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a b s t r a c t

A popular approach for finding the correspondence between two nonrigid shapes is to embed their two-

dimensional surfaces into some common Euclidean space, defining the comparison task as a problem of rigid

matching in that space. We propose to extend this line of thought and introduce a novel spectral embedding,

which exploits gradient fields for point to point matching. With this new embedding, a fully automatic system

for finding the correspondence between shapes is introduced. The method is demonstrated to accurately

recover the natural maps between nearly isometric surfaces and shown to achieve state-of-the-art results on

known shape matching benchmarks.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

The embedding of manifolds into some Euclidean space is often

sed for simplifying matching and comparison procedures [1–3]. A

seful property of such a target metric space is that corresponding

oints of different isometric shapes are mapped to nearby points in

he target space. In that case, the embedding of multiple isomet-

ic shapes into this common target space naturally leads to a dis-

ance between shapes that is easy to compute. Recently, attention has

een given to the spectral type of embedding that use the eigenval-

es and eigenfunctions of the Laplace–Beltrami operator of the shape

s a target space [2,4–6]. The fact that the Laplace–Beltrami oper-

tor is invariant to isometric deformations makes spectral embed-

ing well suited for comparing the same object in different poses and

xpressions.

Bérard et al. [1] exhibited the spectral embedding of Riemannian

anifolds by their heat kernel. They embedded manifolds into a com-

atible common target space (infinite Hilbert space) and used the

ausdorff distance in that space to define a metric between isome-

ry equivalent classes of Riemannian manifolds. It means, in partic-

lar, that two manifolds are at zero distance if and only if they are

sometric.

Rustamov [4] introduced the global point signature (GPS) of a point

n a shape. It encodes both the eigenvalues and the eigenfunctions of

he Laplace–Beltrami operator evaluated at that point. The GPS kernel

s, in essence, the integration over all scales of the heat kernel on the
∗ Corresponding author.
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urface [7]. The GPS kernel coincides with the Green’s function, and

n some sense measures the extent to which two points are geomet-

ically connected. He showed that the GPS embedding of a surface

ithout self-intersections has no self-intersections as well.

A different approach was introduced by Sun et al. [5] Their signa-

ure, called the heat kernel signature (HKS), is defined for every point

f the shape, by observing the heat kernel in that point over time.

he set of all HKS on a shape characterizes a given surface up to an

sometry under the condition that the eigenvalues of the Laplace–

eltrami operator are non-repeating. The invariance of the heat ker-

el signature to isometric deformations ensures that this signature

an be used to find correspondence between different poses of the

ame shape.

We propose a novel spectral embedding, using gradient fields

GFs) of the Laplace–Beltrami operator eigenfunctions, for correspon-

ence detection. We call the gradient fields of the eigenfunctions,

pectral gradient fields (or spectral GFs), and refer to the proposed em-

edding as the spectral gradient fields embedding. As Laplace–Beltrami

igenfunctions computed independently for different shapes are of-

en incompatible with each other, the aim of our construction is to

mbed the shapes using the eigenfunctions that correspond to the

owest eigenvalues. While existing methods [1,4] use the eigenfunc-

ions themselves to define the target space, we embed the shapes us-

ng pairs of eigenfunctions. Thereby, more information is being ex-

racted from the interaction between the relatively stable first few

igenfunctions.

.1. Contribution

We propose to find correspondence by embedding the shapes

sing a point-wise feature vector, which is based on the inner

nd external products between the GFs of pairs of eigenfunctions.

http://dx.doi.org/10.1016/j.cviu.2015.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.02.004&domain=pdf
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For each pair of eigenfunctions φi, φ j , that correspond to the eigen-

values λi, λ j , we calculate their respective gradient fields ∇φi,∇φ j ,

and compute the inner product 〈∇φi,∇φ j〉, and the external product

taken as the cross product in the normal direction ((∇φi × ∇φ j) · n).

