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Abstract. We extend the geometric framework introduced in Sochen et al. (IEEE Trans. on Image Processing,
7(3):310–318, 1998) for image enhancement. We analyze and propose enhancement techniques that selectively
smooth images while preserving either the multi-channel edges or the orientation-dependent texture features in
them. Images are treated as manifolds in a feature-space. This geometrical interpretation lead to a general way for
grey level, color, movies, volumetric medical data, and color-texture image enhancement.
We first review our framework in which the Polyakov action from high-energy physics is used to develop a

minimization procedure through a geometric flow for images. Here we show that the geometric flow, based on
manifold volume minimization, yields a novel enhancement procedure for color images. We apply the geometric
framework and the general Beltrami flow to feature-preserving denoising of images in various spaces.
Next, we introduce a new method for color and texture enhancement. Motivated by Gabor’s geometric image

sharpening method (Gabor, Laboratory Investigation, 14(6):801–807, 1965), we present a geometric sharpening
procedure for color images with texture. It is based on inverse diffusion across the multi-channel edge, and diffusion
along the edge.
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1. Introduction

We extend in this paper the geometric framework pre-
sented in Sochen et al. (1996) both in scope and in ap-
plications. It is applied to volumetric images, movies,
texture analysis and color images. We study in detail
the structure of the different norms suggested for color
processing and show that our area norm satisfies ba-
sic requirements of Lambertian color images.We show

∗Readers may view the figures in color at 〈http:www.cs.technion.
ac.il/∼ron/belt.html〉.
∗∗N. Sochen was previously with the Electrical Engineering Depart-
ment, Technion, Haifa 32000, Israel.

further that recent enhancement techniques ofWeickert
(1994, 1997) for grey level and color images are another
example of a PDE technique that fits our framework and
suggest a new enhancement technique that transcends
Riemannian geometry.
The framework is based on geometrical ideas bor-

rowed from high-energy physics. The essence of the
method is summarized in two steps: (a) Represent-
ing an image as a Riemannian manifold embedded
in a higher dimensional spatial-feature manifold. E.g.
a three-dimensional manifold embedded in a four-
dimensional space for volumetric medical images and
movies. (b) A non-linear scale-space equation applied
to images, derived as a gradient descent of a norm
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functional (the Polyakov action) that weights embed-
ding maps in a geometrical way.
The explicit form of the scale-space PDE (or the

coupled PDEs) depends on the choice of dynamic co-
ordinates and the geometry of the image manifold, i.e.,
its metric. We work in this paper with Euclidean space-
feature manifold. One can also choose to work with a
non-Euclidean embedding space, see Sochen andZeevi
(1998).
The importance of edges in scale space construction

is obvious. We would like to build our minimization
schemes such that boundaries between objects survive
along the scale space, while homogeneous regions are
simplified and flattened in amore rapid way. An impor-
tant question, for which there are only partial answers,
is how to treat multi-valued images in a geometric way.
Acolor image is a good example since one actually con-
siders 3 images (Red, Green, Blue) that are composed
into one. The geometric framework attempts to answer
this question. An edge-preserving enhancement pro-
cedure is a result of minimizing the Polyakov action
norm with respect to the feature coordinates with the
induced metric and is expressed via a geometric flow
for images that we named Beltrami flow.
Texture plays an important role in the understand-

ing process of many images, specially those that in-
volve natural scenes. Therefore, it became an impor-
tant research subject in the fields of psychophysics and
computer vision. The study of texture starts from the
pre-image that describes the physics and optics that
transform the 3D world into an image. It tracks hu-
man perception from the image formation on the retina
and its interpretation at the first perception steps in the
brain.
Preserving the orientation information while dif-

fusing a given texture image is important in cer-
tain cases, say in denoising a fingerprint image. We
imagine a procedure that preserves domains of con-
stant/homogeneous texture, enhances the texture in
each domain, and thereby enhances the boundaries be-
tween neighboring domains with different textures. In
this paper, we apply the geometrical framework to im-
prove and enhance color and texture based images.
A popular method for texture analysis is to decom-

pose a given image into a set of sub-band images using
the 2D Gabor/Morlet-wavelet transform. Some nice
mathematical properties and the relation of this trans-
form to the physiological behavior were studied in Lee
(1996) and Porat and Zeevi (1988). This model was
later used for the segmentation, interpretation and anal-

ysis of texture (Bovik et al., 1990; Lee et al., 1992),
and for texture-based browsing (Manjunath and Ma,
1996). In Section 4, we use the Gabor/Morlet-wavelet
transform to split a given image into a set of sub-band
images. We then show that an enhancement proce-
dure can be constructed based on a flow in the trans-
formed space, i.e. the transform coefficients are treated
as higher dimensional manifolds. Other flows in sim-
ilar feature spaces were recently proposed in Sapiro
(1996), Rubner and Tomasi (1996), Chambolle (1994),
Sapiro and Ringach (1996), and Whitaker and Gerig
(1994); see also Weickert (1997) for orientation pre-
serving flows. These approaches begin with a flat met-
ric, or singular structures (Di Zenzo, 1986), that do not
necessarily yield a meaningful minimization process
when going to more than one channel. The main dif-
ference between these schemes and the one we pro-
pose is the geometric interpretation of the informa-
tion as a manifold flowing in a special way so as to
minimize its volume. Our geometric perspective of
a color image as a surface embedded in a higher di-
mensional space enabled us to define coupling in the
multi-channel color space. Other schemes have also
considered image as a surface (Blake and Zisserman,
1987; El-Fallah et al., 1994; El-Fallah and Ford, 1998;
Yanowitz and Bruckstein, 1989; Malladi and Sethian,
1996), some even used the image information to build
a Riemannian metric for segmentation (Caselles et al.,
1995; Kichenassamy et al., 1995; Shah, 1996a). How-
ever, these methods were not generalized to feature
space or any co-dimension higher than one.
The geometric framework has the following prop-

erties: (1) It is a general way of writing the geo-
metrical scale-space and enhancement algorithms for
grey-scale, color, volumetric, time-varying, and texture
images, (2) it unifies many existing partial differential
equation based schemes for image processing, (3) it
leads to feature-preserving schemes that are suitable for
enhancement and segmentation tasks, and (4) it offers a
general coupling between channels in a multi-channel
image processing.
The remainder of this paper is organized as follows:

