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FAST ENTROPIC REGULARIZED OPTIMAL TRANSPORT USING
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Abstract. The optimal transportation theory was successfully applied to different tasks on
geometric domains as images and triangle meshes. In these applications the transport problem is de-
fined on a Riemannian manifold with geodesic distance d(x, y). Usually, the cost function used is the
geodesic distance d or the squared geodesic distance d2. These choices result in the 1-Wasserstein dis-
tance, also known as the earth mover's distance (EMD), or the 2-Wasserstein distance. The entropy
regularized optimal transport problem can be solved using the Bregman projection algorithm. This
algorithm can be implemented using only matrix multiplications of matrix exp( - \bfitC /\varepsilon ) (pointwise
exponent) and pointwise vector multiplications, where \bfitC is a cost matrix, and \varepsilon is the regularization
parameter. In this paper, we obtain a low-rank decomposition of this matrix and exploit it to accel-
erate the Bregman projection algorithm. Our low-rank decomposition is based on the semidiscrete
approximation of the cost function, which is valid for a large family of cost functions, including
dp(x, y), where p \geq 1. Our method requires the calculation of only a small portion of the distances.
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AMS subject classifications. 65D05, 90C08, 49M25

DOI. 10.1137/17M1162925

1. Introduction. Currently, there are three broad categories of approaches for
solving numerically optimal mass transport problems. The first category is composed
of discrete combinatorial algorithms. These work well for arbitrary cost functions, but
they do not scale well for large problems. The second category is a class of continuous
solvers. These methods use the polar factorization theorem and the Monge--Amp\`ere
equation [14, 4]. Other methods use a dynamical formulation with an additional time
variable (the Benamou--Brenier formula) [5]. For the L1 cost function fast approaches
exist [21, 22, 25]. Most of the continuous solvers are restricted to a specific cost
function (such as L1 or L2) but do not require computing and storing the cost matrix.

The third category is semidiscrete algorithms [20, 23]. In these algorithms, one of
the measures is considered to be discrete. The dual problem becomes an optimization
problem that can be interpreted as the problem of finding a certain power diagram
partition of the continuous measure. For a specific cost function, such as the L2 cost
in \BbbR n, tools from computational geometry can be used to speed up calculations of the
objective function.

The current paper deals with approximate optimal transport problems. The en-
tropy regularized optimal transport problem was introduced in [3, 10, 11]. Under
entropy regularization, optimal transportation is solved using the Bregman projec-
tions algorithm, which is a generalization of the Sinkhorn--Knopp algorithm (also
known as the iterative proportional fitting procedure (IPFP)). Each iteration involves
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FAST ENTROPIC REGULARIZED OPTIMAL TRANSPORT A3401

a multiplication of the matrix exp( - \bfitC /\varepsilon ) (pointwise exponent) by a vector and point-
wise vector multiplications. Although the complexity of each iteration is O(n2), each
iteration is completely parallelizable.

The approximate methods and the exact methods are divided into two classes:
very specific methods, which require a particular cost function (e.g., dynamical ap-
proaches and fast semidiscrete algorithms) and general methods which are valid for
every cost function (e.g., discrete algorithms and iterative Bregman projections). The
general methods do not use the geometric structure of the cost function and hence
require storing a large amount of information (e.g., large matrix) and performing de-
manding calculations. Specific methods are usually faster and do not require storing
the cost matrix but are limited to specific cost functions. Our method is intermediate;
it works for a large family of cost functions and requires storing only a small portion
of the cost matrix.

Recently, a fast variation of the Bregman projections algorithm for the d2 cost
function was proposed [30]; it exploits the connection of exp( - \bfitC /\varepsilon ) to the heat kernel
of a surface.

In this paper, we use a different approach to accelerate the Bregman projec-
tions algorithm. Inspired by the efficiency of low-rank approximations of geodesic
distance matrices [26, 27], we propose computing a low-rank approximation \bfitR 1\bfitR 

t
2 of

exp( - \bfitC /\varepsilon ) where \bfitR 1, \bfitR 2 are n\times m matrices with m\ll n. This approximation can
be used to accelerate the Bregman projections algorithm by reducing the complexity
of each iteration to O(mn).

It appears that one such factorization can be obtained using the semidiscrete ap-
proximation of the cost function. This approximation expresses a geometric property
of a large family of cost functions. In particular, it is valid for costs of the form dp

where d is geodesic distance and p \geq 1. Thus, we propose a unified approach for the
1- and 2-Wasserstein cases. Our method requires calculating only a small portion of
the cost matrix.

The paper is organized as follows. In section 2 we briefly review optimal transport
theory. In section 3 we describe a low-rank approximation \bfitR 1\bfitR 

t
2 of exp( - \bfitC /\varepsilon ).

In section 4 we describe the low-rank iterative Bregman projections algorithm. In
section 5 we compare our decomposition to the Nystrom low-rank approximation. In
section 6 we improve the approximation even more using a decomposition of the form
\bfitR 1\bfitW \bfitR t

2 + \bfitS , where \bfitS is a sparse n\times n matrix and \bfitW is a diagonal m\times m matrix.
Finally, in section 7 we support the proposed method with experimental results, which
are followed by conclusions.

2. Preliminaries.

2.1. Optimal transport. We begin with background on optimal transporta-
tion. Let X and Y be measure spaces and \mu \in P (X), \nu \in P (Y ) be probability
measures on X and Y , respectively. Let c : X \times Y \rightarrow [0,\infty ) be a cost function. The
Kantorovich problem [16, 31] is

(1) Wc(\mu , \nu ) := inf
\gamma \in \Pi (\mu ,\nu )

\int 
X\times Y

c(x, y) d\gamma (x, y),

where \Pi (\mu , \nu ) is the set of the transport plans, which means the set of measures \gamma in
P (X \times Y ) such that

\gamma (A\times Y ) = \mu (A), \gamma (X \times B) = \nu (B)

for all measurable sets A in X and B in Y .
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A3402 EVGENY TENETOV, GERSHON WOLANSKY, AND RON KIMMEL

We fix two measures \tau 1 and \tau 2 on X and Y . We can write (1) as

inf
\gamma \in \Pi (\mu ,\nu )

\int 
X\times Y

c(x, y)
d\gamma (x, y)

d(\tau 1 \times \tau 2)
d(\tau 1 \times \tau 2).

For our purposes we assume X = Y, \tau := \tau 1 = \tau 2 and denote \=\tau := \tau \times \tau . Next,
we discuss the discrete case. We use the notion \BbbR + for nonnegative real numbers
and \BbbR ++ for the set of strictly positive real numbers. Suppose we have a sampling
\~X = \{ x1, . . . , xn\} of X. Define

cij = c(xi, yj), \pi ij =
d\gamma 

d\=\tau 
(xi, yj),

pi =
d\mu 

d\tau 
(xi), qi =

d\nu 

d\tau 
(xi), ai = \tau (xi), 1 \leq i, j \leq n.

