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Abstract

Finding the shortest path between points on a surface is a challenging global opti-
mization problem. It is difficult to devise an algorithm that is computationally efficient,
locally accurate and guarantees to converge to the globally shortest path. In this pa-
per a two stage coarse to fine approach for finding shortest paths is suggested. In
the first stage the algorithm of [10] that combines a 3-D length estimator with graph
search is used to rapidly obtain an approximation to the globally shortest path. In
the second stage the approximation is refined to become a shorter geodesic curve, i.e.
a locally optimal path. This is achieved by using an algorithm that deforms an arbi-
trary initial curve ending at two given surface points via geodesic curvature shortening
flow. The 3D curve shortening flow is transformed into an equivalent 2D one that is
implemented using an efficient numerical algorithm for curve evolution with fixed end
points, introduced in [9].

1 Introduction

Searching for the shortest path, also known as the minimal geodesic, between two points
on a three dimensional surface is very important in robotic navigation and in three dimen-
sional shape analysis. For example, it is the key to computational surface flattening [16], a
potentially useful technique for brain research.

Standard computational procedures to obtain shortest paths on continuous surfaces in-
volve numerical solutions of differential equations by numerical integration [2], and are com-
putationally intensive. These methods are accurate but yield paths that are only locally
optimal. When handling complex surfaces a good initial guess is needed to increase the
likelihood of convergence to the globally optimal path.

In the discrete geodesic problem, the shortest paths between points on a polyhedral surface
are to be determined. This is of importance in certain CAD-oriented and land-surveying
applications where a polyhedral representation of solids and surfaces is natural. An algorithm
to solve this problem was described in [13], in which the shortest path from a source point
to a destination point is found in O(n*logn) time, where n denotes the number of edges in
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the polyhedral surface. The length of the shortest path to any other destination can then be
determined in O(log n) time, and the shortest path can be listed in O(k) time, where k is the
number of edges crossed by the path. Wolfson and Schwartz [20] argued that the algorithm
of [13] is difficult to implement, and suggested an algorithm that is simpler to implement,
but is of exponential computational complexity.

Kiryati and Székely [10] considered the problem of finding the shortest path between
points on a continuous three dimensional surface that is given in a digitized form. Its basis
is the observation that actual interpolation of the digitized surface may not be needed in
order to estimate properties of the underlying continuous structure to fairly high accuracy.
Their approach combined recently developed length estimators for digitized three dimen-
sional curves with well known algorithms for computing shortest paths in sparse graphs,
to estimate the minimal distances and the corresponding shortest paths in a systematic,
computationally efficient way. Note that shortest path algorithms that are based on surface
discretization and graph search are fast, but are of inherently limited accuracy [14].

A framework that combines the advantages of two different approaches in order to obtain
the minimal geodesic on an essentially continuous 3D surface quickly and accurately, is
introduced in this paper. A two stage coarse-to—fine approach is taken. The fast graph—
search based algorithm [10] that operates on a voxel representation of the surface is used as
a first stage to obtain a good initial approximation efficiently. This initial approximation is
used as the input to the second stage, a shortening flow differential geometry technique [9].
The curve is evolved by a geodesic curvature flow to the geodesic curve closest to the initial
approximation. In comparison to pure differential techniques, the speed of convergence is
greatly improved and the risk of convergence to an insignificant local minimum is alleviated.

Curve shortening flow has attracted great interest in recent years in the field of Differential
Geometry. In [7], Grayson extended the theory of planar curve evolution and noted several
global properties of curvature evolution of smooth curves immersed in a Riemannian surface.
He proved that the curve remains smooth, and it either converges to a point, or becomes a
geodesic curve when its geodesic curvature converges to zero in the C'*° norm.

One of the most important properties of the flow—by—curvature curve evolution process is
that it shrinks the curve as fast as possible, in the sense that flow lines in the space of closed
curves are tangent to the gradient of the length functional [7]. For this reason, the flow is
also called curve shortening flow. Therefore, deforming a curve by its geodesic curvature
vector is a very efficient way of finding geodesic curves.

In the suggested combined approach, the curve shortening flow operates on a 3D surface
given as an elevation array. Given the surface and two points on it, the curve shortening
flow algorithm evolves an arbitrary initial embedded curve between these points. Grayson’s
results show that the curve remains smooth and embedded, and if the end points are fixed
it converges to a geodesic curve on the surface between the given points. See [4, 5] for a
similar approach.

