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Abstract
Automatic estimation of skinning transformations is a popular way to deform a single reference shape into a new pose by
providing a small number of control parameters. We generalize this approach by efficiently enabling the use of multiple
exemplar shapes. Using a small set of representative natural poses, we propose to express an unseen appearance by a low-
dimensional linear subspace, specified by a redundant dictionary of weighted vertex positions. Minimizing a nonlinear
functional that regulates the example manifold, the suggested approach supports local-rigid deformations of articulated
objects, as well as nearly isometric embeddings of smooth shapes. A real-time nonrigid deformation system is demonstrated,
and a shape completion and partial registration framework is introduced. These applications can recover a target pose and
implicit inverse kinematics from a small number of examples and just a few vertex positions. The resulting reconstruction is
more accurate compared to alternative reduced deformable models.

Keywords Shape deformation · Geometric modeling · Skinning · Shape correspondence

1 Introduction

The construction of an efficient automatic procedure that
deforms one shape into another in a natural manner is a
fundamental and well-studied challenge in computer graph-
ics. Professional animators design deformable models for
manually editing facial expressions, controlling postures and
muscles of shapes, and creating sequences of gestures and
motions of animated objects. Such models also play a key
role in the field of shape analysis. For example, elastic surface
registration techniques try to iteratively warp given shapes so
as to establish an optimal alignment between them (Fig. 1).

A major challenge in automatic shape deformation is
preserving the expressiveness of the model while reducing
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its complexity. This can be accomplished by exploiting the
potential redundancy in naturalmotions. For instance, in non-
rigid articulated objects as hands, the bending of a single
finger mainly influences the movement of nearby skin. The
stiffness of the limbs restricts them to move freely and there-
fore the deformation of a shape as a whole can often be well
approximated as a blend of a small number of affine transfor-
mations.One such skeletal deformation technique, theLinear
Blend Skinning (LBS) [33], has been widely adopted by the
gaming and the film industries due to its simplicity and effi-
ciency.

More recently, Jacobson et al. [19] suggested to deform
a single shape by looking for transformations that minimize
the nonlinear As-Rigid-As-Possible (ARAP) energy [2,40].
This energy penalizes deviations from rigidity of the under-
lying structural skeleton. The optimization process alternates
between finding the minimal affine transformations and pro-
jecting them onto the group of rigid ones. The algorithm
converges after a few iterations and provides realistic defor-
mations with a low computational effort. The method was
designed for modifying a single reference shape. As such,
it does not effectively incorporate the nature of plausible
nonrigid deformations that can be well captured by a few
examples. Therefore, this method requires a manually tai-
lored pre-computation of biharmonically smooth blending
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Fig. 1 A shape (right) obtained by the fast blended transformations
method using ten positional constraints (red dots) and four reference
shapes (left). The original shape is shown in brown (middle) (Color
figure online)

functions, and relies on an initial pose of the shape that is usu-
ally selected as the previous frame in the motion sequence.

In many situations, while analyzing or synthesizing
shapes, neither manual input nor the temporal state of the
shape at the previous frame is available. In these circum-
stances, obtaining a natural initial pose for the nonlinear
optimization procedure becomes a challenge. Nevertheless,
in many of these events, static poses of the same shape might
be available, such as in [6]where several humanbodies in var-
ious postures were captured and reconstructed using range
scanners. In this paper, we present an efficient generaliza-
tion of the LBS model for the case where multiple exemplar
shapes are available. To that end, the proposed framework
uses the reference shapes to infer an expressive yet low-
dimensional model, which is computationally efficient and
produces natural looking poses. The proposed method con-
structs a dictionary that contains prototype signal atoms of
weighted vertex coordinates that effectively span the space of
deformations represented by the exemplar shapes.We refer to
[14], for applications of overcomplete dictionaries for sparse
and redundant data representations in other domains.

The proposed algorithm is mainly motivated by the
nonrigid 3D partial registration problem. This problem is
considered a key challenge in the field of shape analysis.
One of the most efficient approaches to solve this chal-
lenge is using deformation-driven correspondences [49]. A
good deformation method for this purpose should efficiently
produce plausible deformations that fit some known con-
straints. In our setting, we use several example shapes and a
few known vertex positions. Although some example-based
methods produce excellent deformations, in this context of
partial registration, they usually carry three major draw-
backs. First, most of these methods have high complexity.
Second, they depend strongly on a good initial shape align-
ment. Third, they require many examples for constructing a
model which plausibly captures various poses. The proposed
method tries to overcome these difficulties by using a redun-
dant dictionary that spans a linear deformation subspace. The
advantages of using a linear subspace are evident. Accelera-
tion in this case is well established using the ARAP energy

functional formulated in a low-dimensional subspace. Addi-
tionally, well-known regularization techniques, such as L1

and L2 penalty terms, can easily be deployed in conjunction
with the linear model to find a robust sparse representation
for the initial shape alignment. Moreover, the simplicity and
flexibility of using the linear representation enables the pro-
posed algorithm to refine this initial shape deformation by
gradually expanding the deformation space while simultane-
ously introducing more accurate model constraints.

The key contributions of the proposed approach include
the following features.

• Given a few reference shapes, we construct a redundant,
yet compact, dictionary ofweighted positional atoms that
spans a rich space of deformations. A new deformation is
represented as a linear combination of these atom signals.

• Stable transformations are established by using sparse
modeling over a limited subspace of deformations. The
suggested framework ensures the use of only a few dic-
tionary atoms relating a few given poses to a target one.

• TheAs-Rigid-As-Possible energy is reformulated to sup-
port multiple reference shapes and automatic global scale
detection. We introduce the average ARAP energy and
the minimal ARAP energy. While the former is used for
initialization of the deformation according to the con-
straints, the later is used for refining the deformation.

• Smooth deformations are realized by an additional bihar-
monic energy term that is computationally efficient to
minimize when the skinning weights are set to be the
eigenfunctions of the Laplace–Beltrami operator.

