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Multivalued Distance Maps for Motion Planning
on Surfaces with Moving Obstacles

Ron Kimmel, Nahum Kiryati, and Alfred M. Bruckstein

Abstract—This paper presents a new algorithm for planning
the time-optimal motion of a robot traveling with limited velocity
from a given location to a given destination on a surface in
the presence of moving obstacles. Additional constraints such
as space variant terrain traversability and fuel economy can be
accommodated. A multivalued distance map is defined and ap-
plied in computing optimal trajectories. The multivalued distance
map incorporates constraints imposed by the moving obstacles,
surface topography, and terrain traversability. It is generated by
an efficient numerical curve propagation technique.

Index Terms—Front propagation, level sets, moving obstacles,
multivalued distance map, path planning.

I. INTRODUCTION

SEARCHING for shortest paths on surfaces with stationary
obstacles is a classical problem in Robotic Navigation.

Solutions to the problems are based on computational geom-
etry methods [18], [23], [26], [29], differential geometry and
hybrid techniques [2], [14], as well as graph search based
algorithms, see e.g., Latombe book [17] as a good pointer for
many classical techniques. The problem of finding the time-
optimal path of a robot in the presence of moving obstacles
can be studied using the configuration space representation.
Consider the simple case of a two-dimensional (2-D) obstacle
moving on a plane. Given the obstacle’s position in time, it
is possible to consider the time axis as the axis of a three-
dimensional (3-D) configuration space also known as C-space.
The moving planar obstacle can then be represented as a 3-D
structure in the C-space as shown in Fig. 1.
Several attempts were made to reduce the complexity in-

volved in the construction of, and the search in, the full
C-space for path planning among moving obstacles. These
approaches are usually based on heuristic assumptions and
provide ‘a’ path rather than an optimal one. One approach
is to decompose the problem into find path and move along
path problems as suggested in [8] and [9]. The move along
path involves a search for a parameterization along a given
trajectory. This idea was further explored in [15] and [16]
and used to design the velocity for a robot that navigates on
a curved surface, avoids moving obstacles, and is subject to
dynamic constraints. A different approach iteratively extrapo-
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Fig. 1. A triangular obstacle moving on the plane is represented by a prism
in the C-space. Searching for a path between two given points on the plane
amounts to searching for a 3-D path in the C-space. This path should connect
the two vertical lines in the C-space that represent the starting and ending
points, and should reach the end line with minimal The angle between the
path and the -axis is upper bounded by the maximal velocity of the robot

see [2].

lates the behavior of the moving obstacles that are assumed
to be circles that travel along straight lines. This assumption
simplifies the navigation task as demonstrated in [28].
This paper considers the problem of finding the time-

optimal path between two points on a surface (not necessarily
planar) in the presence of moving obstacles. We show that
without making any heuristic assumption, the complexity of
the problem can be reduced from a search through the 3-D C-
space to searching for the path in a finite set of bounded 2-D
regions forming a multivalued distance map. This map assigns
each point a vector of numbers representing “first” times that
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the point may be reached by a robot moving with a limited
velocity of though it may stop or decrease its velocity in
order to avoid moving obstacles. Additional constraints such
as terrain traversability and surface topography can be easily
incorporated. The multivalued distance map provides sufficient
information for finding a time optimal path.
In the suggested method distance maps are obtained by

curve evolution techniques that are based on the Huygens
principle. A “wave-front” propagates in time and describes
the farthest points the robot could reach by moving in all
possible ways away from the source. The minimal path to
the destination will be determined when the wave-front first
meets the destination. Although it is obvious that this process
will discover the best navigation course, it is far from trivial
to realize how one could actually carry out this program in a
computationally efficient and accurate way. A possible concep-
tual analogy is the way particles use their dual wave/particle
nature in quantum mechanics to determine their path when
moving from one point to another minimizing so-called action
integrals. In the words of the great physicist R. Feynman [7]
“How does the particle find the right path? Does it ‘smell’
the neighboring paths to find out whether or not they have the
same action?” “The miracle of it all is, of course, that
it does just that It isn’t that a particle takes the path of
least action but that it smells all the paths in the neighborhood
and chooses the one that has the least action by a method
analogous to the one by which light chose the shortest time.” In
the suggested method the calculation of distance maps follows
the same basic principle as a propagating light wave, efficiently
“smelling” the shortest among all possible paths.