We start with a short review of the geometrical frame-
work in order to be as self contained as possible and
to fix ideas and notations. The next sections are or-
dered according to increasing codimension. Section 3
deals with the simple cases of grey-level images, 3D
images andmovieswhich can be described as hypersur-
faces i.e. embedding map with codimension 1. Texture
analysis is the focus of Section 4 where the problem is
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formulated as parallel processing of different subbands
each of which described as a 3-dimensional manifold
embedded in a 5-dimensional space, i.e. a codimen-
sion 2 problem. We next move to a codimension 3
problem: Color. The understanding, processing and en-
hancement of colored images are an active fields of re-
search for more then a century. We motivate the metric
and the resulting edge-enhancing flow for color images
via a simple color image formation model. In Section 6
we link the Beltrami flow to some recent coherence en-
hancing flows. Finally, we extend our geometric frame-
work and introduce a new sharpening flow that is based
on inverse diffusion across the edge.We finish with our
concluding remarks.

2. The Geometric Framework

Let us first review the geometrical framework in which
images are considered as Riemannian manifolds. We
limit our discussion to variational methods in non-
linear scale space imageprocessing, andwhile our anal-
ysis in the following sections assumes Euclidean em-
bedding space, we leave the discussion in this section
in its full generality.
Suppose we have an n-dimensional manifold !

with coordinates σ 1, σ 2, . . . , σ n embedded in an m-
dimensionalmanifoldM with coordinates X1, X2, . . . ,
Xm, where m > n. The embedding map X :! → M
is given explicitly by the m functions of n variables

X : (σ 1, . . . , σ n)

→ (X1(σ 1, . . . , σ n), . . . , Xm(σ 1, . . . , σ n)).

This map is an embedding if the map is an injection
and the rank of the Jacobian is n.
If we denote the length of an image by σ 1 and the

width by σ 2 then a possible embedding map of a grey-
level image is

(X1(σ 1, σ 2) = σ 1, X2(σ 1, σ 2)
= σ 2, X3(σ 1, σ 2) = I (σ 1, σ 2))

where I (σ 1, σ 2) is the intensity. If we further denote
X1 ≡ x and X2 ≡ y then it can be written with a slight
abuse of notations as (x, y, I (x, y)).
Up to now we discussed coordinates only with no

mention of the geometry of themanifolds. In order to do
that we introduce Riemannian structure i.e. a metric (in
some cases pseudo-Riemannian structure is needed).
The metric at a given point on the manifold describes

thewaywemeasure distanceswithout being dependent
on the coordinates, i.e. themetric on!measures locally
the distances at a point as follows

ds2 = gµν dσµ dσ ν µ, ν ∈ {1, . . . , n}

and summation is implied on identical indices. Simi-
larly on M

ds2 = hi j d Xi dX j i, j ∈ {1, . . . ,m}.

In an isometric embedding, i.e. one that preserves
length these two line elements are equal, applying the
chain rule dXi = ∂µXidσµ, where ∂µ ≡ ∂

∂σµ and there
is a sum over µ, gives the induced metric formula

gµν = hi j ∂µXi ∂νX j .

For the embedding of a grey level image in a Euclidean
3-dimensional space we obtain the following metric

gµν =
(
1+ I 2x Ix Iy
Ix Iy 1+ I 2y

)

.

Denote by (!, g) the image manifold and its metric
and by (M, h) the space-feature manifold and its met-
ric, then the Polyakov action (Polyakov, 1981) provides
a convenient measure on the space of embedding maps
X :! → M . It reads as follows

S[Xi , gµν, hi j ] =
∫
dmσ

√
ggµν∂µXi∂νX jhi j (X),

(1)

where m is the dimension of !, g is the determinant
of the image metric, gµν is the inverse of the image
metric, the range of indices is µ, ν = 1, . . . , dim!,
and i, j = 1, . . . , dimM , and hi j is the metric of the
embedding space. For more details see Sochen et al.
(1998). This is a natural generalization of the L2 norm
to manifolds.
Many scale-spacemethods, linear andnon-linear can

be shown to be gradient descent flows of this functional
with appropriately chosen metric of the image mani-
fold. The gradient descent equation is

Xi
t = − 1

√g
δS
δXi ,

where we limit ourselves above, and from now on to
Euclidean embedding space.
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The metric is a free “parameter” of the frame-
work and different choices lead to different scale-space
schemes as shown in Sochen et al. (1996). For the
choice of the metric as the induced metric the norm
becomes simply the area or the volume of the image
manifold, and the flow is towards a minimal surface so-
lution. Minimizing the area action with respect to the
feature coordinate (fixing the x and y coordinates), we
obtain the area minimization direction given by apply-
ing the second order differential operator of Beltrami
on the feature coordinates. Filtering the image based
on this result, yields an efficient geometric flow for
smoothing the image while preserving the edges. It is
written as

It = &gI, (2)

where, for color I = (R,G, B). The Beltrami operator,
denoted by&g , that is acting on I is a generalization of
the Laplacian from flat spaces. It is defined by

&gI ≡ 1
√g

∂µ

(√
ggµν∂νI

)
. (3)

For 2D images grey-level or color, the flow is given by

I it = 1
g
(∂x pi + ∂yqi ) − 1

2g2
(pi (∂x g) + qi (∂yg)) (4)

where gµν = δµν +
∑

i (∂µ I i )(∂ν I i ), g = g11g22−g212,
and

pi = g22∂x I i − g12∂y I i , and
qi = −g12∂x I i + g11∂y I i . (5)

