
in most scenarios involving less trivial objects.

In this paper, we relate MSER to geometric scale-space analysis
and image evolution by the level set curvature flow. We observe
that the stability criterion in the original formulation of MSER
prefers regular regions and, arguing that interesting features in
natural images usually have irregular shapes, propose alternative
definitions of MSER which are free of this bias, yet maintain their
invariance properties. The rest of this paper is organized as follows:
In Section 2, we briefly overview the theory of image representation
as level sets and curve evolution. In Section 3, we formulate the
MSER feature detection and discuss feature normalization algo-
rithms. In Section 4, we discuss the drawbacks of the MSER stability
criteria that make it sensitive to blur and tend to prefer round
regions, and define alternative stability criteria. Section 5 shows
experimental results. Finally, Section 6 concludes the paper.

2 IMAGE AS A COLLECTION OF LEVEL SETS

Let X C IR? be a domain on which a grayscale image I : X — [0, 1]
is defined. The image can be fully represented as a collection of its
level sets {x € X : I(x) =t} for t € [0,1]. Topologically, a level set
may contain zero or more connected components of dimension 0
(points) or 1 (isolines).

Thinking of ¢ as time and observing the evolution of the level
sets over time, we will see connected components appear, split,
change genus, join, and disappear. The study of the changes of
topology of the level sets with infinitesimal changes of ¢ belongs to
the domain of Morse theory, a branch of differential topology.

The image can be represented by its contour or component graph,
in which 1) a leaf vertex represents the creation or deletion of a
component, 2) an interior vertex represents the joining/splitting of
two or more components, and 3) an edge formed by two vertices
with ¢ = ¢, and ¢ = t; represents a component in the level sets for all
values of t; <t < t,. This graph recording the topological events in
the level set evolution can be shown to be a tree. Each edge of the
component tree represents the evolution of a single connected
component in some contiguous range of values of ¢ € [t;,3]. We
will denote such components by 0R;, implying the entire sequence
{Rt}i’;,l ; int(R;) will denote the open set in X enclosed by R, and
R, will denote the union of the two (the region with its boundary).
Components R, along the edge are nested inside each other.

2.1 Curvature Flow and Geometric Scale Space

In the SIFT method, interesting feature points are located by
looking for local maxima of the discrete image Laplacian at
different scales obtained by convolving the image with Gaussians
of different variances. This procedure is known as linear scale-space
analysis, and is equivalent to applying a linear diffusion equation
I; = AI on the image and observing the result at different times.
While being scale invariant, the linear scale space is not affine
invariant, and is thus unsuitable for images of the same scene
captured from different viewpoints. Moreover, it is well known that
linear scale space does not necessarily simplify the image structure.
This is especially acute when level sets are considered, as linear
scale space can disconnect simply connected shapes [11], [12].

Better scale-invariant quantities that are simplified with scale
are provided by the curvature scale space or its affine variations [13],
[14], [15], [16], [17], [18]. The construction of such a geometric scale
space involves a nonlinear diffusion equation, which is more
demanding computationally. We would therefore like to use the
structure provided by geometric scale space without explicitly
computing it, a property that was trivially accomplished for the
linear scale space.

In the construction of the curvature scale space of an image, the
image level sets are propagated by their curvature vector. Let
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Fig. 1. First row: Random affine transformations of the silhouettes of the Puma logo (left) and a boy (right). Second row: Normalized shapes with second-order moments.

Third row: Results of alternative method proposed by Cao et al.

C(s):[0,L] — IR? be an arclength-parameterized contour. Then,
the curvature flow for the contour is given by

Ct(s) = Cls, (1)

where C,, = ki is the curvature vector, normal to the curve at
C(s). The whole process can be evaluated simultaneously for all
the level sets using a nonlinear diffusion equation:

VI
5= aiv () IV )

which can be easily established by the Osher-Sethian level set
formulation [16]. The remarkable property of this flow proven by
Grayson [14] is that embedding is preserved along the curvature
flow and no self-intersections occur until the contour vanishes at a
circular point.> Another important property is that each level set
contour vanishes at a time proportional to its area at ¢ = 0 [15], [14].
Thus, the curvature scale space can be used to define a component
tree, capturing the topology of this scale space.