We shall denote the finite matrices and vectors by bold letters, e.g., \bfitC := \{ cij\} ,
\bfitp := \{ pi\} , etc. Following [30], we obtain after discretization

(2) W\bfitC (\bfitp , \bfitq ) = min
\bfitpi \in \Pi (\bfitp ,\bfitq )

\sum 
1\leq i,j\leq n

aiajcij\pi ij ,

where
\Pi (\bfitp , \bfitq ) = \{ \bfitpi \in \BbbR n\times n

+ | \bfita t\bfitpi \bfita = 1,\bfitpi \bfita = \bfitp , \bfitpi t\bfita = \bfitq \} 
and \bfitp , \bfitq satisfy

\bfitp t\bfita = 1, \bfitq t\bfita = 1.

For an image X = [0, n1]\times [0, n2] discretized by a grid of n1 \times n2 points, we take
n = n1n2 and \bfita = 1

n1n2
, where 1 = (1, . . . , 1)t \in \BbbR n. For X a 2-dimensional manifold,

discretized using a triangular mesh, we take n to be the number of vertices and the
area vector \bfita as areas proportional to the sum of triangle areas adjacent to a given
vertex. Suppose \gamma is absolutely continuous with respect to \=\tau . The relative entropy of
a measure \gamma with respect to \=\tau is defined as

(3) E(\gamma ; \=\tau ) :=  - 
\int 
X\times X

d\gamma 

d\=\tau 
ln

d\gamma 

d\=\tau 
d\=\tau .

The discretization of the relative entropy takes the form

E(\bfitpi ;\bfita \bfita t) :=  - 
\sum 

1\leq i,j\leq n

aiaj\pi ij ln\pi ij .

Following [3, 10], we modify the objective of the optimal transportation problem in
(1) by subtracting an \varepsilon multiple of the entropy term

Wc,\varepsilon (\mu , \nu ) := inf
\gamma \in \Pi (\mu ,\nu )

\int 
X\times X

c(x, y) d\gamma  - \varepsilon E(\gamma ; \=\tau ),

so the discrete regularized optimal transport distance can be written as

(4) W\bfitC ,\varepsilon (\bfitp , \bfitq ) := min
\bfitpi \in \Pi (\bfitp ,\bfitq )

\sum 
1\leq i,j\leq n

aiajcij\pi ij + \varepsilon 
\sum 

1\leq i,j\leq n

aiaj\pi ij ln\pi ij .

We refer the reader to [19] for a discussion of the connection of (4) to the non-
regularized transport as \varepsilon \rightarrow 0.

Remark. The definition of ai depends on the quantization of the measures. If
the quantization is consistent with the centroids of the Voronoi cells, then we choose
ai = 1/n.
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2.2. Bregman projections. Let \gamma , \xi be measures on X \times X, where \gamma is abso-
lutely continuous with respect to \xi . We define the KL (Kullback--Leibler) divergence
between \gamma and \xi as

KL(\gamma | \xi ) :=
\int 
X\times X

d\gamma 

d\xi 

\biggl( 
ln

d\gamma 

d\xi 
 - 1

\biggr) 
d\xi + 1.

We note that for \xi := exp( - c(x, y)/\varepsilon )d\tau we obtain

Wc,\varepsilon (\mu , \nu ) = \varepsilon min
\gamma \in \Pi (\mu ,\nu )

KL(\gamma | \xi ).

Now we define the discrete KL divergence between \bfitpi \in \BbbR n\times n
+ and \bfitxi \in \BbbR n\times n

++ :

KL : \BbbR n\times n
+ \times \BbbR n\times n

++ :\rightarrow \BbbR , KL(\bfitpi | \bfitxi ) :=
\sum 

1\leq i,j\leq n

aiaj

\biggl( 
\pi ij ln

\biggl( 
\pi ij

\xi ij

\biggr) 
 - \pi ij

\biggr) 
+ 1.

For a cost matrix \bfitC and \varepsilon > 0 we denote

(5) \bfitH (\bfitC , \varepsilon ) := \{ exp( - cij/\varepsilon )\} ,

where the exponential is pointwise. Define

\scrC 1 = \{ \bfitpi \in \BbbR n\times n | \bfitpi \bfita = \bfitp \} and \scrC 2 = \{ \bfitpi \in \BbbR n\times n | \bfitpi t\bfita = \bfitq \} .

Problem (4) can be written as

(6) W\bfitC ,\varepsilon (\bfitp , \bfitq ) = \varepsilon 

\biggl( 
min

\bfitpi \in \scrC 1\cap \scrC 2

KL(\bfitpi | H(\bfitC , \varepsilon ))

\biggr) 
.

Note that nonnegativity constraints are already in the definition of the entropy. Given
a convex set \scrC \subset \BbbR n\times n the projection according to the KL divergence is defined as

PKL
\scrC (\bfitxi ) := argmin\bfitpi \in \scrC KL(\bfitpi | \bfitxi ).

Let us consider the special case \scrC = \scrC 1\cap \scrC 2. It is possible to solve for \bfitpi \in \scrC satisfying
(6) by simply using iterative KL projections; see [6]. Starting from \bfitpi 0 = exp( - \bfitC /\varepsilon ),
one computes the alternating projections

\bfitpi N = PKL
\scrC N

(\bfitpi N - 1) \forall N > 0,

where \scrC N = \scrC 1 if n is odd, and \scrC N = \scrC 2 otherwise. One can then show that \bfitpi N

converges towards the unique solution of (6),

\bfitpi N \rightarrow \bfitpi = PKL
\scrC (\bfitpi ) as N \rightarrow \infty .

If the original problem has a unique solution, then the sequence \pi N converges to it;
otherwise it converges to the solution with largest entropy.

In this special case of two sets, the algorithm is known as an iterative proportional
fitting procedure (IPFP) or Sinkhorn's algorithm; see [28].

For two vectors \bfitv and \bfitw we denote by \bfitv \odot \bfitw the pointwise multiplication and by
\bfitv \oslash \bfitw the pointwise division. diag(\bfitv ) denotes the diagonal matrix with elements in
the vector \bfitv . The following proposition is a variant of Proposition 1 in [3].
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Algorithm 1 Optimal transport distance using Bregman projections.

1: function Optimal-transport-distance(\bfitp , \bfitq ;\bfitH (\bfitC , \varepsilon ))
2: \bfitv ,\bfitw \leftarrow 1

3: for i = 1, 2, 3, . . . do
4: \bfitv \leftarrow \bfitp \oslash (\bfitH (\bfitC , \varepsilon )(\bfita \odot \bfitw ))
5: \bfitw \leftarrow \bfitq \oslash (\bfitH (\bfitC , \varepsilon )t(\bfita \odot \bfitv ))

6: return \varepsilon \bfita t [(\bfitp \odot ln(\bfitv )) + (\bfitq \odot ln(\bfitw ))]

Proposition 1 (Proposition 1 in [30]). For \bfitpi \in \BbbR n\times n
+

PKL
\scrC 1

(\bfitpi ) = diag(\bfitp \oslash (\bfitpi \bfita ))\bfitpi and PKL
\scrC 2

(\bfitpi ) = \bfitpi diag(\bfitq \oslash (\bfitpi t\bfita )).

Proposition 1 allows us to apply Algorithm 1.
An important advantage of this algorithm is that it uses only matrix-vector mul-

tiplications applied to a fixed matrix \bfitH (\bfitC , \varepsilon ) and pointwise multiplications, which
can all be easily parallelized on modern hardware. Next, we will use a low-rank fac-
torization of \bfitH (\bfitC , \varepsilon ) to further accelerate the matrix multiplications in Algorithm
1.