II. THE MULTIVALUED DISTANCE MAP
A distance map from a point is a function that assigns to

each point in a given domain, a number equal to the length of
the path of minimal length (minimal geodesic) between and
We assume that the distance map is obtained by propagating

an equal distance contour that assigns a distance to each point
in the domain as it passes through it. The contour evolves in
time at a constant velocity from a small circle around
the source point and the distance corresponds to the time
of propagation.
Due to the movement of the obstacles, the various ways

to reach a point will be time dependent. In order to reach
a destination point, the robot may be compelled to pass
more than once through the same point. The optimal path
will coincide with minimal geodesics on the surface only in
regions not affected by the moving obstacles. Thus, a simple
distance map is insufficient. The multivalued distance map is
a function that may assign more than a single value to each
point in the domain, and can serve as a “distance” function for
time varying domains. The domain boundary is determined
at any given time by the union of the boundaries of all the
obstacles at that time and the boundary of the area of interest.
The multivalued distance map is thus formally defined as

where
is a finite domain over which the surface is defined as a
function, and is the maximal number of “layers” in the

Fig. 2. A robot is located at a point on a plane at 0. It should
travel from to The gray rectangle represents an obstacle that waits for
a while, then translates to the left along the direction from its position to
the point and back to its original place. The right frame presents the
resulting double valued map (the cone and the tilted plain) and the optimal
path connecting to The left frame shows the projection of the optimal
path and the equal distance contours that correspond to the two layers.

distance map. A point in the first layer, represents
the first time that the point in the domain may be reached,

is a point in the second layer and represents the first
time that point may be reached after being covered by an
obstacle after and so on. See Figs. 2 and 3.
In terms of the prairie fire model [3], the equal distance

contour is a propagating fire front in dry grassland. Each point
in the grassland gets a time stamp at the time it is burnt.
Now, consider a moving obstacle in burnt grassland. The
obstacle causes each point it covers to instantaneously grow
new unburnt grass. The boundary of this new grass patch will
be ignited as it is uncovered by the obstacle. Each point in the
domain may thus get time stamped more than once, forming
the multivalued distance (time) map.
Consider a simple smooth surface where is

given by the function and is a given
finite domain. Each point in the domain gets a time stamp
as the projection of the wavefront passes through it. Denote
such an event as Without moving obstacles, the event

occurs only once for each point in the domain during
the first (and only) time the wavefront’s projection passes
through it. With moving obstacles, consider a point
through which the wavefront had already passed at and
therefore the event occurred. Assume that an obstacle
steps over and then moves away and reveals the point. The
moving obstacle caused the fire to be re-ignited near at the
boundary of the obstacle. The new fire front will reach at

causing a new event etc. An example is shown
in Fig. 4.
Define as the number of events Denote by
the maximal number of events that occur at a point in

the domain (we assume that each point my be uncovered by
obstacles only a finite number of times), that is

The new “configuration space” over which it is sufficient to
perform the search is The complexity of
the problem can thus be reduced from a search over
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Fig. 3. A robot is located at a point on a plane at 0. It should travel
from to another point and stay there. At an obstacle lands on the plane
in a square that includes point and disappears at From to the robot
cannot stay inside the occupied square. The upper frame shows the resulting
double valued distance map (the cone and the pyramid) and the optimal path
connecting (reached at to The distance values at are and

are and , respectively. The lower frame shows the projection
of the optimal path and the equal distance contours that correspond to the
two layers.

which is a volume quantity, to a search over a finite number
of bounded 2-D domains.