For the gray level case, the above evolution equa-
tion is the mean curvature flow of the image surface
divided by the induced metric g = det(gµν). It is the
evolution via the I components of the mean curvature
vector H. I.e. for the surface (x(σ1, σ2), I(σ1, σ2)) in
the Euclidean space (x, I), the curvature vector is given
by H = &g(x(σ1, σ2), I(σ1, σ2)). If we identify x with
σ then &g I i (x) = H · Î i . Where, this direct com-
putation applies for co-dimensions >1. The determi-
nant of the induced metric matrix g= det(gµν)may be
considered as a generalized form of an edge indicator.
Therefore, the flow (2) is a selective smoothing mech-
anism that preserves edges and can be generalized to
any dimension. In Sochen et al. (1998) and Kimmel
et al. (1997), methods for constraining the evolution
and the construction of convergent schemes based on

the knowledge of the noise variance, were reported.
Let us consider the simple gray level case, in which
the image is considered as the surface (x, y, I (x, y))
in the (x, y, I ) Euclidean space. If we set the aspect
ratio such that d I + dx , then the principle curvatures
can be approximated by the iso-contour curvature, and
the flow line curvature which vanishes for this selec-
tion of the aspect ratio. Then, the mean curvature of
the surface which is a sum of the principle curvatures
may be approximated by the iso-contour curvature, and
the Beltrami flow becomes the TV flow (Rudin et al.,
1992) up to a factor.

3. Movies and Volumetric Medical Images

Traditionally, MRI volumetric data is referred to as 3D
medical image. Following our framework, a more ap-
propriate definition is of a 3D surface in 4D (x, y, z, I ).
In a very similar manner we will consider gray level
movies as a 3D surfaces in 4D, where all we need to do
is the mental exercise of replacing z of the volumetric
medical images by the sequence (time) axis. In Fig. 1,
the first row shows images at different z locations and
the second row shows the corresponding denoised im-
ages. This is a relatively simple case, since now we
have co-dimension equal to one.
The line element is

ds2 = dx2 + dy2 + dz2 + d I 2.

The induced metric in this case is given by

(gµν) =





1+ I 2x Ix Iy Ix Iz
Ix Iy 1+ I 2y Iy Iz
Ix Iz Iy Iz 1+ I 2z



 , (6)

and the Beltrami flow is:

It = 1
√g

div
( ∇ I

√g

)
, (7)

where now∇ I ≡ (Ix , Iy, Iz) and g = 1+ I 2x + I 2y + I 2z .
The meaning of edge preserving in movies is as fol-

lows: In a shot where things stay more or less in the
same place the algorithmwill tend to flatten the bound-
aries i.e. it is an “anti shake” or “steady shot” filter. Yet
it does not have an impact on an adjacent different scene
since it preserves sharp changes along the time axis.
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Figure 1. Movie or volumetric data; see text.
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4. 2D Gabor/Morlet-Wavelets as a Space
for Texture Images

In this section, we apply the Beltrami flow in a decom-
position space for the enhancement of texture images.
In Lee (1996) Lee argues that the 2D Gabor/Morlet
wavelet transform with specific coefficients is an ap-
propriate mathematical description for images. Hemo-
tivated his model by recent neurophysiological evi-
dence based on experiments on the visual cortex of
mammalian brains. These experiments indicate that
a good model for the filter response of simple cells
are self-similar 2D Gabor/Morlet wavelets, see also
Olshausen and Field (1996). We refer the interested
reader to Masters (1996) for implementation consider-
ations, and to the rich literature on wavelet theory, e.g.
(Daubechies, 1990).
Following Lee (1996), we briefly describe the

2D Gabor/Morlet wavelets that model the simple
cells while satisfying Daubechies’ wavelet theory
(Daubechies, 1990). The 2D wavelet transform on an
image I (x, y) is defined as

(Twav I )(x0, y0, θ, a)

= ‖a‖−1
∫ ∫

dx dy I (x, y)ψθ

(
x − x0
a

,
y − y0
a

)
,

(8)

where a is a dilation parameter, x0 and y0 are the spatial
translations, and θ is the wavelet orientation parameter.

ψ(x, y, x0, y0, θ, a) = ‖a‖−1ψθ

(
x − x0
a

,
y − y0
a

)
,

(9)

is the 2D elementary wavelet function rotated by θ

Based on neurophysiological experiments, a specific
Gabor elementary function is used as the mother
wavelet to generate the 2D Gabor/Morlet wavelet fam-
ily by convolving the image with

ψ(x, y) = 1√
2π

e− 1
8 (4x

2+y2)(eikx − e− k2
2
)
, (10)

andψθ(x, y) = ψ(x̃, ỹ) is defined by rotation of (x, y)
via

{
x̃ = x cos θ + y sin θ

ỹ = −x sin θ + y cos θ.
(11)

The discretization of Eq. (8) is given by

Wp,q,l,m =
(
Twav
p,q,l,m I

)

= a−m
∫ ∫

dx dy I (x, y)ψl&θ

× (a−m(x − p&x), A−m(y− q&x)), (12)

where&x is the basic sampling interval, and the angles
are given by &θ = 2πl/L , l = 0, . . . , L − 1, L being
the total number of orientations; p, q and m are inte-
gers determining the position and scaling. Note that as
m increases the sample intervals get larger forming a
pyramidal structure. Equation (12) can be interpreted
as a projection onto a discrete set of basis functions,
namely

Wp,q,l,m = 〈I, ψp,q,l,m〉. (13)

The real number k determines the frequency band-
width of the filters in octaves via the approximation

k = aφ + 1
aφ − 1

√
2 ln 2, (14)

where φ is the bandwidth in octaves, e.g. for a= 2 and
φ = 1.5we get k ≈ 2.5. In the above approximation the
DC normalization term e−k2/2 that is required to make
awavelet basis out of the Gabor basis is ignored andwe
consider a = k/ω0. So the peaks of the scaled mother
wavelets in the frequency domain are (approximately)
at the locations a−mω0.
For our application we have chosen L = 16 (16 ori-

entations), a= 2, &x = 1, k= 2.5, and 5 scales, i.e.
∈ {0, . . . , 4}. This selection results in a ‘tight frame’
(Duffin and Schaeffer, 1952) that allows simple sum-
mation reconstruction.