2.3. Wasserstein barycenter. As a further application, we consider the regu-
larized Wasserstein barycenter problem [2, 17].

Given a set of weights (\alpha 1, . . . , \alpha k) \in \BbbR k
+ it is defined as the following convex

problem over the space of measures:

min
\mu 

k\sum 
i=1

\alpha iWc(\mu , \mu i).

After discretization and substituting the regularized Wasserstein distance we obtain

min
\bfitp 

k\sum 
i=1

\alpha iW\bfitC ,\varepsilon (\bfitp ,\bfitp i),

which, as in [3] and [30], can be rewritten as

\bfitp = \bfitpi i\bfita , 1 \leq i \leq k,

where the set of optimal couplings \bfitpi = (\bfitpi i)
k
i=1 solves

min

\Biggl\{ 
k\sum 

i=1

\alpha i KL(\bfitpi i | \bfitH (\bfitC , \varepsilon )) | \bfitpi \in \scrC 1 \cap \scrC 2

\Biggr\} 
.

We denote

\scrC 1 = \{ \{ \bfitpi i\} ki=1 | \bfitpi t
i\bfita = \bfitp i 1 \leq i \leq k\} ,

\scrC 2 = \{ \{ \bfitpi i\} ki=1 | \bfitpi i\bfita = \bfitpi j\bfita , 1 \leq i, j \leq k\} .

The KL projections on \scrC 1 and \scrC 2 can be obtained in a closed form. The following
propositions are variants of Proposition 2 in [3].

Proposition 2 (Proposition 2 in [30]). The KL projection of (\bfitpi i)
k
i=1 onto \scrC 1

satisfies
PKL
\scrC 1

(\bfitpi i) = \bfitpi i diag(\bfitp i \oslash \bfitpi t
i\bfita ), 1 \leq i \leq k.
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Proposition 3 (Proposition 3 in [30]). The KL projection of (\bfitpi i)
k
i=1 onto \scrC 2

satisfies
PKL
\scrC 2

(\bfitpi i) = diag(\bfitmu \oslash \bfitd i)\bfitpi i, 1 \leq i \leq k,

where \bfitd i = \bfitpi i\bfita and \bfitmu = \Pi i\bfitd 
\alpha i/

\sum 
l \alpha l

i .

Algorithm 2 Wasserstein barycenter using Bregman projections.

1: function Wasserstein-Barycenter(\{ \bfitp i\} ki=1, \{ \alpha i\} ki=1;\bfitH (\bfitC , \varepsilon ),\bfita )
2: \bfitv 1, . . . ,\bfitv k \leftarrow 1

3: \bfitw 1, . . . ,\bfitw k \leftarrow 1

4: for j = 1, 2, 3, . . . do
5: \bfitp \leftarrow 1

6: for i = 1, . . . , k do
7: \bfitw i \leftarrow \bfitp i \oslash (\bfitH (\bfitC , \varepsilon )t(\bfita \odot \bfitv i))
8: \bfitd i \leftarrow \bfitv i \odot (\bfitH (\bfitC , \varepsilon )(\bfita \odot \bfitw i))
9: \bfitp \leftarrow \bfitp \odot \bfitd i

\alpha i

10: for i = 1, . . . , k do
11: \bfitv i \leftarrow \bfitv i \odot \bfitp \oslash \bfitd i

12: return \bfitp 

3. Low-rank decomposition of \bfitH (\bfitC , \bfitvarepsilon ) := exp( - \bfitC /\bfitvarepsilon ).

3.1. Semidiscrete cost approximation. Let X and Y be measure spaces. We
consider the cost functions of the form

(7) c : X \times Y \rightarrow [0,\infty ), c(x, y) = min
z\in Z

(c(1)(x, z) + c(2)(y, z)),

where Z is another space, and c(1) : X \times Z \rightarrow [0,\infty ), c(2) : Y \times Z \rightarrow [0,\infty ) are two
other functions. A canonical example is X = Y = Z = \BbbR d and c(x, y) = \| x  - y\| p
with p \geq 1. Then we have

(8) \| x - y\| p = 2p - 1 min
z\in \BbbR d

(\| x - z\| p + \| z  - y\| p).

Another example is

(9) \| x - y\| 1 = min
z\in \BbbR d

(\| x - z\| 1 + \| z  - y\| 1).

Let X be a compact Riemannian manifold with geodesic distance d(x, y). Let h :
[0,\infty ) \rightarrow [0,\infty ) be a convex and strictly increasing function. We consider the cost
function c(x, y) = h(d(x, y)) on X \times X. Then, it can be proved [32] that

h(d(x, y)) = min

\biggl\{ \int 1

0

h(\| \.\gamma (t)\| )dt; \gamma (0) = x, \gamma (1) = y, \gamma \in C1[0, 1]

\biggr\} 
.

It follows that

(10) h(d(x, y)) = min
z\in X

\biggl( 
1

2
h(2d(x, z)) +

1

2
h(2d(y, z))

\biggr) 
.

Note that in these cases,

(11) X = Y = Z and c(1)(x, z) = c(2)(x, z) =
1

2
h(2d(x, z)).
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A particular example is c(x, y) = d(x, y)p for p \geq 1. Then, we have

(12) d(x, y)p = 2p - 1 min
z\in X

(dp(x, z) + dp(y, z)).

In this paper, we assume X, Y , and Z are compact. Given a finite sampling Zm \subset Z
with m\ll n elements, we can approximate c(x, y) using

(13) cZm(x, y) := min
z\in Zm

(c(1)(x, z) + c(2)(y, z)).

Now we discuss the discrete setting. We denote the samplings of the spaces X, Y ,
and Z by

Xn = \{ x1, . . . , xn\} , Yn = \{ y1, . . . , yn\} , Zm = \{ z1, . . . , zm\} .

Let \bfitC (1) and \bfitC (2) be the n \times m matrices related to c(1) : X \times Z \rightarrow [0,\infty ) and
c(2) : X \times Z \rightarrow [0,\infty ), respectively. That means

c
(1)
ij := c(1)(xi, zj), c

(2)
ij := c(2)(yi, zj), 1 \leq i \leq n, 1 \leq j \leq m.

Then, the semidiscrete approximation is

(14) cZm
ij := min

1\leq k\leq m
(c

(1)
ik + c

(2)
jk ), 1 \leq i, j \leq n.

We now limit ourselves to the case (10) of a compact Riemannian manifold X
with a cost function c(x, y) = h(d(x, y)). In the experiments we focus on the case
h(x) = | x| p where p \geq 1, in which we obtain the approximation (12). We denote

(15) h1(x) :=
1

2
h(2x) and c(1)(x, z) = c(2)(x, z) = h1(d(x, z)), x, z \in X.

Then

(16) cZm
ij = min

1\leq k\leq m
(h1(dik) + h1(djk)), 1 \leq i, j \leq n,

where

(17) dij := d(xi, zj), 1 \leq i \leq n, 1 \leq j \leq m.

The approximation (16) requires one to calculate the mn distances (17).