III. ALGORITHM DEVELOPMENT
In this section, the differential equation that describes the

propagation of equal distance contours on a given surface
is determined. Tracking the evolution of a 3-D curve is a
complicated task. However, it is possible to consider the
evolution of the projection of this 3-D curve onto the -
plane. This planar evolution must incorporate information
about the surface within the propagation rule. Actually, the
only information about the surface that is required for con-
structing the planar evolution rule is the gradient of the surface.
The planar evolution rule is obtained by first projecting the 3-D
propagating curve onto the plane, and then, considering only
the velocity component normal to the planar curve (the trace
of the evolving curve depends only on the normal component
of the velocity). The justification for eliminating the tangential

(a) (b)

Fig. 4. In column an obstacle (indicated in gray) is moving in a “burnt”
(white) area. The fire front and the obstacle’s position are displayed at three
successive times. Observe that the fire front at is the obstacle’s boundary
and an offset of the fire front and the obstacle’s boundary at Column
displays an obstacle moving along the propagating fire front. The obstacle’s
position in time deforms the wavefront shape as it stops the front from
propagating at At the wavefront is further deformed by the current
position of the obstacle. The outline of the obstacle is impressed into the
wavefront.

component from the evolution rule is that it affects only the
internal representation of the curve, i.e., the parameterization,
while the trace (the geometric shape) of the evolving curve de-
pends on the normal component of the velocity alone, [6], [22].
The procedure for finding the optimal path involves two

steps.
1) The construction of the multivalued distance map.
2) Given the multivalued distance map, the optimal path is
extracted by a back tracking procedure.

Here, we first present the continuous partial differential equa-
tion (PDE) that describes the relation between level sets of
the distance map, and the continuous back tracking ordinary
differential equation. Then, Section III-A introduces a sim-
plified discretization for the back tracking procedure. Next,
Section III-B reviews the level set formulation for the distance
map reconstruction: The level sets of the distance map are
reconstructed via the Osher–Sethian level set formulation. It
is simple to discretize the resulting PDE in a consistent way.
Let us first give the formulation of the problem of finding

the evolution rule of the equal distance contours on a given
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surface. We begin with a definition of the equal distance
contour. Given a source point on a surface (that
can be described by a function

let the 3-D equal distance contour at distance
from be defined as

where is the length of the minimal geodesic between
the point and the point on the surface It can be proved
[10], [11] that given a 3-D parametric curve on the
equal distance contour propagation rule is

where is the unit vector tangent to and is the surface
unit normal.
Starting from a small circle, on the surface around

the source point it is possible to find the equal distance
contour for any desired distance by using the evolution
equation to calculate We are interested in formu-
lating the evolution rule of the projection of the 3-D curve on
the -plane

where is the projection operation. Let us consider the
projection of the 3-D evolution on the -plane. The
knowledge of how this projected contour behaves allows us
to construct a simple, accurate and stable numerical algorithm
that can be used to produce the equal distance contours on
the surface.
The planar normal component of the projected velocity of

the evolving equal distance contour is

Writing the unit normal to the planar curve in terms of
its components and the surface normal as

where and
it is straightforward [10], [11] to show that

Using this expression we construct a differential equation
(in Lagrangian formulation) describing the projected equal
distance contour evolution

given

The procedure that calculates the equal distance contours
allows us to build a distance map (multivalued in the presence
of moving obstacles) from a given point. In our search for the
time optimal path we make use of the fact that the minimal
geodesics are perpendicular to the equal distance contours on
the surface. This result is obtained by an expansion of Gauss
Lemma [10], [11]. It is used to track the optimal trajectory

by starting at the destination point that is reached by an
equal distance contour, and proceeding backward using the
orthogonal property of the optimal path and the equal distance
contours.
Let us recall the definition of the multivalued distance map

from

where the index refers to the layer in the multivalued
distance map. Every time a point is reached by the prop-
agating contour, the corresponding index is incremented and
a time stamp is assigned to that point. Given the multivalued
distance map, the remaining task is to determine the optimal
path.
Assume that there are no moving obstacles, i.e., that the

distance map is single-valued. Let denote the
continuous 3-D curve representing the optimal path. Starting
at the destination point, the direction of backtracking on the
surface is given by

where is the surface normal and is the tangent unit
vector to the equal distance contour. The following result
can be computed by using arc length parameterization of
curve Denote the first derivatives of the distance map
as and and a normalization
function

Using these terms

and the backtracking rule, the optimal path is given by

where is the destination point from which backtrack-
ing toward the source point begins.
In the presence of moving obstacles the distance map is

multivalued. The value index may change along the optimal
path. Therefore, one generally has to consider all distance
values at a candidate point.