3 AFFINE-INVARIANT FEATURE DETECTION

A typical feature-based image analysis application (e.g., stereo
matching) involves the steps of detecting regions in the image and
describing them. The first stage of feature detection should be
ideally repeatable in different views of the same scene, which is
provided if the detection process is affine covariant, i.e., commutes
with the geometric transformation of the image (in Section 4.1, we
argue that this is not enough if blur is present in the scene). A
feature descriptor is then extracted from the detected regions,
which are normalized in order to undo the affine transformations.
In this section, we briefly overview these two stages.

3.1 Maximally Stable Extremal Regions

Let R; be the family of connected components representing an
edge in the component tree. Matas et al. [4] refer to such regions as
to extremal since either 1|,z < I|og, OF Ilyyr, > Ilog,, i-e., all of
the pixel values in the regions are either strictly darker or strictly
brighter than those on the boundary, where the intensity is exactly
equal to ¢.

The stability of a region R, is defined as

A(Rt)

R ¥ T

3)
where A(R,) denotes the area of R,. A region is considered stable if
its area changes only slightly with the change of the threshold ¢t. A
region R, is called maximally stable if ¥, (R;) has a local maximum
at ¢ (in practice, often computed over an interval of ). Such regions
are image features detected by the MSER algorithm.

2. For a detailed discussion of affine invariants and scale-space
construction, the reader is referred to chapters 2.2 and 3.1 in [19].

3.2 Affine-Invariant Normalization

In typical applications, maximally stable regions found by MSER
undergo a process of affine-invariant normalization or canoniza-
tion [20]. Normalization can be thought of as a mapping N : R? —
IR? receiving a region R and returning another region N(R) such
that N(TR) = N(R) for any affine transformation 7'. Canonization
of a given shape can be viewed as part of a descriptor computation
in which the goal is to compensate for arbitrary transformations of
the shape due to the acquisition process.

One of the easiest methods is moment-based canonization, in
which the matrix of second-order geometric moments of the shape
is diagonalized. Cao et al. [6] argue that such a normalization can
be unstable, and propose alternatives based on the detection of flat
intervals along the boundary. The next steps applied by Cao et al.
involve center of mass estimation for the two regions created by a
line parallel to the flat boundary line that goes through the center
of mass. Parallel lines, area ratio, and center of mass are indeed
robust measures preserved by affine transformations. On the other
hand, a definition of flatness that is based on euclidean distance
and angles is not invariant to affine transformations. Moreover, if
we limit our discussion to the analysis of simple closed contours,
there is a simple alternative for the first step proposed in [6].

Experimenting with second-order moments-based normaliza-
tion [21], we did not experience the instabilities reported by Cao
et al.: Moments-based normalization proved to be equally stable
as the centers of mass-based alternative, as can be seen in Fig. 1.

A different normalization method proposed in [22] could be
used to either initialize the Cao et al. canonization method or as
compensation for the rotation ambiguity in moments-based
normalization. Let us assume that the contours we would like to
normalize are in general nonconvex (convex contours can be
approximated by simple regular polygons). Relying on area ratios
and centers of mass, and based on [6], we define a robust method
for shape normalization (Algorithm 1; see also Figs. 2 and 3)
allowing to undo affine transformations.

Algorithm 1. Shape normalization.

Input: Binary shape
Output: Normalized binary shape

1 Compute the convex hull of the shape.

2 Find the largest area bounded between the convex
hull and the shape, and detect the bitangent line
(part of the convex hull touching the largest area, as
shown in Figure 2).

3 Follow the rest of the steps in [6] using the

computed bitangent as the reference axis (Figure 3).