For computerized implementation of the second (shortening flow) stage, the three dimen-
sional curve flow is first transformed into an equivalent two dimensional curve flow. It is
then implemented based on a numerical algorithm derived from [15], together with a simple
algorithm, motivated by [3], for keeping the end points fixed.



2 Rapid Approximation of the Shortest Path

The first stage of the suggested approach is to rapidly obtain an approximation to the
shortest path between points on a 3D surface. It is based on the algorithm described in [10].

Suppose that the surface of an object is given in a digitized form as a set of voxels
in a three dimensional array. Assume that a voxel belongs to the digitized surface if it
is traversed by the underlying continuous surface and if at least one of its direct (i.e., 6-
directional) neighbors is a “background” voxel. A path on the surface that connects two
surface points can be represented in digital form by the set of surface voxels that the path
traverses. This “digital path” can be represented by a 26-directional chain code.

The 3D length estimation problem is to estimate the length of an underlying continuous
3D curve given its chain code. The estimator recently developed in [11] is based on link
classification in the 26-directional chain code representation of the curve. It has the general
form:

A

L = Wy N;y + Uy Ny + U3 N3, (1)

where N7 is the number of direct links in the chain code, i.e., links that are parallel to one
of the three main axes, and Ny and N3 are respectively the number of minor and major
diagonal links. Wy, Uy and W3 are weights, and L is the estimated length.

Note that other forms of length estimators can be suggested. In particular, one might use
neighborhoods larger than 3 x 3 x 3 and represent digital paths using generalized chain codes
that link voxels farther apart. This would lead to finer link classification and to potentially
higher length estimation accuracy on planar surfaces. However, if the surface would not be
sufficiently flat within the larger neighborhood, some of the longer links might correspond
to hops rather than to feasible paths between points on the surface, resulting in degraded
length estimation accuracy.

Assuming that the digitization is sufficiently fine so that the curve is reasonably straight
within one or two voxels, the naive selection of weights Uy = 1, ¥, = V2 and U5 = /3
would lead to consistent overestimation of the length. Assuming a uniform distribution of
orientations, an unbiased estimator that achieves the least RM .S error possible for unbiased
estimators, was found [11] to be:

A

L = 0.9016/V; + 1.289 N3 4+ 1.615N5. (2)

The fact that the estimator is unbiased implies that if the direction of the tangent varies
along the curve, local estimation errors cancel out and lower total estimation errors are
obtained.

Our approximation to the shortest path between two points is based on the digital path
whose length estimate is the shortest. To efficiently find it, view the digital surface as a three
dimensional graph, in which each vertex corresponds to a surface voxel. Given any specific
definition of surface connectivity, pairs of vertices that correspond to pairs of neighboring
surface voxels are connected by arcs in the graph. Here, every surface voxel is connected by
an arc to every surface voxel in its 26-neighborhood. Since the number of arcs emanating
from any vertex is upper bounded (by 26), the graph is sparse. (In practice, the number
of arcs emanating from most vertices is about 8.) If each arc is assigned a cost according



to the weight of its link type (direct, minor diagonal or major diagonal) in the 3D length
estimator, then estimating minimal distances and shortest paths on a continuous surface
given in digitized form, reduces to finding the shortest path in a (sparse) graph.
Algorithms for finding minimal distances and shortest paths in graphs are well known;
see reference [6] for an overview. Here all arcs have positive weights, hence, Moore and
Dijkstras‘ algorithm can be applied. Let N denote the number of vertices in the graph, i.e.,
the number of surface voxels. The minimal distance from a vertex to all others in a sparse
graph can be estimated in O(N log M) time, where M is the total number of arcs in the
graph, and is proportional to N. Given the source voxel, the minimal distances to all other
surface voxels are thus estimated in O(N log N) time. When a single destination is specified
in advance, actual computing time can be significantly reduced by simultaneous propagation
from the source and destination voxels until the first meeting of the distance wavefronts.