Todemonstrate the fast blended transformations approach,
animation sequences were generated given just a few refer-
ence shapes and a handful of point constraints that define
each target frame. Quantitative evaluation indicates that the
advantages of the proposed approach are fully realized when
plugged into a shape completion and registration application
that achieves low correspondence errors and deformation dis-
tortions.

2 Related Efforts

Example-based deformation techniques attempt to establish
a compact representation of shape deformations while trying
to satisfy desirable properties. Forming these representations
generally requires the processing of sets of poses, expres-
sions, or identities of the same class of shapes. To fulfill this
task, various methods have been proposed. Roughly speak-
ing, they all share the following taxonomy.

Displacement field interpolation This technique computes
the pointwise difference between each example shape and a
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reference one at a resting pose, see for example [26,29,39].
More recent methods include statistical [15] and rotational
regressions [45].

Deformation gradient Thesemethods interpolate the exam-
ple poses using the gradient fields of the coordinate functions
and construct the deformed surface by solving a Poisson
equation. In [42,48] the deformation is estimated for each tri-
angle of the given mesh. Example-based deformation gradi-
ents and its variants [7,17,25,34,38,50], like the Green strain
tensor, are also used for static or dynamic simulationof elastic
materials. For lowering the computational cost, Der et al. [12]
proposed to cluster triangles that are subject to a similar rigid
rotation with respect to a single reference shape. It allowed
reformulating the problem in terms of transformations of a
representative proxy point for each group of vertices.

Edge lengths and dihedral angles interpolation Inspired
by discrete shells [18], local properties were used for mesh
interpolation [47], that naturally fits with the discrete shell
energy for combined physics-based and example-driven
mesh deformations [16].

Transformation blending This approach describes the
deformation by a set of affine transformations that are
blended together to represent the deformed shape. In this
case, the example shapes are used to find the skinningweights
as well as the transformations by using nonlinear optimiza-
tion algorithms [21,23,27,28].

Linear subspace Similar in its spirit to the proposed
approach is Tycowicz et al. [44]. Their method computes
an example-based reduced linear model for representing
the high dimensional shape space using deformation energy
derivatives andKrylov sequences. However, their framework
and reduced linear subspace are specifically designed and
restricted to the nonlinear shape interpolation problem and
are not applicable to the problem of partial shape registration.
First, their energy functional is predetermined by the inter-
polation weights and does not naturally integrate additional
user-specified constraints. Second, unlike our method that
use a redundant dictionary and an L1 penalty, their method
does not use a sparsity promoting model and therefore it is
very hard to initialize their deformation for applications such
as partial shape registration and shape completion.

The fast blended transformations (FBT) method is affili-
ated with the class of transformation blending inspired by
[19,46]. The deformation is performed by minimizing a
nonlinear energy functional over the linear subspace of skin-
ning transformations. Unlike previous efforts, we suggest
to simultaneously blend affine transformations of several
given poses of the same subject. The proposed framework
allows us to learn the example manifold without estimating
the explicit connections between the reference shapes. With
these reference shapes, we construct an overcomplete dic-

tionary that spans the space of allowed deformations up to a
small tolerance. The nonlinear energy functional guides the
transformations to achieve a physically plausible deforma-
tion. Projecting a small set of constraints to the manifold of
the examples, which is assumed to be of low dimensionality,
we obtain an efficient and accurate blending procedure for
real-time animation and for the partial shape registration task.

3 Notations and Problem Formulation

3.1 Linear Blend Skinning

Here, we follow the blend skinning model as described by
Jacobson et al. in [19]. Let v1, . . . , vn ∈ R

d (d = 3) be
the vertex positions of the input reference mesh M with f
triangles and n vertices. Denote the deformed vertex posi-
tions of a new target mesh M̃ by ṽ1, . . . , ṽn ∈ R

d . The
target vertex positions relate to the given reference vertices
through m affine transformation matrices M j ∈ R

d×(d+1),
j = {1, . . . ,m} and real-valued skinning weight functions
w j , that measure the influence of each affine transformation
on each point of the shape. For a discrete mesh, we denote
w j (vi ) by w j,i , and readily have

ṽi =
m∑

j=1

w j,iM j

(
vi
1

)
. (1)

Equation (1) can be rewritten in a matrix form as

Ṽ = DLBSTLBS,

where Ṽ ∈ R
n×d is the matrix whose rows are the positions

of the target vertices, and the matrices TLBS ∈ R
(d+1)m×d

and DLBS ∈ R
n×(d+1)m are created by stacking the skinning

parameters in the following fashion

DLBS =
⎛

⎜⎝
w1,1

(
vT1 , 1

)
. . . wm,1

(
vT1 , 1

)

...
. . .

...

w1,n
(
vTn , 1

)
. . . wm,n

(
vTn , 1

)

⎞

⎟⎠ ,

TLBS = (
M1 . . . Mm

)T
.

3.2 Fast Automatic Skinning Transformations

The most general form of representing the position of a
new target vertex by a linear transformation of some dic-
tionary (such as the linear blend skinning formulation) can
be expressed by

Ṽ = DT,

123



Journal of Mathematical Imaging and Vision

whereD ∈ R
n×b is a dictionary of size b (in case of standard

linear blend skinning b = (d + 1)m), and T ∈ R
b×d is

a matrix of unknown coefficients that represents the vertex
positions in terms of the dictionary.

Jacobson et al. [19] introduced a method for automati-
cally finding the skinning transformations T by minimizing
the ARAP energy [11,32,40] between the reference shape
M and the target one M̃. Let Ṽ ∈ R

n×d be the matrix
whose rows are the positions of the reference vertices, and
let R1,R2, . . . ,Rr ∈ SO(d) and E1, E2, . . . , Er be r local
rotations and their corresponding edge sets, respectively. The
ARAP energy, which measures local deviation from rigidity,
can be expressed as

E(V, Ṽ) = 1

2

r∑

k=1

∑

(i, j)∈Ek
ci jk‖(ṽi − ṽ j ) − Rk(vi − v j )‖2,

where ci jk ∈ R are the cotangent weighting coefficients [36].
As indicated in [19], it is unnecessary to estimate the local
rotation for each edge separately since vertices undergoing
similar deformations can be clustered together into a small
number of rotation clusters.