3.2. Construction of the sampling set. The computation of geodesic dis-
tances from a point to the rest can be performed efficiently using the fast marching
method [18] for 2-dimensional triangulated surfaces and Dijkstra's shortest path al-
gorithm [12] for higher dimensions. For 2-dimensional surfaces with n vertices, both
algorithms have complexities of O(n log n). For given sampling Xn of X, the algo-
rithm below produces a sampling Zm \subset Xn and calculates the necessary distances.
We use the farthest point sampling strategy which is a 2-optimal method [15].
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Algorithm 3 Distance calculation.

1: function Distance-calculation(Xn,m)
2: // Farthest point sampling
3: Choose an initial vertex z1 \in Xn and define Zm := \{ z1\} 
4: di1 \leftarrow d(xi, z1), 1 \leq i \leq n,
5: for j = 2, . . . ,m do
6: zj \leftarrow argmax\{ x \in Xn | min1\leq l\leq i - 1 d(x, zl)\} 
7: \lambda \leftarrow max\{ x \in Xn | min1\leq l\leq i - 1 d(x, zl)\} 
8: dij \leftarrow d(xi, zj), 1 \leq i \leq n,
9: Zm \leftarrow Zm \cup \{ zj\} 

return Zm, \bfitD n\times m := \{ dij\} , \lambda 

Remarks.
1. The algorithm stops after at most n steps and Zm \subset Xn If we use instead of

Xn some other sampling of X, then the set Zm obtained is not necessarily
contained in Xn.

2. \lambda (m) is monotone decreasing as a function of m. It cannot be too small since
we require m\ll n. A rough estimate for \lambda is

(18) \lambda (m) \approx C

\biggl( 
Vol(X)

m

\biggr) 1/ dim(X)

for some suitable constant C.

3.3. Construction of a low-rank decomposition. We utilize the following
approximation for a minimum: Given a vector \bfita = (a1, . . . , am) \in \BbbR m and \varepsilon > 0, we
define

(19) min
\varepsilon 

(\bfita ) :=  - \varepsilon ln

\Biggl( 
m\sum 
i=1

exp ( - ai/\varepsilon )

\Biggr) 
.

This approximation is discussed, for example, in [33, 8] and is related to the Log-Sum-
Exp (LSE) function. It can be proven that min\varepsilon (\bfita ) converges to min(\bfita ) as \varepsilon \rightarrow 0+.
Moreover,

(20) min(\bfita ) - \varepsilon lnm \leq min
\varepsilon 

(\bfita ) \leq min(\bfita ).

We define the approximated version of (14),

(21) cZm,\varepsilon 
ij :=  - \varepsilon ln

\Biggl( 
m\sum 

k=1

exp

\Biggl( 
 - 
c
(1)
ik + c

(2)
jk

\varepsilon 

\Biggr) \Biggr) 
, 1 \leq i, j \leq n,

where c(1) and c(2) are as defined in (15).
Define the n\times m matrices

\bfitR 1 := \{ exp( - c(1)ij /\varepsilon )\} n\times m; \bfitR 2 := \{ exp( - c(2)ij /\varepsilon )\} n\times m.

The approximation (21) can be written as

(22) \bfitH (\bfitC Zm,\varepsilon , \varepsilon ) = \bfitR 1\bfitR 
t
2
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and can serve as a low-rank decomposition of \bfitH (\bfitC , \varepsilon ). In the case (10) we have

\bfitR 1 = \bfitR 2 = \{ exp( - h1(dij)/\varepsilon )\} n\times m.

We note that the \varepsilon from problem (4) is the same \varepsilon that we use in the approximation
(21) and in the decomposition (22).

3.4. Approximation bounds. In this section we bound cZm,\varepsilon 
ij . Clearly, we

have

(23) c(x, y) \leq cZm(x, y), x, y \in X.

Proposition 4. Let c(x, y) be a cost function satisfying (10). Then for every
\varepsilon > 0 and 1 \leq m \leq n we have

(24) cij  - \varepsilon lnm \leq cZm,\varepsilon 
ij \leq cij +A

Vol(X)1/ dim(X)

m1/ dim(X)
, 1 \leq i, j \leq n.

Proof. We can estimate the difference between cZm(x, y) and c(x, y); assuming
(10) we get

(25) c(x, y) - cZm(x, y) \geq c(1)(x, z\ast ) - c(1)(x, zj) + c(2)(y, z\ast ) - c(2)(y, zj)

for any zj \in Zm, where z\ast is a minimizer in (7). Now, by convexity of h1

c(1)(x, z\ast ) - c(1)(x, zj) \geq h\prime 
1(d(x, zj)) (d(x, z\ast ) - d(x, zj)) .

Since d(x, z\ast ) - d(x, zj) \geq  - d(z\ast , zj) and h\prime 
1 > 0 by monotonicity, we get

(26) c(1)(x, z\ast ) - c(1)(x, zj) \geq  - d(z\ast , zj)h\prime 
1(d(x, zj)).

In the same way we get

(27) c(2)(y, z\ast ) - c(2)(y, zj) \geq  - d(z\ast , zj)h\prime 
1(d(y, zj)).

On the other hand, d(z\ast , zj) \leq \lambda for some zj \in Zm by the above algorithm, and we
get from (25), (26), (27) that

c(x, y) - cZm(x, y) \geq  - \lambda min
z\in Zm

[h\prime 
1(d(x, z)) + h\prime 

1(d(y, z))] ,

where

\lambda = max

\biggl\{ 
min

1\leq j\leq m
d(x, zj) | x \in X

\biggr\} 
.

Using (18) we finally obtain

(28) c(x, y) - cZm(x, y) \geq  - AVol(X)1/ dim(X)

m1/ dim(X)

for some universal constant A.
From (14) and (20)

(29) cZm
ij  - \varepsilon lnm \leq cZm,\varepsilon 

ij \leq cZm
ij , 1 \leq i, j \leq n,

and from (23) and (28) we get (24).
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Comparing the approximation on both sides of (24), we obtain a reasonable esti-
mate of \varepsilon in terms of m:

(30) \varepsilon \approx A
Vol(X)1/ dim(X)

m1/ dim(X) lnm
.

For such \varepsilon we have

(31) | cZm,\varepsilon 
ij  - cij | \leq A

Vol(X)1/ dim(X)

m1/ dim(X) lnm
, 1 \leq i, j \leq n.

4. Iterative low-rank Bregman projections algorithm. In the previous
chapter, we presented a low-rank decomposition of \bfitH (\bfitC , \varepsilon ). Next, we exploit this
decomposition to introduce a fast Bregman projections algorithm. We describe the
algorithm in a more general setting. Suppose we have an approximation

(32) \bfitH (\bfitC , \varepsilon ) \approx \bfitR 1\bfitW \bfitR t
2 + \bfitS ,

where \bfitR 1, \bfitR 2 are n\times m matrices, \bfitW is an m\times m matrix, and \bfitS is a sparse n\times n
matrix. For the regularized semidiscrete approximation (22), \bfitS = 0, and \bfitW = \bfitI \bfitm is
the identity matrix. We introduce the following algorithms.

Algorithm 4 Optimal transport distance using low-rank approximation (32).