3 Curve Shortening Path Refinement

Using the results of the first stage as an initial approximation, the geodesic curvature short-
ening flow algorithm [9] will shorten the curve to a geodesic. In most practical situations,
this geodesic will be a globally minimal path, i.e. the minimal geodesic. If there are several
significantly different possible paths of nearly the same length as the shortest one, the ap-
proximation obtained in the first stage may not correspond to the absolutely shortest path.
In that case, the geodesic obtained in the second stage might be just slightly longer than the
minimal geodesic. Let us summarize the results of [9] as applied to our problem.

Given a regular surface S and two points a and b on it, we want to compute a geodesic
curve ending at these points. Let Cqy : [p1, p2] — S, be a given initial embedded smooth curve
such that Co(p1) = a and Co(p2) = b. Based on Grayson’s results [7], if Cy is deformed via
the curve shortening flow on S, and if the two end points are kept fixed, the curve converges
to a geodesic curve as fast as possible. The geodesic curvature flow is given by

aC(p, t y
Xt _ 0, (3)

where p parameterizes the curve, t stands for time, and /ig./\7 is the geodesic curvature vector
of the curve C. The geodesic curvature vector may also be written as:

kgN = Cos — (Coa, NYN,

where Cys (the curvature vector) is the second derivative of the curve according to s, its
arc-length parameterization, and N is the normal to the surface. From (3) and the results
in [7] it follows immediately that the only possible stable curves are geodesic curves. Hence,
applying (3) to the initial curve Cy will give us the required geodesic curve.

In order to use an efficient numerical algorithm, the 3D flow (3) is first transformed
into a 2D one. Let the surface S be given by a function z(x,y). Define the curve C =
[2(p),y(p)] = 7o [x(p),y(p), z(p)] as the projection of C(p,t) on the (z,y)-plane. While C
deforms according to (3) on the surface, C evolves according to the following 2D curve flow

aa—f = (mo KgA?,ﬁ>ﬁ,



where 7 is the unit normal vector of the planar curve. Rewriting this evolution as a function
of C, the planar curve, and the surface’s first derivatives, we obtain
aC 1 Ve,
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where 1 = [nq,ny] and & are the unit normal and the curvature of the planar curve, respec-
tively. Solving (4) is equivalent to solving (3).

4 Implementation

For implementing (4) while keeping the end points fixed, the numerical algorithm due to
Osher and Sethian [15, 17, 18] is used.

Osher and Sethian proposed to observe an implicit representation of the evolving of
the planar curve, in which the propagating curve is embedded as a level set in a higher
dimensional function, thereby achieving better stability and accuracy of the numerical im-
plementation. Let é(t) be the zero level set of a smooth and Lipschitz continuous function
® : R? x [0,7) — R. Assume that ® is negative in the interior and positive in the exterior
of the zero level set. Then the evolution equation of ®, such that the evolving curve é(t) is

given by the evolving zero level set of ®(1), i.e., é(t) = ®71(0), is given by'
(I)t — (5)
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The curve C that evolves according to (4) is obtained as the zero level set of the function ®
that evolves according to (5).

The discretization of the evolution equations is performed on a fixed rectangular grid. The
spatial derivatives are implemented using central approximations, and the time derivative
by a forward approximation.

The algorithm as described by Osher and Sethian works on closed curves, or curve flows
with boundary conditions. In our case, we have to keep the two end points fixed. This is
done by adding a step to the algorithm, which alters the ® function after each iteration.
This part of the algorithm was motivated by Chopp’s work on minimal surface computation
with fixed boundary conditions [3]. This change is made in order to ensure that the two end
points will remain in their position, as two fixed points in the zero level set of the evolving
function.

A stopping condition can be obtained by defining a threshold value on the geodesic curva-
ture, in which case the zero set should be tracked and the geodesic curvature along it should
be computed every iteration. An alternative stopping condition relates to small changes in
the implicit representation of the evolving curve: [ |®(nAt) — ®((n — 1)At)| <Threshold.

The implementation of the geodesic curvature shortening flow stage can be summarized
as follows:

1See [9] for detailed derivation of expressions (4) and (5).



1. Initialize ®q, using = o Cy. In our implementation we used a truncated distance map:
Distance in a neighborhood of the zero set, and constant values elsewhere. The evolving
® was re-initialized to become a distance map near the zero set every few iterations,
simulating the narrow band algorithm introduced in [3], and developed for efficient
implementations in [1].