The ARAP energy can be expressed in a simple matrix
form. Denote Ak ∈ R

n×|Ek | as the directed incidence matrix
corresponding to edges Ek , and let Ck ∈ R|Ek |×|Ek | be a
diagonal matrix with weights ci jk . Then, the ARAP energy
can be written in matrix form as

2E(V, Ṽ) = tr(ṼTLṼ) − 2tr(RKṼ) + tr(VTLV),

where R = (R1, . . . ,Rr ), K ∈ R
dr×n stacks the matrices

VTAkCkAT
k , and L ∈ R

n×n is the cotangent-weights Lapla-
cian up to a constant scale factor. Plugging in the linear blend
skinning formula Ṽ = DT, we obtain

2E(V, Ṽ) = tr(TTL̃T) − 2tr(RK̃T) + tr(VTLV), (2)

where L̃ = DTLD and K̃ = KD. For more details about the
above derivation, we refer the reader to [19].

4 Example-Based Blended Transformations

Overview We now extend the framework described in the
previous section for the casewheremultiple poses of the same
shape are available. We begin by expressing the deformed
shape as a combination of atoms from a dictionary that is con-
structed from the linear blend skinning matrices of the given
examples. Then, we provide the details of various energy
terms to be minimized with respect to the unknown trans-
formations T using the proposed model. Next, we describe
the nonlinear optimization process and its initialization and

conclude by discussing optional extensions that can be incor-
porated into the algorithm.

4.1 Dictionary Construction

Supposeweare givenq referencemeshesM1,M2, . . . ,Mq .
Let v�

1, . . . , v
�
n ∈ R

d be the positions of vertices belonging
to the reference mesh M�, � = 1, . . . , q, and let V1,V2,

. . . ,Vq ∈ R
n×d be the matrices whose rows denote the posi-

tions of the corresponding vertices. We are also given some
h linear constraints represented by the matrix H ∈ R

h×n ,
such that HṼ ≈ Y, where Y ∈ R

h×d is the value of these
constraints for the target shape. We can define the linear con-
straints to be simply the coordinates of points on the mesh
or use more refined measures such as the Laplacian coordi-
nates [1,31], or a weighted average of some vertex positions,
to constrain our nonrigid blended shape deformation. Using
this setup, we are interested in finding the positions of the
target vertices as a result of a smooth transformation of the
inputmeshes such that it approximately preserves local rigid-
ity and satisfies the linear constraints up to a small error.
Example-based dictionary Given m real-valued weight
functions w j , j = 1, . . . ,m, we propose the example-based
representation of the positions of the target vertices to be
a combination of the linear blend skinning deformations of
each given reference mesh

ṽi =
q∑

�=1

ṽ�
i ,

where

ṽ�
i =

m∑

j=1

w j,iM�
j

(
v�
i
1

)
. (3)

We can explicitly write the new vertex positions as

ṽi =
q∑

�=1

m∑

j=1

w j,iM�
j

(
v�
i
1

)

=
q∑

�=1

m∑

j=1

w j,iM̂�
jv

�
i +

m∑

j=1

q∑

�=1

w j,iM̄�
j , (4)

where M̂�
j ∈ R

d×d and M̄�
j ∈ R

d×1 are sub-matrices ofM�
j ,

such that M�
j =

(
M̂�

j , M̄
�
j

)
. This formula can be equiva-

lently expressed in the standard matrix form by

Ṽ = DT,

where D ∈ R
n×(1+qd)m is the proposed dictionary of size

b = (1+qd)m, thatmultiplies the examples’ vertex positions
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v�
i with the vertex weights w j (vi ), and T ∈ R

(1+qd)m×d

stacks the matrices M̂m
j and M̄m

j in the following way

D =
(
D̄, D̂1 . . . D̂q

)
,

T =
(
T̄T, T̂T

1 · · · T̂T
q

)T
,

where

D̂� =

⎛

⎜⎜⎝

w1,1v�
1
T

. . . wm,1v�
1
T

...
. . .

...

w1,nv�
n
T

. . . wm,nv�
n
T

⎞

⎟⎟⎠ ,

T̂� =
(
M̂�

1 · · · M̂�
m

)T
,

and

D̄ =
⎛

⎜⎝
w1,1 . . . wm,1

...
. . .

...

w1,n . . . wm,n

⎞

⎟⎠ ,

T̄ =
( q∑

�=1
M̄�

1 · · ·
q∑

�=1
M̄�

m

)T

.

Weighting functionsThere aremanyways to chooseweight-
ing functions. One is to consider the weights of bones like
in the standard linear blend skinning model. In that case,
we name the constructed dictionary as the example-based
skeleton dictionary. When there is no significant underlying
skeletal structure, we suggest to use the first m eigenfunc-
tions of the Laplace–Beltrami operator (LBO) [8,13]. This
choice of a dictionary is useful, for example, when han-
dling facial expressions, for analyzing internal organs in
volumetric medical imaging applications, or for deforming
nonrigid objects such as an octopus. The eigendecomposi-
tion of the LBO consists of non-negative eigenvalues 0 =
λ0 < λ1 < · · · < λi < · · · , with corresponding eigen-
functions � ≡ {φ0, φ1, . . . , φi , . . .}, that can be considered
as an orthonormal basis. We refer to this dictionary as the
example-based LBO dictionary.