Fig. 1 presents two eigenfunctions and their corresponding spec-

tral GFs inner and external products. Because the inner and exter-

nal products depend on the eigenfunctions and the gradient opera-

tor, they are relatively stable under isometric deformations, different

poses and articulations. These features enable us to extract fine geo-

metric information from a pair of eigenfunctions, as well as obtain-

ing the global structure of an object. For the human shape shown as

an example in Fig. 1, the inner product (third column and enlarged

figure) distinguishes between the neck’s left and right sides, while

the external product (fourth column) partitions the body’s front and

back.
t

φ1 φ3

Fig. 1. Inner and external products of the gradient fields of a pair of eigenfunctions φ1, φ3. T

and hands of the human shape. Notice in the forth column, that the difference between fron

features are stable under a natural pose of the articulated object. In all our figures, red and bl
The proposed feature vector defines an embedding of shapes

nto Euclidean space. To the best of our knowledge, this is the first

ime that spectral gradient fields are used for such an embedding

see Table 1 for a summary of existing embedding methods). We

rove that the proposed spectral gradient fields embedding is in-

ective. Therefore, it naturally induces a distance function between

ny two points on the surface. In this metric space a distance be-

ween shapes is relatively simple to compute. We define such a dis-

ance measure, which we refer to as the spectral gradient fields dis-

ance, in a way similar to the definition of the spectral embedding

istance defined by Bérard et al. [1]. In the classic spectral em-

edding, the target space is described by the eigenfunctions of the

aplace–Beltrami operator. In the proposed target space, we embed

he shapes into a much richer space, by using the conformal-based in-

er product between GFs of the eigenfunctions [8]. We describe the

roperties of the proposed distance measure, and prove that it is a

seudometric.

.2. Metric geometry

A metric space (X, dX) is a pair, where X is a set and dX : X × X →
≥0 is a well defined distance function, satisfying the symmetry

roperty dX(x1, x2) = dX(x2, x1), the identity property dX(x1, x2) =
iff x1 = x2, and the triangle inequality dX(x1, x3) ≤ dX(x1, x2) +

X(x2, x3) for any x1, x3 ∈ X . If the distance dX(x1, x2) between two

istinct points can be zero, then (X, dX) is called a pseudometric

pace.

Suppose A, B ∈ X are two closed subsets of a common bigger met-

ic space (X, dX), and we want to compare A to B in order to decide

hether they represent the same object or not, one might compute

he Hausdorff distance dH(A, B) between A and B
φ1,∇φ3 (∇φ1 ×∇φ3) · n

he inner product (third column, and enlarged figure) exhibits finer details of the neck

t and back is captured by the external product. In the last two rows we see that these

ue colors represent high and low values of scalar functions on the shapes.
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Table 1

The spectral gradient fields embedding and other known spectral embeddings and

signatures.

Spectral gradient fields (
√

λiλ j)
−1〈∇φi(x),∇φ j(x)〉,

(
√

λiλ j)
−1

((∇φi(x) × ∇φ j(x)) · n(x)); i, j ≥ 1

Spectral embedding [1] e−λi t φi(x); i ≥ 1, t > 0

Global point signature [4] (
√

λi)
−1

φi(x); i ≥ 1

Heat kernel signature [5]
∑

k exp( − λkt)φ2
k
(x); t > 0
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H(A, B) ≡ max

(
sup
a∈A

inf
b∈B

dX(a, b), sup
b∈B

inf
a∈A

dX(a, b)

)
,

nd designate two objects A, B ∈ X as being identical, if dH(A, B) = 0.

A different approach to compare objects, is to treat them as met-

ic spaces, and check if these metric spaces are isometric or not.

e say the metric spaces (X, dX) and (Y, dY ) are isometric when

here exists a bijective mapping ϕ : X → Y such that dX(x1, x2) =
Y (ϕ(x1), ϕ(x2)) for all x1, ∈ X . Such a ϕ is an isometry between

X, dX) and (Y, dY). In other words, an isometry between two shapes

s a map between their two dimensional surfaces that preserves the

istances between any two points.

For example, when considering shapes as two-dimensional Rie-

annian manifolds embedded in the three dimensional Euclidean

pace, and if one is interested in invariance to deformations of a

urface that preserve the geodesic metric, then the surfaces can be

reated as metric spaces equipped with the geodesic distances of the

iemannian manifold [9,10].