1: function Lowrank-Optimal-transport-distance(\bfitp , \bfitq ;\bfitR 1,\bfitR 2,\bfitW ,\bfitS ,\bfita )
2: \bfitv ,\bfitw \leftarrow 1

3: for i = 1, 2, 3, . . . do
4: \bfitv \leftarrow \bfitp \oslash (\bfitR 1(\bfitW (\bfitR t

2(\bfita \odot \bfitw ))) + \bfitS (\bfita \odot \bfitw ))
5: \bfitw \leftarrow \bfitq \oslash (\bfitR 2(\bfitW (\bfitR t

1(\bfita \odot \bfitv ))) + \bfitS (\bfita \odot \bfitv ))
return \varepsilon \bfita t [(\bfitp \odot ln(\bfitv )) + (\bfitq \odot ln(\bfitw ))]

Algorithm 5 Wasserstein barycenter using low-rank approximation (32).

1: function Lowrank-Wasserstein-Barycenter(\{ \bfitp i\} ki=1, \{ \alpha i\} ki=1;\bfitR 1,\bfitR 2,\bfitW ,\bfitS ,\bfita )
2: \bfitv 1, . . . ,\bfitv k \leftarrow 1

3: \bfitw 1, . . . ,\bfitw k \leftarrow 1

4: for j = 1, 2, 3, . . . do
5: \bfitp \leftarrow 1

6: for i = 1, . . . , k do
7: \bfitw i \leftarrow \bfitp i \oslash (\bfitR 1(\bfitW (\bfitR t

2(\bfita \odot \bfitv i))) + \bfitS (\bfita \odot \bfitv i))
8: \bfitd i \leftarrow \bfitv i \odot (\bfitR 1(\bfitW (\bfitR t

2(\bfita \odot \bfitw i))) + \bfitS (\bfita \odot \bfitw i))
9: \bfitp \leftarrow \bfitp \odot \bfitd i

\alpha i

10: for i = 1, . . . k do
11: \bfitv i \leftarrow \bfitv i \odot \bfitp \oslash \bfitd i

12: return \bfitp 

4.1. Complexity analysis of the algorithm. Each iteration consists of a finite
number of matrix multiplications. Each multiplication with \bfitR 1 and \bfitR t

2 takes O(mn),
the inner multiplication takes O(m2), and the sparse matrix multiplication takes O(s),
where s is the number of nonzero elements in \bfitS . For a suitable choice of \bfitS , we can
assume that O(s) = O(mn). For m\ll n we obtain a complexity of O(mn) instead of
O(n2) of the original algorithm.
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5. Comparison with the Nystrom low-rank approximation. The Nys-
trom method is an efficient technique to generate low-rank matrix approximations of
positive-definite matrices. The method was used successfully to approximate symmet-
ric matrices, such as \bfitC = \{ d2ij\} distances on a manifold [26]. Given an n\times n matrix
\bfitK , the method requires one to sample a subset of m columns from \bfitK and to compute
the corresponding submatrix \bfitR \in \BbbR n\times m. We denote by \bfitW \in \BbbR m\times m the symmetric
submatrix of \bfitR which consists of the corresponding m columns and m rows of \bfitK .
The low-rank approximation is then obtained as

(33) \bfitK Nys := \bfitR \bfitW +\bfitR t,

where \bfitW + is its Moore--Penrose pseudoinverse. See [13].
In [26], the authors introduced an extension of the Nystrom method, which we

describe now. Suppose \bfitV \Lambda \bfitV t is the thin eigenvalue decomposition of \bfitW with 1 \leq 
n1 \leq m eigenvalues. Then, we approximate the pseudoinverse by \bfitV \Lambda  - 1\bfitV t and obtain
the decomposition

(34) \widetilde \bfitK Nys
:= \bfitR \bfitV \Lambda  - 1\bfitV t\bfitR t = (\bfitR \bfitV )\Lambda  - 1(\bfitR \bfitV )t.

Experiments approve that this approximation gives better results (in the sense of
average relative error) than (33) for n1 = [m2 ]. This method can be used for the
symmetric matrix \bfitH (\bfitC , \varepsilon ) for \varepsilon not too small.

For small \varepsilon the matrix \bfitH (\bfitC , \varepsilon ) is badly scaled, and the quality of approximation
for the Nystrom decomposition degrades due to numerical errors. See section A.1 for
numerical comparison.

6. Optimized semidiscrete low-rank approximation with thresholding.
In this section, we further improve the low-rank approximation cZm,\varepsilon for the case (16).
One limitation of the semidiscrete approximation is the inaccuracy for small dij values
(see Figure 9 in the Appendix). We propose overcoming this problem by explicitly
calculating these distances. Additionally, we propose improving the approximation
(21) further by using a weighted sum, obtaining

(35) \~cij(\bfitq ) :=

\Biggl\{ 
 - \varepsilon ln

\Bigl( \sum m
k=1 qk exp

\Bigl( 
 - h1(dik)+h1(djk)

\varepsilon 

\Bigr) \Bigr) 
, dij \geq \lambda 0,

h(dij), dij < \lambda 0,

where \bfitq \in \BbbR m and \lambda 0 > 0 is fixed. This approximation requires the computation of
distances dij such that dij < \lambda 0. This can be done using a modified fast marching

method that terminates when the distance exceeds the threshold \lambda 0. Denote by \^\bfitD n\times n

the sparse matrix that holds these distances. The approximation (35) can be written
as

(36) \bfitH ( \~\bfitC , \varepsilon ) = \bfitR diag(\bfitq )\bfitR t + \bfitS ,

where \bfitS is an n\times n sparse matrix defined by

(37) sij =

\Biggl\{ 
exp( - h(dij)/\varepsilon ) - 

\sum m
k=1 qk exp

\Bigl( 
 - h1(dik)+h1(djk)

\varepsilon 

\Bigr) 
, dij < \lambda 0,

0 otherwise.

Denote
s\lambda 0

:= | \{ dij | dij < \lambda 0\} | .
This is the sparsity of the matrix \bfitS . The parameter \lambda 0 needs to be chosen such that
s\lambda 0
\leq mn in order to keep the complexity O(mn) of each iteration in Algorithms 4

and 5.
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6.1. Practical computation of \bfitvarepsilon , \bfitlambda \bfzero , and \bfitq . The decomposition (36) has
three parameters \varepsilon , \bfitq , and \lambda 0. In this section we discuss how we practically compute
them. \varepsilon should be chosen as not too small and a good value; suggested in [3] and [30]
is

\varepsilon = \varepsilon 1 median(\bfitC ),

where \varepsilon 1 = 0.01. In our case, for c(x, y) = h(d(x, y)) this value can be estimated from
the submatrix \bfitD m\times m. The choice of \lambda 0 depends on the desired sparsity s\lambda 0

of the
matrix \bfitS . Suppose we want s\lambda 0

= c0mn where 0 \leq c0 \leq 1. A practical approach is to
sort the elements of the submatrix \{ dij\} m\times m (O(m2 logm2) complexity) and to choose
\lambda 0 = h(a) where a is the \lfloor prm2\rfloor th element, and pr = c0

m
n (so that c0mn = n2pr).