4.2 Nonlinear Energy Terms

Linear constraints The energy of the h linear constraints
can be calculated by

2Elc(Ṽ) =
∥∥∥HṼ − Y

∥∥∥
2

2
= ‖HDT − Y‖22 = ‖XT − Y‖22

= tr(TTXTXT) − 2tr(YTXT) + tr(YTY), (5)

where X = HD.
Smoothness energyLet vi,k, k ∈ {1, . . . , d} be the kth coor-
dinate of the vertex position vi . Notice from Eq. (4), that the

amount of influence of v�
i,k on ṽi,k̃ is some linear combina-

tion of w j (vi ), j = 1, . . . ,m. Following the same reasoning
as in [20], we search for a smooth variation of this influ-
ence, for example, one that minimizes the Laplacian energy
1

2

∫
M �(·)2da of this linear combination, where da is an

area element on the surfaceM of our shape. For the special
case where the weights are the LBO eigenfunctions, the sum
of all smoothness energy terms can be expressed as

Esm =1

2
tr(TT�T), (6)

where � is a diagonal matrix. The values of the diagonal are
the squares of the eigenvalues of the respective eigenfunc-
tions. Thus, in this case, the smoothness energy amounts
to a simple quadratic regularization term. Note that when
the weighting functions are chosen in a different way, the
smoothness energy expression is a bit more involved.
Scaling In some applications, there is a scale difference
between the example shapes and the linear constraints. To
compensate for such a discrepancy, we introduce a scaling
factor α into the ARAP energy. It reflects the ratio between
the reference shape and the deformed one, in the following
manner,

Esc(V, Ṽ) =1

2

r∑

k=1

∑

(i, j)∈Ek
ci jk

∥∥(ṽi − ṽ j ) − αRk(vi − v j )
∥∥2.

(7)

Hence, the ARAP energy with the global scale factor reads

2Esc(V, Ṽ) = tr(TTL̃T) − 2αtr(RK̃T) + α2tr(VTLV). (8)

Average ARAP energy This example-based energy func-
tional is defined by taking the average between all as-rigid-
as-possible energies, namely,

Eav = 1

q

q∑

�=1

Esc(V�, Ṽ), (9)

with the additional linear constraints and the smoothness
energies,

Etotal(Ṽ) = Eav(Ṽ) + βlcElc(Ṽ) + βsmEsm(Ṽ), (10)

where βlc and βsm are some tuning parameters that control
the importance of the linear constraints and the smoothness
term. We can simplify this expression, plugging in Eqs. (6),
(5) and (8)

123



Journal of Mathematical Imaging and Vision

2Etotal(Ṽ) = tr(TTL̃T)

− 1

q

q∑

�=1

(2αtr(R�K̃�T) + α2tr(VT
�LV�))

+ βlctr(TTXTXT) − 2βlctr(YTXT)

+ βlctr(YTY) + βsmtr(TT�T). (11)

Minimal ARAP energy Theminimal ARAP energy is equal
to the minimal ARAP energy between the deformed mesh
and each of the input meshes separately,

Emn(Ṽ) =min
�

E�(Ṽ,T�), (12)

where

E�(Ṽ,T�) =Esc(V�, Ṽ) + βlcElc(Ṽ) + βsmEsm(Ṽ). (13)

This can be expressed as

2E�(Ṽ,T�) = tr(TT
� L̃T�) − 2α�tr(R�K̃�T�)

+ α2
� tr(V

T
�LV�) + βlctr(TT

�X
TXT�)

− 2βlctr(YTXT�) + βlctr(YTY)

+ βsmtr(TT
� �T�). (14)

Discussion Example-based ARAP energy can be defined by
assigning positive weights to each of the reference shapes
(such that the weights sum to one) [44] and minimize the
weighted sum of the ARAP energies over all admissible
deformations andweights.Avariationof this approachwould
be to calculate the weighted average across the shapes with
smoothly varying weights per edge. In both cases, the opti-
mization problem is deeply nonlinear; it is difficult to solve
and has a high computational cost.

Our approach is to add a sparsity constraint on the
weighted sum such that the weights are all zeros except for
the weight of a single reference shape which is equal to 1.
For solving this example-based energy, we break it down to
two consecutive optimization problems. Initially,we lack any
knowledge for which reference shape the weight should be 1,
so we start by setting the example-based ARAP energy with
fixed uniform weights, omitting the sparsity constraint. Only
after we find the deformation that minimizes this average
energy, we insert the sparsity constraint.

As shape deformation is an ill-posed problem, various
articulations can satisfy the pointwise constraints. In the case
where the positional constraints are far from any of the exam-
ples, the average ARAP energy penalizes deviation from all
of the examples equally. Thus, it produces an adequate ini-
tial estimation of a desired deformation. However, given a
prior knowledge about the shape articulation state, such as
a previous frame, the average ARAP energy might favor a

configuration of skeletal limbs which is far from the refer-
ence one and perhaps less expressive. As noted above, in our
implementation, we use the average ARAP energy for ini-
tialization and then switch to minimizing the minimal ARAP
energy.

4.3 Optimization

To minimize the energy Etotal(Ṽ) and find the local rotations
R�, � = 1, . . . , q, the global scale factor α and the transfor-
mations T, we follow the local-global approach of [40] with
an additional step to find the global scale α. First, we fix T
and α and solve forR� (local step). Then, we find α by fixing
T, R� (scale step). Finally, we fix R� and α, and solve for T
(global step).