2. Evolve ¢ according to Equation (5) that corresponds to Equation (4), by using central
difference approximation for the spatial derivatives and a forward difference approxi-
mation for the time derivative:

o', = OLAw, jAy,nAt)

o, ~ (CI)”"'1 7. )/ At

O, ~ (P, — 21])/(2&?)

Pop (O ;= 207, 4 O, 5)/(Ax)?

e, ~ (0 z+1]+1‘|‘q)z 1,5—1 — o7 1,541 (I)?-H] 1)/(2A$)2

3. Adapt ® to keep the end points fixed. In order to ensure that the two end points
will remain in their position along the evolution, the propagating ® function, which is
an implicit representation of the propagating planar curve, is changed every iteration
such that the weighted average in the neighborhood of the end points is equal to zero.
In our examples we have actually added two lines connecting the curve's end points
to the boundary of the domain, and the values along these connection lines were kept
fixed during the iterations. We have chosen to fix the values of the ® function along
the two lines connecting the fixed points to the boundary of the domain, i.e. the &
values along those lines remain unchanged along the evolution. This way, the curve
divides the domain into two parts, and the ® function is defined to be positive on one
part and negative on the other.

Keeping the connection lines fixed is equivalent to introducing new initial conditions at
each iteration. By considering every time step as a new problem that is defined by the
same evolution rule, yet with new initial conditions, the re-initialization is a legitimate
step that will not change the convergence property of the algorithm.

For closed curves evolving according to geodesic curvature flow, the embedding is
preserved and there is no need to control the propagation of ®. In other cases, as
in this case of fixing the end points, there is a danger that certain level sets might
be attracted to local geodesics other than the minimal geodesic and converge to some
equilibrium that is far from the desired result. In order to alleviate this problem it is
necessary to supervise the behavior of the level sets to ensure that the zero set evolution
is the dominant one, while the rest of the level sets are only swept by its influence.
This means that the ® surface should serve as the implicit representation of just the
zero set, and should be restricted to being influenced only by the zero set and not by
other level sets that might be attracted to unwanted local geodesics.

Several numerical methods were developed to achieve this goal, e.g., the narrow band
introduced in [3, 1], re-initialization of the ® function every iteration [19], and the



expansion of the velocity along the zero set to the whole image domain [12]. We have
chosen to ‘correct’ the function every iteration so that locally ®(¢) is a distance map
of the zero set in a narrow band of 6 pixel width (see also [1]). Outside this band, the
function gets its maximum/minimum values. This step guarantees that the evolution
of the zero level set is the correct one, and prevents other level sets from diverging and
tearing the implicit evolution apart.

4. If the stopping condition, [ |®(nAt) — ®((n — 1)At)| <Threshold, is not satisfied, go
to 2.

5. Find the zero level set C. The final ® function is an implicit representation of C. The
zero level set C is computed by any interpolation method of the ® function between
the grid points. The accuracy of the final result is however bounded by the numerical
scheme. In our case, using central approximation for the spatial partial derivatives,
leads to a bound O(Az?) on the accuracy of the results. Having ¢ (the projection of
C on the coordinate plane) and z(z,y), the final result C is obtained as backprojection
from the (x,y) coordinate plane to the surface: C = Z(é)

6. Stop.

5 Examples and Discussion

The suggested two stage algorithm was applied to finding shortest paths between given points
on several test surfaces. The test surfaces were contained in a 64 x 64 x 64 voxel array for
the first stage. A 64 x 64 x IR elevation array representation was used in the second stage.

In the first example the shortest path between two points on a tilted plane is computed.
This simple example is interesting since it is known[10] to demonstrate worst-case perfor-
mance of the first stage of the algorithm. Indeed, the first graph search stage produced the
broken white line in Fig. 1. The second shortening flow stage corrected the path to the black
straight line. In all the examples, the gray level of the surface corresponds to elevation, the
white path is the approximation obtained by the first stage, and the black path is the result
of the second refining stage.

Fig. 2 demonstrates the operation of the algorithm on an “egg—box” type of surface. The
length of the shortening paths along the iterations of the second stage is shown in Fig. 3.
The determination of shortest path between two points on a terrain-like surface is shown in
Fig. 4. Observe how the initial approximation produced by the first stage is refined to the
geodesic in the second stage.