4.1. Beltrami Flow for Texture Enhancement

We denote the 2D Gabor/Morlet-wavelet transform as
W (x, y, θ, σ ), where for the discrete case σ = am and
θ = l&θ . Let R = Real(W ) and J = Imag(W ) be its
real and imaginary part. The response of a simple cell
is then modeled by the projection of the image onto a
specific Gabor/Morlet wavelet.
The Gabor/Morlet-wavelet transform of an image

in our framework is a mapping W : (x, y, θ, σ ) →
(x, y, θ, σ, R, J ), i.e. a 4D manifold embedded in 6D.
The Beltrami operator is not limited to act on gray level
images (2D surfaces in 3D) as we show in Section 5 for
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color. First, the metric gµν is “pulled back” from the
relevant arclength definition in the spatial-orientation
complex space, namely

ds2 = dx2 + dy2 + dθ2 + dσ 2 + d J 2 + dR2.

For practical implementation we consider each scale
as a separate space. This is in contrast to writing the
arclength for the full transform. Therefore, the ar-
clength for a given scale σ is ds2 = dx2+dy2+dθ2+
d J 2 + dR2, and the induced metric for each scale is
given by

(gµν)

=





1+ R2x + J 2x Rx Ry + Jx Jy Rx Rθ + Jx Jθ
Rx Ry + Jx Jy 1+ R2y + J 2y Ry Rθ + Jy Jθ
Rx Rθ + Jx Jθ Ry Rθ + Jy Jθ 1+ R2θ + J 2θ



 .

(15)

As we have seen before, the above result can be un-
derstood from the arclength definition and applying the
chain rule dR = Rxdx + Rydy + Rθdθ , and similarly
for d J to obtain the desired bilinear structure.
Finally, the area-minimizing and feature-preserv-

ing Beltrami flow that operates on the Gabor/Morlet-
wavelet transform of a texture image can be compactly
written as

Rt = &g R

Jt = &g J.
(16)

The main difference from nonlinear diffusion in the
image plane, is the freedom to work separately on each
scale subspace. There is also a newmeaning to the term
‘edge’ in the decomposion space, since edge is now
defined as the spatial difference in orientation rather
than an explicit change in the gray level.
As a by product of the wavelet decomposition,

at each scale σ we now have the complex function
Wσ (x, y, θ) = Rσ (x, y, θ) + i Jσ (x, y, θ). It defines
a 3D manifold in the 5D space (x, y, θ, Rσ , Jσ ). The
extra coordinate θ that describes the behavior of the
image along a specific direction enables us to smooth
the image while keeping the meaningful orientation
structure of the texture. Moreover, we have the free-
dom to apply different filters to the different scales.
This enables us to preserve the nature of texture im-
ages by processing them only at significant scales. In
other words, we can sharpen a specific scale without

Figure 2. Top Row: Original image 128×128 is on the left. Result
of Beltrami flow for 70 numerical iterations of each sub-scale in the
decomposition space is on the right. Second and Third Rows: Two
steps along the evolution for two different texture images, Left is the
original image 64× 64.

effecting the rest of the sub-band images. The first row
is Fig. 2 presents the original image and the result of
applying the Beltrami flow in the decomposition space
to filter out non-oriented structures in a gray level im-
age. More examples are shown in the second and third
rows of Fig. 2.

5. Color Processing

We show in this section that the geometric framework
results in a meaningful operator for enhancing color
images, following the presentation in Kimmel (1998).
The area functional, or “norm”, captures the way we
would like the smoothing process to act on the different
color channels while exploring the coupling between
them. Next, the steepest descent flow associated with
the first variation of this functional is shown to be a
proper selective smoothing filter for the color case. In
this section we briefly review the geometric framework
and justify the usage of the area norm and the Beltrami
steepest descent flow in the color case. We list the re-
quirements, compare to other recent norms, and relate
to line element theories in color.
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In Sochen et al. (1996, 1998) and Kimmel et al.
(1997), the geometrical framework for image diffu-
sion was introduced. Minimizing the area of the image
surface was claimed to yield a proper filter for color
image enhancement. The area norm may serve for in-
termediate asymptotic analysis in low level vision, that
is referred to as scale space in the computer vision
community (ter Haar Romeny, 1994). The norm may
be coupled with variance constraints that are imple-
mented via projection methods that were used for con-
vergence based denoising (Rudin et al., 1992) for image
processing. Another popular option is to combine the
norm with lower dimensional measures to create vari-
ational segmentation procedures, like the Mumford-
Shah (Richardson and Mitter, 1994; Mumford and
Shah, 1985; Kimmel and Sochen, 1999). In this sec-
tion we justify the usage of the area norm for color
images obtained by the geometric framework and the
Beltrami flow as an appropriate scale-space.
Here we limit our discussion to variational meth-

ods in non-linear scale space image processing, and to
Euclidean color space. Given other significant groups
of transformations in color, one could design the in-
variant flow with respect to that group based on the
philosophy of images as surfaces in the hybrid space
(x, y, R,G, B) through an arclength definition.
Let us first briefly review the geometric framework

and the Beltrami flow and explore its relation to line
element theory in color. Next we list the coupling re-
quirements for the color case. A simple ‘color image
formation’ model defines a ‘proper’ order of events for
a desired enhancement. It is shown that this sequence
of events is captured by the area norm.