Now we discuss the optimization process of the coefficients \bfitq = (q1, . . . , qm). Ideally,
we want \bfitq to be optimal in the sense of

\bfitq = argminq\in \BbbR m \| (cij  - \~cij(\bfitq ))1\leq i,j\leq n\| 22.

In practice, we want to use the distance values which we know. Given the values
\bfitD n\times n1

, for some m \leq n1 \leq n, we solve

(38) \bfitq = argminq\in \BbbR m \| (cij  - \~cij(\bfitq ))1\leq i\leq n, 1\leq j\leq n1
\| 22.

First, we note that for \bfitq = \alpha 1 this problem takes the form

(39) \alpha = argmin\alpha \in \BbbR \| (cij  - \~cij(1) - \varepsilon ln\alpha )1\leq i\leq n, 1\leq j\leq n1\| 22.

The solution of (39) is given by

(40) \alpha = exp

\left(  1

\varepsilon n1n

\sum 
1\leq i\leq n, 1\leq j\leq n1

(cij  - \~cij(1))

\right)  .

Then we can solve (38) using optimization with \bfitq 0 = \alpha 1 as an initial value. We use
n1 = 2m. This requires the calculation of additional distances and can be done using
Algorithm 3 with n1 instead of m and using as Zm the first m points of Zn1

. Another
approach is to use \bfitq = \alpha 1 with

(41) \alpha = exp

\left(  1

\varepsilon mn

\sum 
1\leq i\leq n, 1\leq j\leq m

(cij  - \~cij(1))

\right)  .

This gives the decomposition

(42) \bfitH ( \~\bfitC , \varepsilon ) = \alpha \bfitR \bfitR t + \bfitS .

As we will see in section A.1 (Figure 9), the improvement using an optimized value
of \bfitq is not significant. Hence it is sufficient to use (41). This decomposition can be
calculated using the three parameters \varepsilon 1, m, and c0. Algorithm 6 summarizes the
calculation of the decomposition.

6.2. Complexity analysis of the algorithm. For 2-dimensional manifolds,
the total complexity of computing the decomposition is O(nm log n). The calculation
of \bfitD n\times m (using fast marching) takes O(nm log n). The computation of \varepsilon and \lambda 0 takes
O(m logm). Since the sparsity of \bfitS is c0mn for 0 \leq c0 \leq 1, each set

Pi := \{ dij | dij < \lambda 0, 1 \leq i, j \leq n\} 

has approximately m elements; hence the calculation of \^\bfitD n\times n (using fast marching)
takes approximately O(nm logm), and the total decomposition takes O(mn log n),
instead of O(n2 log n) in the full matrix case.
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Algorithm 6 Computation of the decomposition (42) for c(x, y) = h(d(x, y)).

1: function compute-decomposition(Xn,m, \varepsilon 1, c0)
2: \bfitD n\times m \leftarrow DISTANCE-CALCULATION(Xn,m)
3: [a1, . . . , am2 ]\leftarrow Sort(\bfitD m\times m)
4: // Compute the median value
5: \varepsilon \leftarrow \varepsilon 1h(a\lfloor m2/2\rfloor )
6: // Compute the value of \lambda 0

7: \lambda 0 \leftarrow h(a\lfloor c0m3/n\rfloor )

8: Compute \^\bfitD n\times n using \lambda 0

9: for 1 \leq i \leq n, 1 \leq j \leq m do
10: rij \leftarrow exp( - h1(dij)/\varepsilon )

11: \alpha \leftarrow exp
\Bigl( 

1
\varepsilon mn

\sum 
1\leq i\leq n, 1\leq j\leq m (h(dij) + \varepsilon ln

\sum m
k=1 rikrjk)

\Bigr) 
12: \bfitS \leftarrow 0n\times n

13: for \^dij \not = 0 do

14: sij \leftarrow 
\Bigl( 
exp ( - h( \^dij)/\varepsilon ) - \alpha 

\sum m
k=1 rikrjk

\Bigr) 
return \bfitR ,\bfitS , \alpha 

7. Experiments. In this section we compare the following approaches to ap-
proximate the optimal transport distance W\bfitC :

\bullet Solve the discretization (2) of the original optimal transport problem, as a
linear program.

\bullet Bregman projections with a full distance-based kernel [3, 10].
\bullet Bregman projections with a low-rank kernel using Algorithm 5 with (36).
\bullet Convolutional Wasserstein distance [30]. This approach is valid for d2 cost
function.

\bullet Fast EMD (the method from [22]). This approach is valid for c(x, y) =
\| x - y\| 1 or c(x, y) = \| x - y\| 2 on 2-dimensional grids.

Both Bregman projections algorithms are implemented in MATLAB and were run
with tolerance 10 - 7. We use the notion \varepsilon = \varepsilon 1 median(\bfitC ). The linear program is
solved using state-of-the-art parallel optimization software MOSEK [24]. All tests
were conducted on a 3.3 GHz i5 Intel CPU with 23.5 GB RAM. The GPU tests were
conducted on Nvidia GeForce GTX 960 GPU with 4GB of device memory.

7.1. Optimal transport distance test. In the following test we use an 80\times 80
grid and the measures shown in Figure 1.

Fig. 1. The measures used are uniform and support = black pixels.

We test the algorithm with the cost functions c(x, y) = \| x  - y\| p, where p =
1, 1.5, 2, 2.5 and \varepsilon 1 = 0.01, 0.02, 0.1. We use m = 200 and c0 = 0.9. Given an optimal
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Table 1
(Top) Comparison of the Bregman projections results and the results of the low-rank version

of the algorithm (16). (Bottom) The linear programming results.

V \~\bfitC V\bfitC t \~\bfitC t\bfitC 
\varepsilon 1 = 0.01, p = 1 7.5506 7.4881 2.1311s 19.5672s
\varepsilon 1 = 0.02, p = 1 7.8877 7.8736 0.8146s 6.4046s
\varepsilon 1 = 0.1, p = 1 11.0979 11.4922 0.1007s 0.8544s

\varepsilon 1 = 0.01, p = 1.5 25.0549 24.9636 1.3127s 10.0903s
\varepsilon 1 = 0.02, p = 1.5 27.4237 27.5490 0.5636s 4.8962s
\varepsilon 1 = 0.1, p = 1.5 47.0038 47.3090 0.1023s 0.9417s
\varepsilon 1 = 0.01, p = 2 88.7902 87.7704 0.9227s 7.2519s
\varepsilon 1 = 0.02, p = 2 104.3581 103.9571 0.4561s 3.3858s
\varepsilon 1 = 0.1, p = 2 213.5207 213.1064 0.0867s 0.7878s

\varepsilon 1 = 0.01, p = 2.5 318.1702 335.2035 0.8668s 5.5313s
\varepsilon 1 = 0.02, p = 2.5 441.3424 429.4529 0.3161s 2.9220s
\varepsilon 1 = 0.1, p = 2.5 994.5078 1029.5 0.087s 0.8432s

V\bfitC (\bfitpi ) Time
Linear programming, p = 1 7.22 752.71s
Linear programming, p = 1.5 22.41 814.82s
Linear programming, p = 2 70.82 941.75s
Linear programming, p = 2.5 228.68 855.94s

plan \bfitpi for the problem (4), we define

(43) V\bfitC :=
\sum 

1\leq i,j\leq n

aiajcij\pi ij , \bfitpi = argmin\bfitpi W\bfitC (\bfitpi ).