This paper combines two approaches to locate the minimal geodesic between two points
on surfaces in an efficient way. The first graph—search based stage produces an initial approx-
imation of the location of the minimal geodesic. This approximation is the initial condition
for the second shortening flow based stage that refines the curve by shortening it to a geodesic.

A clear advantage of the first stage is its theoretical as well as practical computational
efficiency. Another important feature is the direct operation on voxel data, without need for
prior interpolation or polygonal approximation of the surfaces. Its main drawback is that



Figure 1: In the upper frame, the path obtained by the first stage is shown white on the
tilted plane. It is refined in the second stage of the algorithm into the black path. The lower
frame shows an orthographic projection of the surface from above. The white path is again
the result of the first stage, the gray intermediate paths converge to the black refined path.



Figure 2: The white pixels on the surface belong to the estimated path and indicate where
the paths differ. The estimated (white) path and the refined (black) one, nearly track an
equal height contour, and avoid climbing on the hills.
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Figure 3: The rate of convergence of the second stage of the algorithm for the egg box
surface. The length of the path in each iteration is linearly interpolated.

due to the limited accuracy of the underlying 3D length estimator, it only produces an ap-
proximation to the shortest paths. As seen in the examples, the quality of the approximation
may vary. On highly regular and smooth surfaces, such as planes or spheres, local length
estimation errors might add up along the digital paths and lead to significantly distorted
approximations (see Fig. 1). On rough or irregular surfaces, local length estimation errors
are likely to cancel out thanks to the unbiasedness of the 3D length estimator, and rather
accurate approximations can be expected (see Figs. 2 and 4).

When different paths of lengths nearly equal to the minimal distance between the source
and destination points exist, slight errors in minimum distance estimation could correspond
to a large difference between the traces of the true shortest path and the approximation
produced by the first stage of the algorithm. This means that the shortening flow stage
might in the worst case converge to a local minimum that is distant from the global mini-
mum. However, in that case, the local minimum would still be almost as deep as the global
minimum, and the algorithm would not be trapped into insignificant local minima.

A curve evolution approach for the computation of geodesic curves on surfaces was used
in the second stage. It is initialized by the approximation generated by the first stage, and a
shorter geodesic curve is obtained by a geodesic curvature shortening flow. Since the second
stage will always converge to the geodesic, the actual gain in terms of path length in the
second stage essentially corresponds to the inaccuracy of the initial approximation. Fig. 3
exemplifies the rate of convergence of the iterative refinement procedure. Balancing the
trade-off that arises in time-critical applications between the expected improvement in the
path and the number of iterations allowed should eventually be application-dependent.

The 3D curve flow is represented by an equivalent 2D one, which is implemented by an
efficient numerical algorithm for curve evolution, together with a procedure for keeping the
end points fixed. The curve, propagating on the 3D surface, is projected onto the coordinates
plane. This projection of the 3D flow into a 2D equivalent one permits an efficient computer
implementation. The numerical algorithm is an iterative scheme based on central spatial
derivatives. Thus, the accuracy of the final geodesic is of O(Az?) where Az is the distance
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Figure 4: The white approximation is refined to the black geodesic path on a terrain-like
surface.
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between two neighboring grid points. It is obtained by selecting At = O(Az?) in the final
iterations of the proposed numerical scheme. This bound can be verified by Taylor expansion
of ®(x,y,1). For detailed analysis of the accuracy of such numerical schemes see [8].

The geodesic curvature shortening flow is not limited to function surfaces. It is possible
to handle complex surfaces, as was done by Chopp [4], by patching supporting planes which
update each other. Each plane supports a piece of the surface. These planes share informa-
tion at each iteration, so that a curve is defined and propagated on several coordinate planes
simultaneously. In [4] the following strategy is used to “connect multiple patches”: Use the
distance function in the manifold space for initialization. The motion on each supporting
plane is computed in the interior grid points. The values at the boundaries are taken from
neighboring patches (by back projection via the manifold). The construction of the sup-
porting coordinate planes is such that the boundary of any supporting plane is always the
interior of another. For further details see [4].

The suggested combination of the two approaches exploits the computational efficiency
of the graph search algorithm while compensating for estimation errors. Sub—voxel accuracy
is achieved by using simple interpolation to find the location of the zero level set, at the last
step of the shortening flow algorithm. Note that the two stage approach is rather general
and allows various algorithms to be used as the first and second stages in the suggested
framework.
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