5.1. The Geometric Framework
and Color Processing

According to the geometric framework, images are
considered as surfaces rather than functions. The area
of the image surface minimized in a special way yields
filters for texture, volume, movie, and color image
enhancement.
Usually, a color image is considered as 3 images

Red, Green, andBlue, that are composed into one. How
should we treat such a composition? To answer this
question, we view color images as embedding maps,
that flow towards minimal surfaces. See Yezzi (1998)
for a non-variational related effort.
At this point we would like to go back more than a

hundred years, when physicists started to describe the

human color perception as simple geometric space. von
Helmholtz (1896)was the first to define a ‘line element’
(arclength) in color space. He first used a Euclidean
R,G, B space defined by the arclength

ds2 = (d log R)2 + (d logG)2 + (d log B)2. (17)

His first model failed to represent empirical data
of human color perception. Schrödinger (1920) tried
to improve Helmholtz’s model by introducing the
arclength

ds2 = 1
lR R + lGG + lB B

×
(
lR(dR)2

R
+ lG(dG)2

G
+ lB(dB)2

B

)
, (18)

where lR, lG, lB are constants. Schrödinger’s model
was later found to be inconsistent with findings on
threshold data of color discrimination.
If we summarize the existingmodels for color space,

we have twomain cases: 1. The inductive line elements
that derive the arclength by simple assumptions on the
visual response mechanisms. For example, we can as-
sume that the color space can be simplified and rep-
resented as a Riemannian space with zero Gaussian
curvature, e.g. von Helmholtz (1896) or Stiles (1946)
and Wyszecki and Stiles (1982) models. Another pos-
sibility for inductive line elements is to consider color
arclengths like Schrödinger, or Vos and Walraven
(1972). These models define color spaces with non-
zero curvature (‘effective’ arclength). 2. The empir-
ical line elements, in which the metric coefficients
are determined to fit empirical data. Some of these
models describe a Euclidean space like the CIELAB
(CIE 1976 (L∗a∗b∗)) (Wyszecki and Stiles, 1982),
recently used in Sapiro and Ringach (1996). Others,
like MacAdam (1942, 1943), are based on an effective
arclength.
The geometric framework is not limited to zero cur-

vature spaces, and can incorporate any inductive or em-
pirical color line element. See for example Sochen and
Zeevi (1998).
In case we want to perform any meaningful process-

ing operation on a given image, we need to define a
spatial relation between the points in the image plane
x. As a first step define the image plane to be Euclidean,
which is a straightforward assumption for 2D images,
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that is

ds2x = dx2 + dy2. (19)

In order to construct a valuable geometric measure
for color images we need to combine the spatial and
color measures. The simplest combination of this hy-
brid spatial-color space is given by

ds2 = ds2x + β2 ds2c . (20)

The parameter β has dimensions [distance/intensity]
and fixes the relative scale between the intensity of
colors and the spatial distances. For a large β it defines
a regularization of the color space.
Given the above arclength for color images, we

pose the following question: How should a given im-
age be simplified? In other words: What is the mea-
sure/norm/functional that is meaningful? What kind of
variational method should be applied in this case?
The next geometricalmeasure after arclength is area.

Minimization of area is a well known and studied phys-
ical phenomena. We will show, that for the right aspect
ratio β the area is a meaningful measure for our color
case. Once the minimization measure is determined,
one still needs to determine the parameterization for the
steepest decent flow. A geometric flow for area mini-
mization, that preserves edges is given by the Beltrami
flow.
Let x and y be the spatial coordinates and the in-

tensity R,G, B the feature coordinates, and describe
color images as 2D surfaces in the 5D (x, y, R,G, B)

space. The arclength is given by

ds2 = dx2 + dy2 + dR2 + dG2 + dB2. (21)

As an introduction we have chosen the over simplified
Euclidean color space, and for the time being assume
β = 1. Next, we pull back the image surface induced
metric from the arclength definition. By applying the
chain rule dR = Rxdx+ Rydy, and rearranging terms,
we obtain a distancemeasure on the surface defined via

ds2 = g11 dx2 + 2g12 dx dy + g22 dy2,

where gµν = δµν +
∑

i (∂µ I i )(∂ν I i ) are the induced
metric coefficients, i ∈ {1, 2, 3} indicates the differ-
ent color channels: I 1 = R, I 2 = G and I 3 = B.
For the Euclidean color casewith the inducedmetric,

the norm is the area
∫
d2σ√g. Here g is the determi-

nant of the metric matrix g = det(gi j ) = g11g22 − g212

given by its components gµν = δµν +
∑

i (∂µ I i )(∂ν I i ).
Ifwemultiply the intensities by a constantβ, this action
functional is given explicitly by

S =
∫ √

1+ β2
∑

i
|∇ I i |2 + β4

1
2

∑

i j
(∇ I i , ∇ I j )2 dx dy.

(22)

where (∇R, ∇G) ≡ RxGy − RyGx is the magnitude
of the cross product of the vectors ∇R and ∇G. The
action in Eq. (22) is the area of the image as a surface.
This functional obviously depends on the scalar β.

For β + 1 it practically means mapping the intensity
values that usually range between 0 and 255 to, let us
say, [0, 1000]. Roughly speaking, for this limit of β,
the order of events along the scale of the flow is as
follows: First the different colors align together, then
starts the selective smoothing geometric flow (similar
to the single channel TV-L1). On the other limit, where
β2 0 1, the smoothing tends to occur uniformly as a
multi-channel heat equation (L2).

5.2. Color Image Formation and Coupling
Requirements

Let us elaborate on the selection of area as a proper
measure for color images. The question we try to an-
swer is how should we link between the different spec-
tral channels. Let us assume that each color is ‘equally
important’ and thus the measure we define should be
symmetric.Within the scale space philosophy, wewant
the different spectral channels to get smoother in scale.
This requirement leads to the minimization of the dif-
ferent color channels’ gradient magnitudes combined
in one way or another.
Next we argue that an important demand for color

image processing is the alignment requirement of the
different color channels. That is, we want the color
channels to align together as they become smoother
in scale. Figure 3 shows one level set of the Red and
Green colors and their corresponding gradient vectors
at one point along the level set. The requirement that the
color channels align together as they evolve, amounts to
minimizing the cross products between their gradient
vectors.
A simplified color image formation model is a re-

sult of viewing Lambertian surface patches (not nec-
essarily flat). Such a scene is a generalization of a
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Figure 3. The cross product between ∇R and ∇G, (∇G,∇R)
2 displayed as the area of the gray triangle, measures the alignment between them.