A. Example for a Simple Backtracking Procedure
Let us present a simple discrete approximation for the

back propagation procedure. Suppose that the surface and the
distance map are given as samples on a rectangular grid.
Denote and similarly for the distance
map A possible definition of the
neighborhood of a point is

Also assume without loss of generality that
1.
We shall not make an explicit usage of the analytic results

describing the back tracking as presented in the previous
section. Alternatively, we open an imaginary sphere around
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the last detected point in the back tracked path, and locate
the neighbor from which the current point was reached. The
optimal path is thus created by a repeated neighbor selection
process, starting at the destination point, according to the
following rule: Given the point with a distance value

its neighbor (with distance value is selected
by

(1)

subject to the two following constraints:

where

The selection is carried out between all neighbors, and for
each neighbor through all distance values (all different layers
). is a small number less than one that compensates for the
metrication error due to the grid. It describes the wavefront
error that might occur between neighboring grid points. The
first constraint ensures that the next candidate point, generated
by the back tracking procedure, is in a decreasing order in time,
while the second constraint guarantees that the next candidate
will not be along the same wavefront (traveling along the
same wavefront is possible only with an infinite velocity ).

represents the velocity speed the robot would have had
to travel, in order to get from the position in the C-space
defined by to the current
position The fact that we
limit the velocity to one enables us to exclude traveling along
the wavefront. While the minimization (1) is used to select the
steepest decent, and thereby the selection of the optimal path.
The robot travels with a limited velocity, and by our

construction it practically moves with its maximal velocity
while it can. The wavefront describes the front of possibilities
moving at the maximal possible velocity. The wavefront itself
is the set of all possible locations for the robot at a given
time. Moving along a given wavefront means that the robot
can move in zero time from one point to another, which is
an obvious violation of the limited velocity assumption. In
principle, we could check for the computed velocity to be less
than one, which was our general assumption. However, since
we restrict the reconstructed path to pass through grid points
on a rectangular grid, we should allow some flexibility in the
back tracking procedure. The parameter may be considered
as a measure for this flexibility; see Fig. 5. The discrete back
tracking procedure presented here is simple but not consistent.
Consistent sub-grid methods for back tracking that are based
on second order ODE integrators are possible (see, e.g., [13]).
An interesting observation is the following: Consider an

obstacle moving at a velocity and forcing the robot
to follow it. Using the above approximation, i.e. preferring a
unit velocity, may cause the robot to travel back and forth
(juggle) along the boundary of the moving obstacle while
accompanying it as it moves. Although this is not the natural
way to follow an obstacle, the result is still a time optimal path.

Fig. 5. corresponds to the error caused by forcing the path to pass through
the grid points. The bold lines represent two level sets of the distance
map projected to the coordinate plane. In our example of a flat domain

An important advantage of the suggested approach is that,
unlike potential based methods, it is inherently immune against
being trapped in local minima. This follows from the funda-
mental property of distance maps, namely that the distance
between two points corresponds to the globally shortest paths
between them. This is implied by the definition of distance, see
e.g., [30]. Similarly, singular points that in our case can only
be maximum or saddle points, i.e. points at which there is more
than one possible way to continue, do not cause any difficulty
since they correspond to multiple paths of equal lengths that
are all globally shortest.
Angular errors that are accumulated by the back propagation

procedure can be corrected using geodesic curvature flow [4],
[12] to shorten the generated curve into a geodesic (between
the moving obstacles). We remark that the above backtracking
approximation is only one simple example, and the one
used in our examples. For constraints imposed by different
considerations like terrain traversability see Appendix.