In Table 1, we compare the optimal transport values V\bfitC (\bfitpi ) for the full kernel and
V \~\bfitC (\bfitpi ) for the low-rank approximation. For convenience we use ai = 1, i = 1, . . . , n.

7.2. 2-dimensional barycenter test.

7.2.1. Thresholding test. In the following test we compute the barycenter of
the following measures (see Figure 2), defined on a 140 \times 140 grid. We test the
algorithm for p = 2, m = 1000, \varepsilon 1 = 0.01, and different c0 values.

Fig. 2. The measures used in the barycenter test.

Table 2
Execution time on CPU and GPU.

Time CPU Time GPU fCPU fGPU Accuracy (L2 norm)
Low-rank with c0 = 0 3.65s 0.52s 7.82 8.25 4.62e-04
Low-rank with c0 = 0.5 5.21s 0.67s 5.48 6.4 2.73e-04
Low-rank with c0 = 0.9 6.57s 0.799s 4.347 5.37 1.78e-04

Full-rank 28.56s 4.29s 1 1 0

The execution time is given in Table 2, where fCPU and fGPU are the acceleration
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A3414 EVGENY TENETOV, GERSHON WOLANSKY, AND RON KIMMEL

factors on CPU and GPU, respectively. The accuracy is the L2 error between the low-
rank barycenter and the full kernel barycenter. The accuracy is given by

(44) \| (\bfitp fullrank  - \bfitp lowrank)\odot \bfita \| 2.

We conclude that our approximation is faster than Bregman projections with full
kernel. In addition, we see from Table 2 and Figure 3 that the sparse \bfitS matrix can
improve the accuracy, at a computational price, but still with substantial acceleration.

Fig. 3. Left to right: Low-rank barycenters with c0 = 0, c0 = 0.5, and c0 = 0.9 and the full
kernel barycenter.

7.2.2. 4 figures barycenter test. In Figures 4, 5, and 6 we compute barycen-
ters between 4 figures (140\times 140 images) for p = 1, 2, 2.5, c0 = 0.9, m = 1000.

Fig. 4. Left: Low-rank with p = 1; average time GPU 5.5789. Right: Full kernel with p = 1;
average time 24.6366.
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FAST ENTROPIC REGULARIZED OPTIMAL TRANSPORT A3415

Fig. 5. Left: Low-rank with p = 2; average time GPU 3.0836. Right: Full kernel with p = 2;
average time 13.2927.

Fig. 6. Left: Low-rank with p = 2.5; average time GPU 2.7209. Right: Full kernel with p = 2.5;
average time 9.7155.

7.3. Triangular domain test. In this section we include tests on triangular
meshes. The following test is conducted on the cat1 mesh from the TOSCA database
[7]. Due to GPU memory limitations, the mesh was downsampled to 19269 vertices
and 38500 faces. In this test we calculate the barycenter of the two measures shown
in Figure 7. We use \varepsilon 1 = 0.01 and m = 1000.
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Table 3
Execution time on CPU and GPU.

Time CPU Time GPU Accuracy (L2 norm)
Low-rank with c0 = 0 18.7990s 2.4986s 0.0146
Low-rank with c0 = 0.9 40.3225s 4.6231s 0.0146

Full kernel 126.9557s 22.8325s 0

Fig. 7. Measure 1, measure 2, low-rank barycenter, and the full kernel barycenter.

It can be seen that thresholding is optional in this example since the transport
plan is not using small distances. Hence we have the same accuracy in both cases in
Table 3.

7.4. Comparison to other approaches. In this section we compare our ap-
proach to [22] in the L2 (p = 1) and L1 cases and to [30] in the case when p = 2.
These approaches do not require computing the cost function.

7.4.1. Convolutional Wasserstein distance. In this section we compare our
method to [30] for the d2 cost function. This method is based on the Varadhan formula

(45) d(x, y) = lim
t\rightarrow 0

( - 2t lnHt(x, y)),

where Ht(x, y) is the solution of the heat equation \partial f
\partial t = \nabla f . For t = \varepsilon /2 we obtain

the approximation

e - d(x,y)2/\varepsilon \approx H\varepsilon /2(x, y).

Solving the diffusion equation via an implicit Euler integration with time step t = \varepsilon /2,
we obtain

(46) \bfitw = Ht(\bfita \odot \bfitv ) \Leftarrow \Rightarrow 
\biggl( 
\bfitD \bfita +

\varepsilon 

2
\bfitL 

\biggr) 
\bfitw = \bfita \odot \bfitv ,

where \bfitL \in \BbbR n\times n is the cotangent Laplacian. As stated in [9], this approximation is
not accurate, and the authors suggest an improvement.

In the following test, we use similar measures to those in section 7.3 in the down-
sampled cat mesh (6000 vertices and 12000 faces). We use \varepsilon 1 = 0.01, m = 300, and
c0 = 0.9.
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We see in Figure 8 that the values of the optimal transport value diverge after
several iterations. This happens even if we use a very small \varepsilon 1 value. The second
example is using \varepsilon 1 = 0.0001 and is calculated using the Multiprecision Computing
Toolbox for MATLAB [1].

Fig. 8. Measure 1, measure 2, first Bergman projections iterations.

Table 4
Numerical results.

Time CPU Result
Full kernel Bregman 10.5672s 0.9520

Low-rank Bregman with \varepsilon 1 = 0.01 and c0 = 0.9 2.0789s 0.9599
Convolutional Wasserstein distance 0.4609s 0.1291

Linear programming 1962.06s 0.9427

From Table 4 we conclude that our approach, although it requires computing a
portion of the distance matrix, is comparable numerically to the real optimal transport
problem. The convolutional Wasserstein approach is faster, but it is not accurate.

It is worth noting that the authors in [30] use the convolutional Wasserstein ap-
proach successfully for the Wasserstein barycenter problem, using a modified barycen-
ter problem and introducing the ``entropic sharpening technique.""

7.4.2. Fast EMD. In this subsection we discuss the approach [22] for solving the
optimal transport problem. This approach works for the Euclidean distance c(x, y) =
\| x  - y\| and for the L1 distance c(x, y) = \| x  - y\| 1. Both cost functions can be
approximated using the semidiscrete approximation (the p = 1 case in (8) and (9)).
We call this approach Fast EMD.

Let L(v) be homogeneous of degree 1 and convex in v. For example, L(v) = \| v\| 2
yields the Euclidean distance and L(v) = \| v\| 1 the Manhattan distance. The idea is
that for a cost function of the form

c(x, y) = min

\biggl\{ \int 1

0

L( \.\gamma (t))dt; \gamma (0) = x, \gamma (1) = y, \gamma \in C1[0, 1]

\biggr\} 
the optimal transport problem is formulated as

minimize

\int 
\Omega 

L(m(x))dx

subject to \nabla m(x) + \rho 1(x) - \rho 0(x) = 0,

m(x) \cdot n(x) = 0 for all x \in \partial \Omega such that n(x) is normal to \partial \Omega .
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The authors concentrate on the 2-dimensional grid case. In the L1 case, the
discretization gives the problem

minimize\| \bfitm \| 1,1 subject to div(\bfitm ) + \rho 1  - \rho 0 = 0.