‘Mondriaan world’. Each channel is considered as the
projection of the real 3D world surface normal N̂(x)
onto the light source direction 1l, multiplied by the
albedo ρ(x, y). The albedo captures the characteris-
tics of the 3D object’s material, and is different for
each spectral channel. The 3 color channels may then
be written as

I i (x) = ρi (x)N̂(x) · 1l, (23)

see Fig. 4. Which means that the different colors cap-
ture the change in material via the albedo that mul-
tiplies the normalized shading image Ĩ (x) = N̂(x) ·
1l.
Let us also assume that the material, and therefore

the albedo, are the same within a given object in the
image, e.g. ρi (x) = ci , where ci is a given constant.
The intensity gradient for each channel within a given
object is then given by

∇ I i (x) = Ĩ (x)∇ρi (x) + ρi (x)∇ Ĩ (x)
= Ĩ (x)∇ci + ci∇ Ĩ (x)
= ci∇ Ĩ (x). (24)

Figure 4. A simplified Lambertian color image formation model (left), leads to spectral channel alignment (right), see text.

Under the above assumptions, all color channels should
have the same gradient direction within a given object.
Moreover, the gradient direction should be orthogonal
to the boundary for each color, since both the normal-
ized shading image Ĩ and the albedo ρi change across
the boundaries. Our Lambertian world, without inter-
reflections and specularities, is an oversimplifiedmodel
for color image formation. Yet, its simplicity and lo-
cality direct us to a proper order of events we expect
our local differential filters to follow. The Lambertian
shading model is indeed the simplest image synthesis
method in computer graphics. We can thus conclude
that a first step in color processing should be the align-
ment of the colors so that their gradients agree. Only
next should come the diffusion of all the colors simul-
taneously. Aswe show, the areaminimization approach
takes care for the gradients alignment, and solves the
undesired twist between the channels.
For a large enough β, Eq. (22) follows exactly these

requirements and the area norm is a regularization form
of

∫ √∑

i
|∇ I i |2 + β2

∑

i j
(∇ I i , ∇ I j )2 dx dy, (25)
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that captures the order of events described above. For
an even larger β it can be considered as a regularization
of the affine invariant norm

∫ √∑

i j
(∇ I i , ∇ I j )2 dx dy. (26)

If we also add the demand that edges should be pre-
served and search for the simplest geometric param-
eterization for the flow, we end up with the Beltrami
flow as an appropriate selection.
Figure 5 shows snapshots from the Beltrami scale

space in color for 3 images. Next, the flow is used to
selectively smooth the JPEG compression distortions

Figure 5. Three snapshots along the scale space (left most is the original image).

in Fig. 6. Observe how the color perturbations are
smoothed: The cross correlation between the colors
holds the edges while selectively smoothing the un-
correlated data. In Fig. 7, we deal with multiplicative
noise. The Beltrami flow is used again as a denoising
filter, now in the log domain to selectively smooth the
image. The L2 difference between the noisy and fil-
tered images, is assumed to be known, and serves as a
stopping criteria.

5.3. Previous Norms for Color Images

Let us review recent norms suggested for color process-
ing.We startwith two non-variationalmethods thatwill
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Figure 6. Three snapshots along the scale space for selectively
smoothing JPEG lossy effects. The three channels are rendered as
surfaces. The original image is on the left.

lead us to the variational norms: Chambolle (1994),
suggested a flow by the second derivative in the di-
rection of minimal change with respect to the spectral
channel with the largest gradient. Sapiro and Ringach
(1996) considered geometric diffusion in the direction
of maximal L2 change, see Weickert (1994, 1997) for
a related effort. They used the eigenvalues, λ±, of the
matrix (though not a metric) gµν =

∑
i (∂µ I i )(∂ν I i ) as

a generalised edge detector to preserve edges.

Figure 7. Original benchmark image 128× 128 is on the left. A random noise, n, with zero mean, uniformly distributed over 10% of the log2
intensity scale is added to the image log2 intensity, log2 Ĩ = log2 I + n, which is a multiplicative noise. Result of Beltrami flow as a selective
smoothing denoising in color is on the right.

In Sapiro (1996) Sapiro suggested to consider the
variational method of the general form

∫
f (λ−, λ+).

Blomgren and Chan reported in Blomgren and Chan
(1996, 1998), that from the class of all possible norms
of the form f (λ+, λ−), the f (λ+, λ−) is the most
natural one. This brings us to Shah’s multi-channel
model (Shah, 1996b), that is based on the norm∫ √∑

i=1 |∇ I i |2 as part of a generalized Mumford-
Shah functional.
Blomgren andChan (1996) defined a different “color

TV” norm

TVm =

√√√√
m∑

i=1

(∫
|∇ I i |

)2
,

with a constraint. In this case the coupling between the
colors is only by the constraint. Actually, without the
constraint theminimization yields a channel by channel
curvature flow.
In order to preserve the edge and resolve color fluc-

tuations one needs to use the cross alignment within
the definition of the norm. While none of the previous
norms included the cross-alignment terms in a proper
way, the geometric framework of images as surfaces
lead us to the norm that resolves the twist (torsion)
between the channels via the cross-alignment term.
We have thereby shown that the geometric framework
yields a proper norm with respect to recent norms, and
with respect to a list of objective requirements and
considerations of color image formation. Next we ap-
ply the Beltrami operator to construct an orientation-
preserving flow for texture images.
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6. The Metric as a Structure Tensor

In Gabor (1965) and Lindenbaum et al. (1994), Gabor
considered an image enhancement procedure based on
a single numerical step along a directional flow. It
is based on the anisotropic flow via the inverse sec-
ond directional derivative in the ‘edge’ direction (∇ I
direction) and the geometric heat equation (second
derivative in the direction parallel to the edge). The
same idea of steering the diffusion direction motivated
many recent works. Cottet and Germain (1993) used a
smoothed version of the image to direct the diffusion,
while Weickert (1995, 1998) smoothed also the struc-
ture tensor ∇ I∇ I T and then manipulated its eigenval-
ues to steer the smoothing direction. Eliminating one
eigenvalue from a structure tensor, first proposed as a
color tensor inDi Zenzo (1986), was used in Sapiro and
Ringach (1996a, 1996b), in which the tensors are not
necessarily positive definite. While in Weickert (1994,
1997), the eigenvalues are manipulated to result in a
positive definite tensor. See also Chambolle (1994),
where the diffusion is in the direction perpendicular to
the maximal gradient of the three color channels (this
direction is different than that of Sapiro and Ringach
(1996b)).