.3. The gradient and the Laplace–Beltrami operator

Let X be a Riemannian manifold. For any smooth function f : X →
the gradient of f is the vector field ∇ f defined through the Rieman-

ian manifold’s inner product, such that for any vector field U,

∇ f (x),U(x)〉 = ∂U f (x),

here ∂U f (x) is the directional derivative of f at x ∈ X , in the direction

(x).

The Laplace–Beltrami operator, denoted by �, is the divergence of

he gradient

f ≡ div grad f,

nd can be considered as a generalization of the standard notion of

he Laplace operator to compact Riemannian manifolds [11–13]. The

aplace–Beltrami operator is invariant to geodesic-preserving defor-

ations because it is defined in terms of the surface metric tensor

hich is isometry invariant.

The eigendecomposition of −� consists of nonnegative eigenval-

es 0 = λ0 < λ1 ≤ · · · ≤ λi ≤ · · · , satisfying

�φi ≡ λiφi.

he set of corresponding eigenfunctions given by

≡ {φ0, φ1, . . . , φi, . . . },
orms an orthonormal eigenbasis, such that

∫
X φi(x)φ j(x)dV = δi j ,

here dV is the volume element on the manifold X.

.4. Spectral embedding

Bérard et al. [1] used the spectral properties of the heat operator
t� to define a metric between two Riemannian manifolds X,Y ∈ M.
ere, M is the set of all closed (i.e. compact without boundary) Rie-

annian manifolds of dimension n. Given a Riemannian manifold

∈ M with volume Vol(X) and some t > 0, they based their metric

n the eigendecomposition of the heat kernel and defined the spec-

ral embedding I�t : X → 	2 from the Riemannian manifold X into the

ilbert space 	2 of real valued square-summable sequences

�
t (x) ≡

{√
Vol(X)e−λit/2φi(x)

}
i≥1

,

tilizing the eigenfunctions φi and eigenvalues λi of the Laplace–

eltrami operator �.

Given a pair of eigenbases �X ,�Y , they embedded the two Rie-

annian manifolds X and Y into I�
X

t and I�
Y

t , respectively. Then, they

easured the Hausdorff distance dH between the manifolds in the

ommon 	2 space. Bérard et al. defined the distance dEMB
t : M × M →

≥0 between the manifolds X,Y , as the upper-bound of the Hausdorff

istance between any eigenbasis �X and its closest counterpart �Y .

EMB
t (X,Y) ≡ max(dIt (X,Y), dIt (Y, X)),

It (X,Y) ≡ sup
{�X }

inf
{�Y }

dH(I�
X

t , I�
Y

t ).

e call dEMB
t (X,Y) the spectral embedding distance (for a detailed de-

cription of the spectral embedding distance, we refer the reader to

1]). They showed that for any fixed t > 0, the spectral embedding

istance dEMB
t is a metric between isometry classes of Riemannian

anifolds. In particular, dEMB
t (X,Y) = 0 if and only if the Riemannian

anifolds X and Y are isometric.

. Spectral gradient fields embedding

.1. Inner and external products

A spectral gradient field is a tangent vector field defined as the

radient of an eigenfunction ∇φi. The feature vector we define is

ased on the inner product between two spectral gradient fields,

i, j : X → R for all i, j ≥ 1, where

i, j(x) ≡ Vol(X)
(√

λiλ j

)−1

〈∇φi(x),∇φ j(x)〉. (1)

or the special case that the Riemannian manifold is an oriented two-

imensional manifold embedded in R
3, we enrich the feature vector

y using the cross product between two spectral GFs in the normal

irection, νi, j : X → R for all i, j ≥ 1, where

i, j(x) ≡ Vol(X)
(√

λiλ j

)−1

((∇φi(x) × ∇φ j(x)) · n(x)). (2)

.2. Embedding

Let us study the embedding and the distance between shapes that

re induced by this feature vector. We limit our analysis to the inner

roduct between the gradients of the eigenfunctions. Thus, we define

he spectral GFs embedding J�t : X → 	2 as

�
t (x) ≡ {e−(λi+λ j)t/2ωi, j(x)}

i, j≥1
, t > 0.

roposition 1. Let x1, ∈ X be two distinct points on the Riemannian

anifold X ∈ M . Then, there exists a smooth function f, such that

f (x1) �= 0 , and ∇ f (x2) = 0 .