Local step For fixed α and T, maximizing tr(R�S�),
� = 1, . . . , q, where S� = K̃�T is constant, amounts to
maximizing tr(R�,kS�,k), k = 1, . . . , r , which is obtained by
taking R�,k = �T

�,k�
T
�,k , where

S�,k = ��,k��,k��,k

is given by the singular value decomposition of S�,k .
Scale step For fixed T and R�, � = 1, . . . , q, we can

differentiate by α

∂Etotal

∂α
= − 1

q

q∑

�=1

(tr(R�K̃�T)) + αtr
(
VT

�LV�

)
. (15)

Setting the derivative to zero, we get

α = 1

q

q∑

�=1

(tr(R�K̃�T))/tr(VT
�LV�). (16)

Global step For fixed α and R�, � = 1, . . . , q, we differ-
entiate Etotal

∂Etotal

∂T
= 1

q

q∑

�=1

(L̃T − αK̃T
� R

T
� )

+ βlc(XTXT − XTY) + βsm�T

= (L̃ + βlcXTX + βsm�)T − βlcXTY

− α

q

q∑

�=1

K̃T
� R

T
� . (17)

Setting these derivatives to zero, we obtain

(L̃ + βlcXTX + βsm�)T = βlcXTY + α

q

q∑

�=1

K̃T
� R

T
� . (18)
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Algorithm 1 : FBT1 (Average ARAP Energy)

procedure FBT1(Y,T0)
T ← T0
for i = 1 to #iterations do

for � = 1 to q do
S� ← K̃ �T
for k = 1 to r do

S�,k ← S�[3k − 2 : 3k, 1 : 3]
��,k ,� ← SVD(S�,k)

R�,k ← �T
�,k�

T
�,k

R�[3k − 2 : 3k, 1 : 3] ← R�,k

α = 1

q

∑q
�=1(tr(R� K̃ �T))/tr(VT

�LV�)

T = �−1
(
βlcXTY + α

q

∑q
�=1 K̃

T
�R

T
�

)

return T

Let us define� = (L̃+βlcXTX+βsm�). Then, we can solve
for T by precomputing the Cholesky factorization of �

T = �−1

(
βlcXTY + α

q

q∑

�=1

K̃T
� R

T
�

)
. (19)

As for optimizing the minimal ARAP energy Emn(Ṽ), in
the local step we find each set of rotationsR� by maximizing
tr(R�S�), where S� = K̃�T�. We then find the global scale
factor relative to each reference shape

α� =tr(R�K̃�T�)/tr(VT
�LV�).

In the global step, we calculate the respective blended trans-
formations T�, by

T� =�−1(βlcXTY + α�K̃T
� R

T
�

)
.

Then, we calculate the minimal energy E�(Ṽ,T�), � =
1, . . . , q of Eq. (13). Finally, we minimize Eq. (12) by com-
paring all values of E� and selecting the transformation T�

that gives the minimal value.
The pseudo-code shown in Algorithms 1 and 2 describes

the optimization procedures for finding the blended transfor-
mations using the average ARAP energy and the minimal
ARAP energy, respectively.
Initial transformations For common situations where we
cannot rely on an initial pose of the shape, we face a diffi-
cult challenge, since optimizing simultaneously for both the
rotation matrices and the transformations is a non-convex
optimization problem that is hard to solve. The approach
we take is to apply the first global step without the rotation
matrices. Hence, the energy that we need to minimize is

2Einit(Ṽ) = βlc ‖XT − Y‖2 + βsmTT�T

= βlctr(TTXTXT) − 2βlctr(YTXT)

+ βlctr(YTY) + βsmtr(TT�T). (20)

Algorithm 2 : FBT2 (Minimal ARAP Energy)

procedure FBT2(Y,T0)
for � = 1 to q do

T� ← T0

for i = 1 to #iterations do
for � = 1 to q do

S� ← K̃ �T�

for k = 1 to r do
S�,k ← S�[3k − 2 : 3k, 1 : 3]
��,k ,� ← SVD(S�,k)

R�,k ← �T
�,k�

T
�,k

R�[3k − 2 : 3k, 1 : 3] ← R�,k

α� = tr(R� K̃ �T‘)/tr(VT
�LV�)

T� = �−1
(
βlcXTY + α� K̃

T
�R

T
�

)

for � = 1 to q do
Calculate E� using Eq. (14).

�
 ← argmin�E�

T = T�


return T

We readily have,

∂Einit

∂T
= βlc(XTXT − XTY) + βsm�T

= (βlcXTX + βsm�)T − βlcXTY. (21)

Setting these derivatives to zero, we obtain

T =(βlcXTX + βsm�)−1(βlcXTY). (22)

Sparse initial transformations A more robust initial trans-
formation can be achieved by adding an L1 penalty to the
energy given in Eq. (20)

Esp(Ṽ) = Einit(Ṽ) + βsp ‖T‖L1 . (23)

The effect of this additional penalty is that it makes the initial
transformations sparse, which results in a deformation with
less artifacts. The parameter βsp controls the amount of spar-
sity in the initial solution of T. Equation (23) can be solved
efficiently using the elastic net regression method [51].

4.4 Extensions

Updating constraints Itmayhappen that someof theh linear
constraints are unavailable due to noise or occlusions. This
can be easily solved by deleting the appropriate rows of X
and Y and efficiently updating the Cholesky factorization.
Dictionary reductionWhen the input meshes are similar to
each other, the proposed example-based dictionary becomes
redundant. The dictionary can be reduced considerably by
clustering similar dictionary atoms. For this purpose, we use
the k-medoids clustering algorithm [22]. The advantage of k-
medoids over k-means clustering is that each cluster center of
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the k-medoids procedure is represented by one of the original
dictionary atoms. Thismakes the appearance of the deformed
shape more plausible compared to using k-means clustering
for dimensionality reduction.
Change of dictionaries It is sometimes useful to work with
two different dictionaries. In that case, the representations of
themesh in these two subspaces can be converted from one to
the other in a simpleway. Supposewe are given the dictionar-
ies D1, D2 and a good approximation of the transformation
T1. We want to find a transformation T2 such that the defor-
mationD2T2 will be closest to deformationD1T1. That is, in
the L2 sense, wewant tominimize ‖D1T1 − D2T2‖22. There-
fore, the transformation T2 can easily be solved by applying
the least squares method

T2 =(DT
2D2)

−1DT
2D1T1. (24)

This is particularly useful when one wants to initialize
the transformations using a low-dimensional dictionary by
applying Eq. (23), and then change to a richer dictionary for
obtaining more refined transformations.