6.1. Relation to Weickert’s Coherence
Enhancement Scheme

Motivated by these results we follow (Kimmel et al.,
1998) and first link the anisotropic orientation diffusion
(coherence enhancement (Weickert, 1998)) to the geo-
metric framework, and then invert the diffusion direc-
tion across the edge. Let us first show that the diffusion
directions can be deduced from the smoothed metric
coefficients gµν and may thus be included within the
Beltrami framework under the right choice of direc-
tional diffusion coefficients.
The induced metric (gµν) is a symmetric uniformly

positive definite matrix that captures the geometry of
the image surface. Let λ1 and λ2 be the largest and
the smallest eigenvalues of (gµν), respectively. Since
(gµν) is a symmetric positive matrix its corresponding
eigenvectors u1 and u2 can be chosen orthonormal. The
diagonalizingmatrix beU ≡ (u1|u2) is Hermitian, and
/ ≡ (

λ1 0
0 λ2

), then we readily have the equality

(gµν) = U/UT . (27)

Note also that

(gµν) ≡ (gµν)
−1U/−1UT = U

(
1/λ1 0

0 1/λ2

)

UT ,

(28)

and that

g ≡ det(gµν) = λ1λ2. (29)

We will use the image metric as a control on the
amount and direction of the diffusion, i.e., as a structure
tensor. The coherence enhancement Beltrami flow It =
&ĝI for color-texture images is then given as follows:

1. Compute the metric coefficients gµν . For the N
channel case (for color N = 3) we have

gµν = δµν +
N∑

k=1
(∂µ I k)(∂ν I k). (30)

2. Diffuse the gµν coefficients by convolving with a
Gaussian of variance ρ, thereby

g̃µν = Gρ ∗ gµν. (31)

For 2D images Gρ = 1
πρ2

e−(x2+y2)/ρ2 .
3. Change the eigenvalues,λ1, λ2, λ1 > λ2, of (g̃µν) so
that λ1 = α−1 and λ2 = α, for some given positive
scalar α 0 1. This yields a new metric ĝµν that is
given by

(ĝµν) = Ũ
(

α−1 0
0 α

)
Ũ T = Ũ/αŨ T . (32)

4. Evolve the k-th channel via Beltrami flow, that by
the selection ĝ ≡ det(ĝµν) = λ1λ2 = α−1α = 1
now reads

I kt = &ĝ I k ≡ 1
√
ĝ
∂µ

√
ĝĝµν∂ν I k = ∂µĝµν∂ν I k

= div
(
Ũ

(
α 0
0 α−1

)
Ũ T∇ I k

)

= div
(
Ũ/αŨ T∇ I k

)
. (33)

Note again that both for gray level and color images
the above flow is similar to the coherence-enhancing
anisotropic diffusion with the important property of
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Figure 8. Motivated by the geometric framework and Gabor’s
sharpening algorithm we steer the diffusion directions and invert the
diffusion direction across the edge. The edge direction is extracted
by ‘sensing’ the multi-channel structure after smoothing the metric.

a uniformly positive definite diffusion tensor. For
color images, (gµν) = I +

∑
i ∇ I i∇ I i

T , where I is
the identity matrix, and I i are the color channels
((I r , I g, I b) ≡ (I 1, I 2, I 3)). In this case all that is done
is the identity added to the structure tensors ∇ I∇ I T
for gray and

∑
i ∇ I i∇ I i

T for color. This addition does
not change the eigenvectors and thus the above flow is
equivalent toWeickert schemes (Weickert, 1994, 1995,
1997, 1998). Next, we introduce a new inverse/direct
diffusion model.

6.2. Inverse Diffusion Across the Edge

Let us take one step further, and exit our Rieman-
nian framework by defining (gµν) to be a non-singular
symmetric matrix with one positive and one negative
eigenvalues, i.e., a pseudo-Riemannian metric. That is,
instead of a small diffusion we introduce an inverse
diffusion across the edge. Here we extend Gabor’s idea

Figure 9. Left: Original fingerprint image 128×128.Middle: Result of the diffusion flowwith smoothedmetric (ρ = 6) and steered eigenvalues
(α = 10−5) after 4 numerical iterations. Right: Result of the inverse/direct diffusion flow with smoothed metric (ρ = 2), steered eigenvalues
and negative eigenvalue in the gradient direction (inverse/direct diffusion) after 4 numerical iterations (α = 0.55).

(Gabor, 1965; Lindenbaum et al., 1994) of inverting
the diffusion along the gradient direction.
Inverting the heat equation is an inherently unstable

process, see for example Steiner et al. (1998). If we
keep smoothing the metric coefficients, and apply the
heat operator in the perpendicular direction we get a
coherence-enhancing flow with sharper edges that is
stable for a short duration of time. Obviously, the sta-
bility here is an empirical observation, since an inverse
second order sharpening of a given sharp image yields
visible artifacts. Nevertheless, a one numerical step of
inverse diffusion is the classical sharpening technique
in image processing.
Our idea is to change the sign of one of the modified

eigenvalues in the algorithm described in the previous
section, see Fig. 8.
We change steps 3 and 4 of the previous scheme that

now reads:

1. Compute the metric coefficients gµν = δµν +∑N
k=1

(
∂µ I k

)(
∂ν I k

)
.