The reference axis could also be used for compensating for
rotation ambiguity in the case of moments-based normalization
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Fig. 2. Left to right: The shape’s boundary contour, its convex hull, and the areas
formed between the convex hull and the shape. The largest area, A, in this case,
defines the bitangent that is used for normalization (canonization) of the shape or
for fixing its orientation.

[21]: First, the normalization is performed, and then the above
rotation cancellation using the convex hull and maximal bounded
area is applied.

There are other options to account for rotations, like radial
Fourier transform over the shape and consideration of the phase as
a rotation angle. Yet, the best computational complexity for the
convex hull of a closed contour is O(n log h), where h is the number
of points in the convex hull (n > h) [23], while the Fourier transform
is slightly costlier and requires O(nlogn) operations.

4 INTERESTING FEATURES

The main focus of this section is a critique of the region stability
criterion ¥, used in the MSER feature detector [4]. The two main
drawbacks we stress are the preference for rounded regions, which
are of less interest in typical images, and the lack of affine
invariance in the presence of blur. Understanding these draw-
backs, we propose different stability criteria that are more robust
and detect more interesting regions.

4.1 Stability and Shape Factor
Observing that
dA(R, .1 d
i (AR - aw) = [ @
or, [IVI|

dt e—0 €

we can rewrite the MSER stability criterion ¥, as

A(Ry)
/ ds
Jor, |IVI]]

Let us now apply ¥, to two equal-area regions, one is a perfect
circle, while the other is a more interesting less round shape. Under
the simplifying assumption that the change of intensity along the
boundaries is the same in both regions, say ||VI|| = 1, we have

Uy (Ry) = (%)

vy (R = AT _ AW o

/ s LOR)
OR;

where L(0R;) is the boundary length of R,. Similar to the shape
factor 422 which is always smaller or equal to 1 with equality
achieved for the circle, the ratio 4 grows when L decreases. Thus,
the stability criterion ¥, prefers regular shapes: For two equal-area
shapes with the same change of intensity along their boundaries,
the one with a shorter boundary will result in a larger V;.
However, such shapes are not necessarily the most interesting and
descriptive features in natural images; on the contrary, interesting
features typically have irregular boundaries.

Based on this observation, our goal is to correct the bias of ¥,
toward round shapes and define an alternative stability measure
that prefers less regular and more interesting shapes while still
enjoying the affine invariance and stability of ¥;. Unlike the
standard MSER, where ¥, is computed on the components from the
component tree, we propose to first normalize each component. We
then compute the inverse of the standard euclidean shape factor

AW
X DA
CEANR

Fig. 3. Normalization steps of a given shape, left to right: Convex hull and maximal
bounded area detection, rotation of the parallel to the bitangent through the center
of mass, alignment of the center of mass of the upper half of the shape with the z-
axis, and, finally, shear of the center of mass of the (new) upper part so that the
line connecting it to the center of mass aligns with the y-axis. The resulting
normalized shape is at the right of each sequence.

LA(N(R:))

Uy(Ry) = ANR)) (7)

where the operator N means that the measure is applied to the
normalized region. Such a function prefers shapes with irregular
boundaries, while still being affine invariant. Since the computa-
tional complexity of region normalization is proportional to the
length of the boundary, reversing MSER selection and normal-
ization is not more computationally expensive than first comput-
ing ¥, and then doing normalization of the remaining MSERs.

It is possible to combine the above measure with ¥;, e.g.,
¥, - ¥,. Such a combination shows better performance, as demon-
strated in the Section 5. Alternatively, it is possible to detect MSERs
as extrema of ¥y, but score them using Ws.