5 Experimental Results

Implementation Considerations In our implementation we
use m ≤ 15 eigenfunctions as the weighting functions for
the example-based LBO dictionary. To support natural artic-
ulated shapes deformation, we construct the example-based
skeleton dictionary. Its weights are generated using an auto-
matic example-based skinning software package [27]. These
skeleton weights are also used to define the rotation clusters.
After constructing the dictionary from our mesh examples,
we decrease the size of the dictionary using the k-medoids
clustering algorithm. This step typically reduces the size of
the dictionary in half.

The transformations are found in several steps. We begin
by estimating the sparse initial transformations using Eq.

(23). Typically, we start with m ≤ 4 eigenfunctions as the
weighting functions. Then, we apply a two-stage optimiza-
tion procedure. In the first step we minimize the average
ARAPenergy of Eq. (11). This energy, although robust, tends
to smooth out some of the details of the shape. Therefore, in
the second step we optimize the minimal ARAP energy of
Eq. (12) that effectively selects one reference pose which
seems to be closest to the target pose. Practically, we apply
one iteration of Algorithm 1, and one iteration of Algorithm
2. Then, we select the closest reference shape and continue to
calculate the ARAP energy for the selected reference shape
only. After a few iterations, we apply Eq. (24) and change to a
richer dictionary that can reflect finer details of the shape.We
construct this richer dictionary according to the properties of
the subject we want to deform. For articulated shapes, we use
the example-based skeleton dictionary and omit the smooth-
ness energy term. For non-articulated objects, we increase
the number of eigenfunctions used to construct the example-
based LBO dictionary. Totally, we iterate the local, scale and
global steps 10 times. The tuning parameters βlc and βsm are
kept fixed for all shapes.

The algorithm was implemented in MATLAB with some
optimizations in C++. We use the SVD routines provided by
McAdams et al. [35]. All the experiments were executed on
a 3.00 GHz Intel Core i7 machine with 32GB RAM. In Table
1 we give the settings for different mesh classes [9,41] and
typical performance of the algorithm. For these settings the
algorithm takes between 10 and 25ms.

Example-based dictionary The example-based dictionary
spans natural deformations of a given shape with a small
error. In Fig. 2 we show some examples of deformations
created using the example-based LBO dictionary with 15
eigenfunctions. The mesh parameters and number of exam-
ple shapes used are as in Table 1. Observe that there are no
noticeable artifacts in these deformations. We note that the
experiments indicate that the accuracy of the proposedmodel
increases with the number of example shapes. For each shape

Table 1 Model parameters and performance (in milliseconds)

Class Input mesh Model Performance

n f r b q 1-iter Full

Woman 45,659 91,208 30 178 5 1.3 16.7

Centaur 15,768 31,532 31 166 5 1.2 16.3

Wolf 4344 8684 14 82 2 0.7 10.3

Dog 25,290 50,528 25 136 4 1.0 13.9

Man 52,565 105,028 31 235 9 1.9 23.2

Cat 27,894 55,712 22 148 6 1.2 15.3

Hand 2224 4424 18 163 7 1.2 15.5

Horse 16,843 8431 26 139 4 1.1 14.7

The example-based deformation uses q example shapes, a dictionary of size b and r rotation clusters
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Fig. 2 Deformation using the example-based LBO dictionary. The left
portion of the figure shows the cat and centaur ground-truth target
shapes (colored in gray). On the right we show the near perfect represen-
tation of these target shapes by a linear combination of the dictionary’s

atoms. In this case, the weighting functions are the eigenfunctions of
the Laplace–Beltrami operator that correspond to the lowest 15 eigen-
values. The exemplar shapes that are used to extract the example-based
LBO dictionaries for representing the shapes are shown inside the box

Table 2 Example-based dictionary

q b Maximal Euclidean distortion Performance

LBO Skeleton 1-example 1-iter Full

1 94 2.18 3.59 2.39 0.72 9.6

2 139 1.97 2.50 2.10 0.82 11.7

3 184 1.82 2.16 1.95 0.90 13.3

4 218 1.72 1.89 1.88 0.99 14.8

5 258 1.63 1.78 1.83 1.05 17.1

6 293 1.56 1.68 1.77 1.15 18.2

7 339 1.52 1.60 1.71 1.33 21.6

8 382 1.51 1.50 1.65 1.47 23.8

Maximal Euclidean distortion (in percent) of the deformed shapes and performance (in milliseconds) as a function of the number of example shapes

in the database [5], we found the closest deformed shape in
the L2 sense. Let M∗, M̃ be the ground-truth mesh and
the deformed mesh, respectively, and let A∗ be the surface
area of M∗. We define the distortion between M∗ and M̃
as the maximal Euclidean distortion between corresponding
vertices of the two meshes normalized by the square root of
A∗.

distortion(M∗,M̃) = 1√A∗ max
i∈{1...n}

∥∥v∗
i − ṽi

∥∥
2,

where v∗
1, . . . , v

∗
n ∈ R

d and ṽ1, . . . , ṽn ∈ R
d are the

positions of the vertices belonging to the meshes M∗ and
M̃, respectively. Then, we average this maximal distortion
for all shapes. We observe that the mean maximal distor-
tion decreases as the number of example shapes grows. We
also compare the example-based LBO and the skeleton dic-
tionaries. Although quantitatively, the example-based LBO
dictionary seems to perform better, our experience suggests
that for shapes that have awell-defined skeleton, the example-
based skeleton dictionary is more pleasing to the eye, as it
captures the stiffness of the bones. Another conclusion is that

using many examples improves the deformation accuracy.
This can be seen by calculating the mean maximal distortion
of the deformed shape when the example-based LBO dictio-
nary is constructed using one shape only, while keeping the
number of dictionary atoms the same and without applying
the dictionary reduction step. Table 2 summarizes the results.