The proof of Proposition 1 is given in A.

heorem 1. For a Riemannian manifold X ∈ M , the embedding J�t :

→ 	2 is injective, i.e. x1 �= x2 ⇔ J�t (x1) �= J�t (x2) .
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Fig. 2. Spectral density of the spectral GFs feature vector computed on the human

shape, compared to the spectrum of the GPS embedding.
Proof. The proof is motivated by Rustamov’s analysis of his GPS

embedding [4]. Suppose that for two different points x1, ∈ X , we

have J�t (x1) = J�t (x2). This means that for all i, j ≥ 1, we have

〈∇φi(x1),∇φ j(x1)〉 = 〈∇φi(x2),∇φ j(x2)〉. Now, any smooth scalar

function f : X → R can be represented as a linear combination of the

eigenbasis f = ∑
i aiφi. We can thereby write the norm of the gradi-

ent as

‖∇ f (x1)‖2 =
∑
i, j

aia j〈∇φi(x1),∇φ j(x1)〉

=
∑
i, j

aia j〈∇φi(x2),∇φ j(x2)〉 = ‖∇ f (x2)‖2.

On the other hand, using Proposition 1, there always exists a smooth

function f, such that ‖∇ f (x1)‖ �= ‖∇ f (x2)‖, a contradiction. There-

fore, J�t (x1) �= J�t (x2). �

Theorem 2. The family of maps {J�t }t>0 is invariant to global scaling of

the metric.

See Appendix B for a proof of this Theorem.

2.3. Point to point distance

Given a Riemannian manifold X ∈ M, the embedding J�t : X → 	2

induces a metric d̃X : X × X → R≥0 on the manifold, in a way that the

distance between any two points x1, ∈ X coincides with the distance

between the images of these points in the 	2 space

d̃X(x1, x2) ≡ ‖J�t (x1) − J�t (x2)‖	2 .

The metric d̃X(x1, x2) is a well defined distance function which is

invariant to the choice of the orthonormal eigenbasis �.

2.4. Distance between Riemannian manifolds

Let X,Y ∈ M be the two closed Riemannian manifolds we would

like to compare, and let us be given some t > 0. Given a pair of eigen-

bases �X ,�Y , we embed the two Riemannian manifolds X and Y into

J�
X

t and J�
Y

t , respectively, and measure the Hausdorff distance dH be-

tween the manifolds in the common 	2 space. We define the spectral

gradient fields distance, denoted by dGF
t : M × M → R≥0, as the supre-

mum of the Hausdorff distance between any eigenbasis �X and its

closest counterpart �Y .

dGF
t (X,Y) ≡ max(dJt (X,Y), dJt (Y, X)),

dJt (X,Y) ≡ sup
{�X }

inf
{�Y }

dH( J�
X

t , J�
Y

t ).

We say that X,Y are spectral gradient fields equivalent, if the metric

spaces (X, d̃X), (Y, d̃Y ) are isometric and if dGF
t (X,Y) = 0.

Theorem 3. The spectral GFs distance dGF
t is a pseudometric between

spectral GFs equivalent classes of Riemannian manifolds.

The proof of Theorem 3 is given in C.

Remark. The use of the spectral GFs external product ((∇φi × ∇φ j) ·
n(x)) is obviously restricted to oriented two-dimensional surfaces

embedded in the three-dimensional Euclidean space. Although the

cross product of two tangent vectors is extrinsic in nature, its pro-

jection in the normal direction is invariant to isometric deforma-

tions. Consequently, for a two-dimensional surface embedded in R
3,

adding the elements e
−(λX

i
+λY

j
)t/2

νi, j for all i, j ≥ 1 to the embedding

J�t , leaves the above analysis unchanged. Hence, the statements of

Theorems 1–3 hold for the extended feature vector as well.

Conjecture 1. The spectral GFs distance dGF
t is a metric between

spectral GFs equivalent classes of Riemannian manifolds.
We consider Conjecture 1 in C. We believe that a proof of this con-

ecture is beyond the scope of this paper and leave it to future work.