4.2 Affine Covariance and Blur

Matas et al. [4] showed that MSER is affine covariant. This
observation stems directly from the fact that area ratios are
preserved under affine transformations, which implies that ¥, (R;)
is an affine-invariant property. This, in turn, implies that for an
affine transformation 7' of the domain X, the corresponding
regions R and R’ detected in images I and I(T '), respectively, are
related by TR = R/

Affine covariance of maximally stable regions is the conse-
quence of covariance of the level sets of the image with affine
transformations of the coordinates. However, this property holds
only if the boundaries of objects in the scene are smooth, an
assumption far from true in real-world scenarios. Specifically, in
order for the affine covariance of the level sets to hold, we need the
optical point spread function of the camera to be small compared
to the natural smoothness of objects in the scene. In other words,
this leads to the assumption that the world is first blurred, and that
the image formation is primarily a geometric transformation of that
blurred image of the world. In a more realistic model, the blur
occurs after the geometric transformation, i.e., real viewpoint
transformations constitute (locally) affine transformations fol-
lowed by blur in the image plane with the point spread function
of the camera, and these two processes do not commute (Fig. 4).

As in most practical cases, the image formation involves
nonnegligible blur due to the optical acquisition process; it may
happen that the criterion ¥, is not truly invariant to viewpoint
transformations. A somewhat better quantity for the stability or
edginess of a region would be the weighted gradient magnitude
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Fig. 4. The top row assumes affine transformation followed by imaging blur. The
bottom row assumes affine transformation of a given blurred object. On the right
are three corresponding level sets for both cases.

TABLE 1
Repeatability (in Percent) of MSER Feature
Detector with Different Stability Criteria
on the Graffiti Wall Data Set

Stability criterion

Transformation A2 Wy Uy - Wy
View 200 60.3 585 58.0
View 300 574 583 58.1
View 400 40.8 492 47.0
View 500 326 369 325
View 60° 211 275 25.8

along its boundary (similar criteria are used in edge detection [24],
[25]). Here, in order to preserve affine invariance, the affine
arclength dv = |k|"/*ds can be used, which explicitly yields

A(R:
W3 (Ry) = > ! 213 7. (8)
/ [ Loy = 200 dy Loy + Ly I || ds
OR,

VI

Any alternative robust filter, like the median, could represent the
significance of the boundary sufficiently well.> Such a ¥; can be
used instead of ;.

5 EXPERIMENTAL RESULTS

To experimentally assess the findings of this paper, we closely
followed the evaluation of Mikolajczyk et al. [9] for affine-invariant
region detectors. As a reference MSER implementation, we used the
publicly distributed VLFeat code of Vedaldi and Fulkerson [28], in
which the stability criterion was modified according to the paper.
The settings used were § = 6, minimum diversity of 0.4, maximum
and minimum region area of 75 percent of the image size and
40 pixels, respectively (for additional details on the parameters, see
[28]). Moment-based affine normalization as in Section 3.2 was
used. We provide a quantitative comparison for stability criteria ¥y,
¥y, and ¥, - ¥, and a qualitative evaluation of 3.

5.1 Repeatability

In the first experiment, we tested the repeatability of the feature
detector on a set of images with known geometric transformations
using the methodology and code from [9]. Given a pair of such
images, MSER regions represented as ellipses are detected in each
of them independently. The repeatability score for a given pair of
images is computed as the ratio between the number of region-to-
region correspondences known from the geometric transformation
between the images and the smaller of the number of regions in the

3. Note that the two basic independent affine-invariant second-order
differential descriptors are J(I) = I, I, — 2I,1,1,, + I,,I7, and the determi-
nant of the hessian H(I) = I, I, — I2, [26], while the second-order
approximation for the affine-invariant curvature of the level sets is given
by u=H/J*? [27].

TABLE 2
Repeatability (in Percent) of MSER Feature
Detector with Different Stability Criteria
on the Blurred Graffiti Wall Data Set

Stability criterion

Transformation Uy Uy Uy - Wy

View 309, no blur 574 583 58.1

View 309, blur 1.5 32,6  41.1 2.7

View 309, blur 2 27.6 360 36.6

View 309, blur 2.5 214 332 30.7

View 30°, blur 3 214 329 27.5
TABLE 3

Matching Score (in Percent) of MSER Feature
Detector with Different Stability Criteria
on the Blurred Graffiti Wall Data Set

Stability criterion

Transformation 2} A/ Uy - Wy
View 30°, no blur 347  25.6 29.2
View 30°, blur 1.5 10.0 11.7 13.2
View 30°, blur 2 6.5 6.5 10.9
View 300, blur 2.5 4.8 5.8 7.5
View 309, blur 3 4.1 4.7 5.9

pair of images (only the regions located in the part of the scene
present in both images are considered). Regions are declared
corresponding if their overlap error is below 50 percent [9]. Ideal
repeatability is 100 percent.