B. The Eulerian Formulation
The construction of the multivalued distance map is a

curve evolution process. When implementing curve evolution
equations of Lagrangian formulation on a digital computer, one
should take care of some numerical problems and topological
changes in the evolving contour. Moreover, the moving obsta-
cles generate new boundary conditions as they move and the
question is how to efficiently incorporate these in the evolution
procedure. Sethian and Osher [21], [24] proposed an algorithm
for curve and surface evolution that elegantly solves these
problems. As a first step in constructing the algorithm, the
curve is embedded in a higher dimensional function. Then,
evolution equations for the implicit representation of the curve
are solved using numerical techniques derived from hyperbolic
conservation laws.
Let the planar curve be represented by the zero level set

of a smooth Lipschitz continuous function
so that is negative in the interior and positive in the

exterior of the zero level set 0. Consider the zero level
set defined by

We have to find the evolution rule of so that the evolving
curve can be represented by the evolving zero level set
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Fig. 6. Propagating the 3-D contour on the surface is done by first
projecting the contour onto the plane to obtain and then, as suggested
by the Eulerian formulation, to propagate its implicit representation
This formulation avoids difficulties due to topological changes: observe how
a single connected contour propagates and splits gracefully into two separate
contours.

0. Using the chain rule on 0 we get

Note that for any level set the planar normal can be written
as Using this relation in conjunction with the
Lagrangian evolution equation we obtain

where the curve is obtained as the zero level set of
This procedure is known as the Eulerian formulation [24].
This formulation of planar curve evolution processes frees
us from the need to take care of the possible topological
changes in the propagating curve, see Fig. 6. It also frees us
from the need to construct special procedures that handle the
boundaries conditions imposed by the moving obstacles. In
fact, the implicit representation of the propagating wavefront
allows us to include the effect of the moving obstacles in
a natural way. It is straightforward to construct the Eulerian
formulation and the appropriate numerical implementation at
any dimension. This is an important property for path planning
problems that usually involve several degrees of freedom.
The numerical implementation [10], [11] of the Eulerian

formulation is based on monotone and conservative numer-
ical algorithms, derived from hyperbolic conservation laws
and from the Hamilton–Jacobi type of equations [20], [21].
Using the normal component of the velocity in the Eulerian
formulation equation yields the following evolution rule:

(2)

This equation describes the propagation rule for the surface
It was implemented on a rectangular grid

over the domain, using forward finite derivative approximation
in time, and slope limiters in approximating the spatial deriva-
tives [10], [11]. Every time step the moving obstacles force
the function to become negative in
areas covered by them. The whole procedure of finding an
optimal path may be summarized as follows:
1) Evolve the discretization of (2) in time until the
destination point is reached. In each iteration check: If

then update the multivalued distance map
at the point and increment by 1 the

number of values counter at that point (denoted by

(3)

2) Given the multivalued distance map back track
the optimal path.

It is important to note that while constructing the numerical
scheme for the above evolution equation, one must take care
of satisfying the consistency condition. It guarantees that while
the time and distance steps in the numerical scheme approach
zero, the scheme converges to the continuous case. As dis-
cussed in [14] and [19], this may be difficult in alternative
approaches.

C. Computational Considerations
The order of the computational complexity of a serial

generation of the multivalued distance map is
where is the time duration for the optimal path, is
the time step in the numerical scheme and is the number
of grid points (the size of the planar domain ). Observe
that corresponds to the first time the propagating contour
reaches the destination point. The upper bound of the memory
complexity is which is the finite, usually small,
number of layers. The accuracy in the generation of the
multivalued distance map depends on the numerical scheme.
For first order schemes the local truncation error at each
iteration is of order It can be reduced by using higher
order schemes [20], [21].
Under the assumption that the back propagation complexity

is smaller than the map generation (which is a reasonable
assumption for non cluttered environments) the complexity
is as indicated above It can be reduced by
using the narrow band technique developed by Adalsteinsson
and Sethian [1]. For flat weighted domains it can be reduced
to with Sethian’s fast marching method, see
concluding remarks. The back propagation, for which the
complexity is that involves a search
over the different layers, can become dominant for cluttered
environments. Here is the length of the optimal path, and

is the spatial discretization interval.
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(a) (b)