It is interesting to examine the runtime of the algorithm
compared to the dictionary size and the number of base
shapes. The last two columns of Table 2 present the itera-
tion time for solving the minimal ARAP energy (with the
skeleton dictionary) and the total runtime of the algorithm.
Notice, that while the number of example shapes increases
from 1 to 8, the time for one iteration grows only by a factor
of 2 and that the overall algorithm runtime increases by less
than 3 times.

Example-based deformation from few vertex positions
Perhaps, themost powerful application of our example-based
framework is finding a naturally deformed shape from just
a small number of vertex positions. In this scenario, we are
given the positions of just a fewpoints of a single depth image
of a target shape. Given prior example shapes in different
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Fig. 3 The four dog shapes are used as examples for our method (left).
The deformed shape (right) is found from the vertex positions (middle).
In this case the deformed shape is 50% larger than the reference ones

Fig. 4 Example-based deformed shapes from few vertex positions of a
hand shape. Scale factor is 70%

postures, we are able to faithfully and reliably reconstruct
the target shape. In Figs. 3 and 4, we show reconstructed dog
and hand shapes from a small number of feature points. In
these examples, the feature points were sampled in a scale
different than that of the example shapes by a factor of 1.5
(dog), and 0.7 (hand). For the dog shape we used four exam-
ple shapes, and for the hand shape we used seven example
shapes. Six feature points were automatically selected by the
farthest point sampling strategy. We used two dictionaries.
The first, for robustness, is comparatively small with 4 eigen-
fuctions as the weighting functions, and the second is more
expressive by using a skeletal based weighting functions.
Change of dictionaries is done with Eq. (24). We minimize
the average ARAP energy by Algorithm 1 and the minimal
ARAP energy with Algorithm 2.

Automatic feature point correspondence The example-
based deformation energy can be used to find correspondence
between the example shapes and the given feature points [49].
Because our method does not rely on good initialization nor
onmany input points, it is ideal for such a purpose. For exam-
ple, in Fig. 5, we are given four reference shapes and eight
feature points. In this demonstration, the correspondences of
the four feature points that belong to each leg (circled in blue)

are difficult to find.We can resolve this ambiguity by running
our optimization algorithm for all 24 options of permissible
correspondences, and calculate the example-based energy of
Eq. (12) for each. Then, the correspondence can be found
by choosing the option that gave the minimal deformation
energy.

Shape interpolation A nice application that can easily be
performed is to interpolate between two deformed shapes.
In our setting, we are given two instances of positional
constraints. From these constraints, we find two deformed
shapes and their rotations. Then, we are able to interpolate
between these rotations. To produce the new transformations,
we apply one additional global step. Figure 5 demonstrates
an interpolation between two deformed shapes of a gallop-
ing horse. Four example meshes are used as an input. In the
supplementary material, we add a video of a galloping horse
reconstructed from few feature points. The video frames are
interpolated by a factor of eight. Based on the proposed ideas,
we developed a computer program that automatically finds a
natural deformed shape from a user’s specified vertex loca-
tions and interpolates between the start pose and the final
deformation of the shape, creating a smooth and intuitive
motion of the shape. We provide a video that shows how this
software is used to make an animation sequence of a moving
person.

Nonrigid ICP The blended transformations can be plugged
into a simple nonrigid ICP framework [3,4,30]. Nonrigid
ICP registration alternates between finding pointwise cor-
respondences and deforming one shape to best fit the other.
Hence, we propose the following strategy. To find correspon-
dences compare the vertex positions of all points and their
surface normal vectors. In each iteration, we set new linear
constraints according to the vertex positions of the obtained
point-to-point correspondences and apply our blended trans-
formationsmethod towarp the nonrigid shapeswhile keeping
the deformed shape inside the example manifold. We note
that because the representation space is defined by the
blended transformations, it is sufficient tomatch only a subset
of points on the two shapes.

Shape completion and registration In many depth data
acquisition scenarios, the acquired data consists of an incom-
plete, occluded and disconnected parts of a shape [10,37,43].
Given some known feature points in those parts of the shape,
we want to find the deformation that best fits the partial data
and detect the pointwise mapping between acquired partial
shape and the reference shapes. To this end, we propose a
two-step procedure. In the first step, the feature points are
used to find an initial deformation. In the second step, the
deformation is refined by applying a nonrigid ICP proce-
dure. Since our deformation technique is able to find a good
approximation from just a few vertex positions, it is ideal to
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Fig. 5 Automatic feature point correspondence and shape interpola-
tion. The four examples of a horse (top middle) and the two sets of
vertex positions (top left, top right) were used to generate a sequence of
frames. Correspondence of the points on the four legs (circled in blue)
was detected by minimizing the example-based deformation energy

for all permissible correspondences. The example-based deformations
(bottom left and right) were then interpolated at four times the origi-
nal frame rate to produce the movie sequence (bottom) (Color figure
online)

Fig. 6 Nonrigid ICP. Left to right: The three exemplar shapes, the uncorrupted and complete target shape, the acquired partial shape with eight
known feature points (marked as red dots), the initial deformation using the feature points and the final deformation after applying the nonrigid ICP
(Color figure online)

be plugged into this procedure. Figure 6 shows an example of
partial data of a cat shape (middle) with some known feature
points (marked in red). The initial deformation was found by
applying the proposed Fast Blended Transformation algo-
rithm using the known feature points (second from left). The
final deformation was attained by applying the nonrigid ICP
algorithm in conjunction with our blended transformations

approach (left). Notice that the nonrigid ICP algorithm cor-
rected the tilt of the cat’s head.