2. Diffuse the gµν coefficients by convolving with a
Gaussian of variance ρ.

3. Change the eigenvalues of (g̃µν) such that the largest
eigenvalue λ1 is now λ1 = −α−1 and λ2 = α, for
some given positive scalar α < 1. This yields a new
matrix ĝµν that is given by:

(ĝµν) = Ũ
(

−α−1 0
0 α

)
Ũ T = Ũ/αŨ T . (34)

We have used a single scalar α for simplicity of
the presentation. Different eigenvalues can be cho-
sen, one example are eigenvalues that depend on the
original ones and bring us back to the Beltrami flow.
By manipulating the eigenvalues we control the di-
rection as well the intensity of the diffusion that can



Figure 10. Top: Original picture “Femme à l’ombrelle tournée vers la gauche,” by Claude Monet (1875) (“woman with umbrella turning left”)
521× 784 (left), and the result of the inverse/direct diffusion flow (ρ = 4) after 8 numerical iterations (right). Bottom: Orientation preserving
diffusion for 8 (left) and 128 (right) iterations.
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Figure 11. Color and texture: Top Row: Original ‘Shells’ image 242×184 (left), and the result of the color and texture inverse/direct diffusion.
Flow for 4 (middle) and 8 (right) numerical iterations, α = 0.55. Second Row: Original (left), and the result of the orientation preserving
diffusion flow (smoothed metric and steered eigenvalues α = 10−5, ρ = 2) for 2 (middle) and 16 (right) numerical iterations.

just as well be edge dependent. In this application
the key idea is to modify the largest eigenvalue to
be negative. This modification inverts the diffusion
direction across the multi-spectral edge and thereby
enhance it.

4. Evolve the k-th channel via the flow, that by the se-
lection |ĝ| ≡ |det(ĝµν)| = |λ1λ2| = |−α−1α| = 1,
reads

I kt = 1
√

|ĝ|
∂µ

√
|ĝ|ĝµν∂ν I k = ∂µĝµν∂ν I k

= div
(
Ũ

(
−α 0
0 α−1

)
Ũ T∇ I k

)
. (35)

For the gray level case with ρ = 0 it simplifies to
highly unstable inverse heat equation. However, as ρ

increases the smoothing along the edges becomes fun-
damental and the scheme is similar in its spirit to that
of Gabor (1965). Different control methods can be ap-
plied. One example is an additional regularization term
λ
2 (I (0) − I (t))2 that penalizes the departure from the
original image, similar to the ideas explored in Steiner
et al. (1998). Another example is location dependent
modification of the eigenvalues with local sensitivity
to the image metric.
Gabor’s (Gabor, 1965) comment on the inverse dif-

fusion operation in the gradient direction is that ‘It is

very similar to the operation which the human eye car-
ries out automatically, and it is not surprising that even
the first steps in imitating the human eye by mechani-
cal means lead to rather complicated operations’. It is
important to note that the idea of stabilizing the inverse
heat equation is extensively used in image processing.
Exploring this area is beyond the scope of this paper.
However,we like to refer the reader to the ‘shockfilters’
introduced by Osher and Rudin in (Osher and Rudin,
1990) for gray level images, and the extension of Al-
varez and Mazorra (1994) who apply geometrical in-
verse diffusion in the gradient direction combined with
a directional smoothing in the orthogonal direction for
gray level images.

6.3. Color Orientation-Enhancing Results

For completeness of the exposition we first repeat the
gray level case as inWeickert (1995, 1998) and present
an example of a fingerprint enhancement in gray level
in Fig. 9.
InWeickert (1999) the coherence enhancement flow

was applied on several colormasterpieces by vanGogh,
which resulted in a ‘coherence enhancement of expres-
sionism’. In the next example we have chosen to ‘en-
hance and sharpen impressionism’. We apply first the
anisotropic oriented diffusion flow and then the new
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Figure 12. Color and texture: Diffusion flow with smoothed metric and steered eigenvalues (α = 10−5); Top Row: Original ‘mandrill’ image
512×512 (left), and the result of orientation-preserving flow and negative eigenvalue (inverse diffusion) in gradient direction, α = 0.39. Second
Row: Two steps along an orientation-preserving diffusion flow.

oriented diffusion along/inverse diffusion across the
edge on a color painting by Claude Monet, see Fig. 10.
Next, we apply the color-oriented diffusion, and the

oriented inverse/direct diffusion algorithms to a stan-
dard color-texture test image. Figure 11 compares again
the flow with and without the inverse heat operator
across the edge direction.
In the last example, we use the standard ‘mandrill’

color test image Fig. 12. Again, for comparison, the
second row presents two steps along the color oriented
diffusion flow.

7. Concluding Remarks

We applied the geometric framework and used it to de-
sign novel procedures for enhancement of color and
texture images. These procedures are based on the in-
terpretation of the image as a surface and a heat flow
with respect to a given metric (Beltrami operator) as a
filter.
We dealt with image enhancement and reconstruc-

tion of color and orientation based texture. These two
different spaces were linked by a geometrical measure.
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The proposed filters align the color channels without
un-coupling disturbances while enhancing the orienta-
tion based texture features and/or preserving the edges.
Lee’s (Lee, 1996) decomposition space was used for
texture processing via the geometric framework.
We linked the geometric framework to recent color

and texture enhancement algorithms and introduced a
new sharpening procedure that extends the geometric
framework. It is based on inverse diffusion across the
edge for better sharpening results.
Adirect application of the proposedmethods is to en-

hance selectively smooth, or sharpen color-texture and
volumetric images. It can also be used to reduce the im-
age entropy prior to compression and enhance its coher-
ence in the reconstruction process, e.g. image restora-
tion and denoising of lossy compression effects. It was
shown that the geometrical framework can be applied
to color, movies, and volumetric medical data, as well
as non-trivial decomposition spaces.
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Notes

1. In case the embedding space is chosen non-Euclidean there is an
extra term. See Sochen et al. (1998).

2. This definition of anisotropic flow differs from the Perona-Malik
(1990) framework, that is locally isotropic. See Proesmans et al.
(1994) for many interesting extensions and applications of the
locally isotropic flow.
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