(c) (d)

Fig. 7. Time optimal path on a plane in the presence of a square obstacle
that landed at 44 and disappeared at 73. (a) The gray curves are an
overhead view of the equal distance contours. The black curves are the time
optimal path and the obstacle boundary. (b) The time optimal path is the black
curve. The white square is the boundary of the obstacle. The black point is the
source and the white point is the destination. (c) The equal distance contours
in the C-space are shown as gray curves. The optimal path and the
boundary of the obstacle are in black. (d) The multivalued distance map,
in the C-space, where a black point corresponds to The
black curve is the optimal path.

IV. EXAMPLES
The following examples demonstrate the operation of the

suggested algorithm. A 64 64 grid was used in the numerical
approximation of the multivalued distance map. In all the
examples, a robot should travel from a starting point to a
destination in the presence of time varying obstacles. The
projection of the starting point is (16, 16) and that of the
destination point is (48, 48). For simplicity of presentation,
the obstacles are constructed on the coordinate plane and
back projected onto the surface: Imagine an obstacle moving
on the surface while deforming its shape so that its “shadow”
on the coordinate plane is always a rectangle.
In the first example, Fig. 7, an obstacle lands on a plane at
44 and disappears at 73. The optimal motion plan

includes traveling at an area just before it is covered by the
obstacle, then waiting at the boundary of the covered area at
the point closest to the destination. When the obstacle moves
away the shortest path to the destination point is taken. This
example is similar to the one sketched in Fig. 3.
The upper left frame shows the projection of the equal

distance contours onto the plane. A 3-D visualization of these
contours appears in the lower left frame. The multivalued
distance map is shown in the -space at the lower
right frame. The optimal path appears as a black curve in all

(a) (b)

(c) (d)

Fig. 8. Time optimal path in presence of a moving square obstacle on an
“egg-box” surface. (a) The surface. (b) The time optimal path is the black
curve. The white square is the boundary of the obstacle. The black point
is the source and the white point is the destination. (c) The equal distance
contours in the C-space are shown as gray curves. The optimal path
and the boundary of the obstacle are in black. (d) The multivalued
distance map, in the C-space, where a black point corresponds to

The black curve is the optimal path.

the frames, and is highlighted in the upper right frame. The
starting point is black and the destination point is white.
In this example we have used an obstacle that appears and

vanishes in order to demonstrate the ideas we put forward in
the introduction of this paper. It is by no means limits the
cases the proposed method can handle. As we will see in the
following examples, moving obstacles are considered, and an
optimal path is extracted. We also note that the paths being
extracted are indeed time optimal paths, however, they are not
unique (one may walk along the sidewalk waiting for the stop
light to switch to green, and still get to the other side of the
road in a time optimal path).
In the examples shown in Figs. 8–10, an “egg-box” like

surface, shown in the upper left frames, is used. The organ-
ization of the other three frames is similar to that of Fig. 7.
In the upper right frames the projection of the movement of
an obstacle‘s boundary is shown in white. The gray levels
represent the elevation of the surface.
In Fig. 8, motion is constrained by a moving rectangular ob-

stacle. The robot follows a local geodesic, then gets away from
the approaching obstacle and finally reaches the destination.
In Fig. 9, three moving rectangular obstacles cause the path

to avoid the left obstacle, track the middle obstacle for a while,
then follow the right obstacle toward the destination point,
using geodesics when possible.
In Fig. 10, several “layers” are formed in the multivalued

distance map due to a vertical line obstacle that moves
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(a) (b)

(c) (d)