We tested the proposed shape completion and registra-
tion procedure on shapes represented by triangulated meshes
from the TOSCA and FAUST datasets [6,9]. We performed
50 random experiments with different example and target
shapes. For each experiment, we were given eight reference
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Fig. 7 Evaluation of the shape completion and registration procedure applied to shapes from the TOSCA (top) and FAUST (bottom) datasets

shapes and one target shape for which some of its vertices
were removed. We assume that the remaining shape includes
some predefined parts that amount to more than 50% of the
shape’s area. We further assume that in these parts there are
a number of identifiable feature points and that around each
feature point, within a certain geodesic circle, no vertices
were removed. In the test we performed the number of fea-
ture points was set to eight and the radius of the geodesic
circle about each point was 15% of the square root of the
shape’s area.

We studied the performance of our approach with differ-
ent number of example shapes. In our implementation, we
set the initial linear constraints to be the weighted average of
the vertex positions in 10 different geodesic circles around
each feature point. The weights of each vertex were propor-
tional to its voronoi area. Using these linear constraints, we
found an initial guess of the deformation. Then, we employed

the nonrigid ICP algorithm for the rest of the mesh. We also
compared our results with the ones obtained by plugging
in the deformation method proposed by Der et al. [12] into
our shape completion procedure, using the same skeleton
structure. This method applies an example-based deforma-
tion gradient model on the problem and is computationally
comparable to the proposed blended transformations algo-
rithm.To achieve better results, we used amodified version of
the deformation gradientmodel that supports soft constraints.
Although the method of Der et al. is pretty basic, we believe
that it presentsmost of the drawbacks of other example-based
deformation techniques. For leveling the playing field, the
automatic skeleton structure was found in the same way for
all methods [27].

Figure 7 (left) compares the accuracy of the achieved
deformations. The distortion curves describe the percentage
of surface points falling within a relative distance from the
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target mesh. For each shape, the Euclidean distance between
corresponding vertices is normalized by the square root of
the shape’s area. As for the partial registration, the distor-
tion curves shown in Fig. 7 (right) describe the percentage
of correspondences that fall within a relative Euclidean dis-
tance from what is assumed to be their true locations, similar
to the protocol of [24]. We see that both the deformation
quality and the correspondence accuracy increase with the
number of reference shapes. This is expected, since as more
example poses are introduced, the example-based dictionary
better spans the space of natural deformations and we have
more poses to compare against. We also notice that for these
experiments, our deformation approach (even with one ref-
erence shape as in [19]) significantly outperforms the inverse
kinematics method of Der et al. [12]. This can be explained
by the fact that the reduced deformable model of Der et al. is

Table 3 List of mathematical symbols

Symbol Description

M, M̃ Reference and deformed meshes

d Dimension of the shape

n Number of vertices

f Number of faces

m Number of blending weight functions

q Number of example shapes

b Size of the dictionary

r Number of rotation clusters

v�
i i th vertex of the �th shape

w j,i j th blending weight function at the i th vertex

φ j j th eigenfunction of the Laplace–Beltrami operator

λ j j th eigenvalue of the Laplace–Beltrami operator

M�
j j th transformation of the �th shape

V,Ṽ Set of reference and deformed vertices

D Example-based dictionary

T Transformation matrix

R�
k kth rotation of the �th shape

Ek Set of vertices of the kth rotation cluster

ci jk Cotangent weight of the edge (i, j) in the kth rotation
cluster

H Constraint sampling matrix

Y Constraint matrix

� Diagonal eigenvalue matrix

Esm Smoothness term

Elc Linear constraint term

Esc Scaled as-rigid-as-possible term

Eav Averaged as-rigid-as-possible term

βlc Linear constraint weight

βsm Smoothness weight

α� Scaling parameter of the �th shape

based on explicit interpolation between the reference poses
using deformation gradients. Apparently, this model needs
a large number of reference poses to cover all the allowed
isometric transformations. In contrast, our model implicitly
finds the example manifold by a linear combination of the
dictionary atoms and the ARAP energy. Hence, it needs far
fewer examples. Also, our initial deformation using the spar-
sity promoting L1 penalty is better then using one of the
reference shapes as an initial guess. This is especially true
when the target shape is not similar to any of the reference
shapes (Table 3).

6 Discussion

We tested some deficient versions of our example-based
deformation framework. In Fig. 8, we show several exam-
ples of how these partial versions of the algorithm behave.
For comparison to the completemethod seeFigs. 3 and 4.We
notice that themost important part of the proposed framework
is the construction of the dictionary from multiple examples.
If only one example is used (A), as in [19], the deformation
algorithm fails when the shape has many degrees of freedom.

Although the method is robust and usually performs very
well, some limitations and failures in particular cases do exist.
Despite the usually pleasing to the eye deformations of the
proposed example-based approach, sometimes undesirable

Fig. 8 Deformed shapes constructed by omitting some of the steps in
the proposed example-based framework. A Restricting the example-
based dictionary to use one example. B Comparing the deformed shape
to only one reference shape.C Skipping the scale step, by setting α = 1
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artifacts might occur. This is the result of the collinearity
between different dictionary atoms. As for the performance
of the algorithm, the deformation can be produced in real time
but the algorithmcannot accommodate for video applications
with many objects that need to be simultaneously deformed.
This problem can be solved by using the proposed algorithm
only for objects for which a previous pose cannot be used for
the initialization of the current one. Another drawback is that
if the example shapes do not incorporate enough information
for extracting the right rotation clusters, then, the algorithm
will ultimately fail. Also, the current evaluation system does
not prevent self-intersections.

7 Conclusions

We applied the concept of overcomplete dictionary represen-
tation to the problem of shape deformation. The proposed
example-based deformation approach extends the subspace
of physically plausible deformations, while controlling the
smoothness of the reconstructed mesh. The blended transfor-
mations enable us to find a new pose from a small number of
known feature points without any additional information. It
is well suited for real-time applications as well as offline ani-
mation and analysis systems. In the future, we plan to apply
the proposed framework to various problems from the field
of shape understanding, such as gesture recognition, regis-
tration ofMRI images, and prior-based object reconstruction
from depth images.
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