The first data set (graffiti wall) included six images from the
Mikolajczyk et al. benchmark [9], taken at different view angles
from mild (20 degrees) to extreme (60 degrees). Table 1 summarizes
the repeatability of the MSER feature detector with different
stability criteria discussed in the paper. The second data set (blurred
graffiti wall) emulated the scenario depicted in Fig. 4 (top). It
included two viewpoints of the graffiti wall: 0 degree used as
reference and 30 degrees, followed by Gaussian blur of different
variance (0 = 0, 1.5, 2, 2.5, 3 pixels). The repeatability results for this
data set are shown in Table 2. In both settings, the proposed criteria
(¥ and U, - ¥y) outperform the original MSER criterion (¥;) in the
presence of strong transformations. Moreover, the performance
drop of ¥, (2.85 times from mildest to strongest transformation in
the graffiti wall data set and 2.68 times on blurred graffiti wall,
respectively) is significantly larger than that of ¥, (2.12 times on
graffiti wall and 1.77 times on blurred graffiti wall) and ¥, - U,
(2.24 times on graffiti wall and 2.11 times on blurred graffiti wall).

5.2 Feature Matching

In the second experiment, we evaluated the feature matching
quality using the methodology and code from [9]. Each detected
MSER region was normalized to undo the affine transformation
and represented as a 41 x 41 image. Then, the SIFT descriptor was
computed in the normalized regions. Closest features in the
descriptor space were matched and the matching score was
computed as the ratio of correctly matched regions and the
number of corresponding regions obtained with the ground truth.
Matching scores computed on the blurred graffiti wall data set are
shown in Table 3. The matching of MSERs detected using the
proposed stability criteria shows better robustness to view and
blur transformations. As in the first experiment, the performance
drop of ¥, (5.4 times from mildest to strongest transformation) and
U - Uy (4.94 times) is smaller than that of ¥; (8.4 times).

Finally, in the third experiment, we provide a qualitative
comparison of ¥; and ¥s. Fig. 5 shows a different example of
feature matching in an object taken from two video frames of a
movie. The MSER regions are normalized and matched based on
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Fig. 5. Feature matching in two frames of a video using classical MSER ¥, (left) and our stability criterion U3 (right).
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Fig. 6. Matching feature pairs extracted with the classical MSER ¥, (left) and our stability criterion W5 (right). First and second rows: Regions found in the first and second
frames. Third and fourth rows: Normalized regions in the first and second frames. The order (left to right) is according to the matching score, while the gray level of the
canonical shapes corresponds to the isoperimetric ratio. Correct matches are boxed.

their canonized shapes, and for each pair, the first three matches
are considered. The final selection is of features that are supported
by consistent neighboring features that are determined by the first
10 nearest neighbors. The improvement in matching performances
shows up in the correspondence of features in the two frames as
can be seen in Fig. 6.

6 CONCLUSIONS

In this paper, we analyzed the MSER feature detection algorithm.
We revisited the assumptions of the MSER and redefined some of
the criteria that help us extract more informative shape descriptors
using the curvature scale-space formalism. We stress again the
amazing fact that while being only euclidean invariant, the
curvature scale-space structure is captured by the level set graph,
which is affine invariant. This property explains the usefulness of
the image level sets and their local density in generating
interesting features. The relation between the level set graph,
curvature flow, and invariant stable and interesting features
provides a theoretical bridge that could be used for various image
and shape analysis applications.
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