Fig. 9. Time optimal path in presence of three moving obstacles on an
“egg-box” surface. (a) The surface. (b) The time optimal path is the black
curve. The white square is the boundary of the obstacle. The black point
is the source and the white point is the destination. (c) The equal distance
contours in the C-space are shown as gray curves. The optimal path
and the boundary of the obstacle are in black. (d) The multivalued
distance map, in the C-space, where a black point corresponds to

The black curve is the optimal path.

from right to left and then left to right, twice. The optimal
path (from the destination to the source) starts at the upper
“layer” and then jumps to a lower layer. The robot runs away
from the obstacle and waits at a point that connects to the
destination with the shortest possible geodesic on the surface
(the projection of the line obstacle is moving at a speed of

1).

V. CONCLUSION
We dealt with the problem of finding optimal paths on

surfaces while avoiding obstacles that are moving on them.
To the best of our knowledge, there is no numerically con-
sistent solution (that converges, or in other words “resolution
complete” in a systematic way) for this case, with a lower com-
plexity. We use the property that the only needed knowledge
for the construction of an optimal path in a temporal-spatial
configuration space is the first time a point can be visited
(or revisited after being covered by an obstacle). This way
we compressed the space-time C-space domain into what
we named multivalued distance map. Indeed we lose some
important properties of the C-space and limit our class of
optimal solutions. Note that in many cases there is more than
one optimal solution, and actually the class of these solutions
may even be continuous, i.e., a net of connected manifolds
rather than curves.
Since this manuscript was first submitted there were some

new developments in the field of numerical approximations

(a) (b)

(c) (d)

Fig. 10. A single line obstacle is moving from 40 to 10, then
backward from 10 to 50, again to 10, and at last to the image
frame boundary 64. The motion of the obstacle obviously creates multiple
values in the distance map. (a) The “egg-box” surface. (b) The time optimal
path is the black curve. The white square is the boundary of the obstacle.
The black point is the source and the white point is the destination. (c) The
equal distance contours in the C-space are shown as gray curves.
The optimal path and the boundary of the obstacle are in black. (d) The

multivalued distance map, in the C-space, where a black point
corresponds to The black curve is the optimal path.

to wave propagation, especially for the Eikonal case that
is relevant to our discussion. Coupled with the proposed
method it offers a complexity equivalent to that of Dijkstra‘s
algorithm [5] plus the important convergence property. In other
words, a systematically “resolution complete” algorithm for
the stationary search problem with a complexity of
It is based on recent works by Sethian [25], Tsitisiklis [27], and
was recently used for efficiently solving navigation problems
in [13]. These algorithms apply to flat domains, as well as
flat weighted domains; domains with a different cost assigned
to each point, referred to as “traversability” in the appendix.
Still, for non flat domains, e.g., surfaces, the level set implicit
propagation, with Adalsteinsson–Sethian [1] “narrow band”
implementation for tracking the wavefront, is the most efficient
numerically consistent implementation on a rectangular grid
known to the authors.

APPENDIX
TERRAIN TRAVERSABILITY

We have shown an analytic formulation of an equal distance
contour evolution on a surface. The contour describes possible
positions of a robot‘s traveling at a constant velocity. Now
consider the constraints imposed by terrain traversability. A
simple model may be given according to which at each point
on the surface the robot‘s velocity is limited by a space variant
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traversability value. Let the traversability map be given by
where each point on the surface

is characterized by a traversability factor
of At each point the robot velocity is limited by

(it is assumed without loss of generality that
1). This constraint can be incorporated in the equal

distance contour evolution equation by simply multiplying
the propagation velocity. Using these arguments the planar
evolution rule can now be written as

The robot’s loss of weight and increase of maximal speed as
it travels and uses its fuel can also be considered. The planar
projection becomes

Time dependent terrain traversability can be handled
by generalizing the planar evolution rule to

Observe that the moving obstacles may not be considered as
part of the changing traversability function. This is due to the
fact that the robot can wait at a point of zero traversability
for the traversability to increase at that area, but it can not be
present at a point that is covered by an obstacle.
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