The algorithm to compute the optimal transport has the form

\bfitm k+1 = shrink(\bfitm k + \mu \nabla \Phi k),

\Phi k+1 = \Phi k + \tau (div(2\bfitm k+1  - \bfitm k) + \rho 1  - \rho 2).

Here \mu , \tau > 0 are the algorithm's parameters, \nabla , div are discrete gradient and di-
vergence operators, respectively, and the shrink operator is a function that depends
on the ground metric. A similar algorithm can be obtained in the L2 case. Under
appropriate conditions, it is proven in [22] that \bfitm k converge to the solution of the
optimal transport problem.

We use the same example as in section 7.1 downsampled to a 64 \times 64 grid on
[0, 1]\times [0, 1]. We use a MATLAB implementation and a CUDA C++ implementation
provided by the authors of [22]. The parameters of the algorithm are \tau = 1 and
\mu = 1.5747e - 05, \Delta x = 63, 1000 iterations. Since the Fast EMD algorithm gives an
exact optimal transport value, we compare only the value V\bfitC of the entropic regu-
larized algorithms ((43) with ai = 1 for all i). For the low-rank Bregman projections
algorithm we use m = 200, c0 = 0.9, \varepsilon 1 = 0.01, and tolerance 10 - 5.

Table 5
Comparison of the Bregman projections algorithm (full kernel and low-rank kernel) with the

Fast EMD approach.

Result Time CPU Time GPU
Fast EMD (L2) 0.0900 0.37898s 0.01932s

Bregman projections L2, low rank 0.09324 0.18235s 0.04224s
Bregman projections L2, full kernel 0.09235 1.27196s 0.19515s

Linear programming (L2) 0.090364 186.66s -
Fast EMD (L1) 0.1231 0.24666s 0.028720s

Bregman projections L1, low rank 0.125808 0.16454s 0.05473s
Bregman projections L1, full kernel 0.12596 0.97466s 0.05052s

Linear programming (L1) 0.12727 162.71s -

From Table 5 we see that the results are comparable to ours. The dynamical
approach has simple implementation, similarly to the Bregman projections algorithm,
and it also can be parallelized. The advantage of using Fast EMD is that this approach
does not require one to compute distances. The main disadvantage, as pointed in [22],
is the problem of choosing the correct \mu and \tau .

8. Conclusions. In this paper, we develop a method to accelerate the Bregman
projection algorithm for solving the entropic regularized optimal transport problem
and related problems on Riemannian manifolds. Our method is valid for a large family
of cost functions, including the dp cost functions where p \geq 1. We propose using a
low-rank matrix decomposition to approximate the matrix e - \bfitC /\varepsilon . This approximation
has two advantages. First, it requires the calculation of only a small portion of the
geodesic distances matrix. Second, it reduces the complexity of each iteration in the
Bregman projection algorithm.

We develop two decompositions which are based on the semidiscrete approxi-
mation. The first decomposition is obtained directly by smoothing the semidiscrete
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approximation. In the second decomposition we add parameters to the first decom-
position and optimize them to fit the known distances. In addition we calculate the
small distances explicitly and use thresholding to make the cost entries associated with
small distances more accurate. This improves the accuracy of the approximation at
the expense of additional preprocessing time.

Experimental results show that both approximations are substantially faster than
the original Bregman projection algorithm. While the second decomposition is more
accurate in the general case, the first decomposition can be used for problems in which
the transport plan does not use small distances (such as the case of two measures with
disjoint supports). Although we applied the decompositions only for accelerating the
computation of optimal transport distances and Wasserstein barycenters, they can be
used in other optimal transport related problems in the fields of image processing and
machine learning.

Appendix A. Approximation errors. In this appendix we compare the
approximation errors of the different decompositions considered in this paper (such
as (21) or (35)). First, we describe a method to estimate the approximation error.
A common way to do this (see [26]) is to use the average of the elementwise relative
errors,

(47) error\bfitC , \~\bfitC :=
1

n2

\sum 
1\leq i,j\leq n

e\bfitC , \~\bfitC 
i,j ,

where

(48) e\bfitC , \~\bfitC 
ij :=

\bigm| \bigm| \bigm| \bigm| cij  - \~cij
cij

\bigm| \bigm| \bigm| \bigm| , 1 \leq i, j \leq n.

We need to exclude the cases cij = 0 in (47) or to add \epsilon > 0 to the denominator
of (48). We use a more subtle method in order to better capture the quality of the
approximation. We divide the elements of \~\bfitC into disjoint equal cardinality subsets
and compute the average relative error in each subset. Given a set F \subset \{ cij\} 1\leq i,j\leq n

we define the average error on F ,

(49) f(F ) :=
1

| F | 
\sum 

cij\in F

e\bfitC , \~\bfitC 
i,j .

We define the equal-size subsets by

(50) Fi0 = \{ cij | ai0 - 1 < cij \leq ai0\} , 1 \leq i0 \leq l,

where

0 = a0 < a1 < \cdot \cdot \cdot < al = max
1\leq i,j\leq n

cij

are such that | Fi| = | Fj | , 1 \leq i, j \leq n. Then the error is represented as a vector of
errors on each subset:

(51) error\bfitC , \~\bfitC 
l := (F1, . . . , Fl).

We see that the elements such that cij = 0 are excluded by definition.
All the tests in this appendix are conducted for the duck mesh (Figure 9) and the

d2 cost function.
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A.1. Semidiscrete approximations. In the following figure we use this method-
ology to compare the errors of the semidiscrete approximation cZm

ij , the regularized

semidiscrete approximation cZm,\varepsilon 
ij (21), and the two versions (35), (42) of the opti-

mized semidiscrete approximation.

Fig. 9. Top left: The duck mesh. Top right: The relative errors of the low-rank approximation
(21) for different values of m. Bottom left: Comparison of the approximations \bfitR \bfitR t, \alpha \bfitR \bfitR t, and
\bfitR diag(\bfitq )\bfitR t, m = 500, \varepsilon 1 = 0.01 on the duck mesh. Bottom right: Comparison of the approxima-
tions with thresholding. The y-axis is logarithmic in these charts.

In Figure 10 we compare \lambda (m) with the estimated value in (18) (with a specific
C value) for different m values.

Fig. 10. Comparison between \lambda and the estimated value (18) on the duck mesh, C = 1\surd 
2
, and

dim(X) = 2.

A.2. The Nystrom low-rank decomposition. In this section we present
numerical experiments regarding the approximation of \bfitC = \{ d2ij\} and \bfitH (\bfitC , \varepsilon ) =
exp( - \bfitC /\varepsilon ), using the Nystrom method. It can be seen in Figure 11 that as \varepsilon 1 gets
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smaller the approximation becomes inaccurate at large distances. This prevents the
use of the Nystrom method in the Bregman projections algorithm, where \varepsilon 1 is required
to be very small; a typical choice is \varepsilon 1 = 0.01.

Fig. 11. Left: The relative errors of the Nystrom approximation of \bfitH (\bfitC , \varepsilon ) for \varepsilon 1 =
0.05, 0.1, 0.2. Right: Nystrom approximation of \bfitC .
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