. Experiments and results

.1. Truncated feature vector

Let us study the spectral GFs feature vector when we are restricted

o using the N0 eigenfunctions that correspond to the lowest eigen-

alues. Remember that we are driven by the task of finding corre-

pondence between two nearly isometric shapes. Because empirical

vidence suggests that there are only a few eigenfunctions that are

table to approximately isometric deformations, for the shape match-

ng application we prefer to avoid eigenfunctions that correspond to

igh eigenvalues.

In our analysis (and implementation) we use the plain vanilla

eature vector J� ≡ J�ω ∪ J�ν , where J�ω ≡ {ωi, j}1≤i≤ j≤N0
and J�ν ≡

νi, j}1≤i< j≤N0
are the inner and external parts of the feature vector,

espectively. J� excludes the dependency on the parameter t. This

eature vector is invariant to global scaling as shown in the proof of

heorem 2. Notice, that we have omitted some of the features be-

ause νi,i = 0, νi, j = −ν j,i and ωi, j = ω j,i for all i, j. In that case, |J�ω | =
1
2 N0(N0 − 1) + N0 and |J�ν | = 1

2 N0(N0 − 1). Therefore, the number of

ontrivial and unique features in J� is N2
0

.

.2. Spectrum

As a case study, we analyze the spectral GFs embedding of a

uman shape. For this shape, assume we are given N0 = 6 eigen-

unctions. Accordingly, the size of the spectral GFs feature vector is
2 = 36. Since J� is nonlinear in φ, it is interesting to visualize how

he energy of the feature vector is distributed as a function of the

igenvalues. This spectral density S(λi) is calculated by

(λi) ≡
∑

n α2
n,i∑

n,i α2
n,i

, αn,i ≡
∫

X

fn(x)φi(x)da(x),

here fn(x) is the nth element of the feature vector. In Fig. 2, we plot

he energy of the spectral GFs features vector as a function of the
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igenvalues, and compare it to the spectrum of the global point sig-

ature (GPS) feature vector. We see, that the spectrum of the inner

nd external products is more widely distributed, which means that

hey could reflect finer details of the surface structure.

.3. Intra-shape point to point distances

The feature vector J� induces a distance d̃X : X × X → R≥0 be-

ween points on the shape

X̃(x1, x2) ≡ ‖J�(x1) − J�(x2)‖

=
N0∑

i, j=1

(ωi, j(x1) − ωi, j(x2))
2 + (νi, j(x1) − νi, j(x))

2
.

ig. 3. The spectral GFs feature vector induced the distance function d̃X (p, x) between

fixed point p to all points x ∈ X (left), and the distance function d̃Y (q, y) from the

orresponding point q = ϕ(p) to all points on shape Y (right).

d

Y

H

a

t

w

t

f

t

a

p

t

b

g

c

ig. 4. In the common space, the inter-shape distance dX,Y (p, y), is calculated between a fixe

mbeddings J�, J�ω (inner-products), J�ν (external products) and the GPS embedding.
Fig. 3 depicts the distance function d̃X(p, x), between a fixed point

p ∈ X on the front of the human shape to any other point x ∈ X . We

bserve that d̃X(p, x) is invariant to the isometric deformation, as

xpected.

.4. Inter-shape point to point distances

For two shapes X,Y , let us assume we are given compatible eigen-

ases of size N0, meaning that φX
i
(x) ≈ φY

i
(ϕ(x)),∀ i ∈ {1 . . . N0}, for

ll points x ∈ X . In the common embedding space, the distance

X,Y (x, y) : X × Y → R between a point on one shape to a point on

he other shape is simply

X,Y (x, y) = ‖J�
X

(x) − J�
Y

(y)‖

=
N0∑

i, j=1

(ωX
i, j(x) − ωY

i, j(y))
2 + (νX

i, j(x) − νY
i, j(y))

2
. (3)

In Fig. 4 we visualize the distance dX,Y (p, y) from the fixed point

p ∈ X to all points y ∈ Y . We see (column 1), that points on surface

that are close to the image of p, also have low values of d̃X,Y (p, y).

ence, for a point to point correspondence application, we should

ssign the corresponding point of p as the one with the smallest dis-

ance from p, in the common Euclidean space. Notice especially, that

hile the GPS embedding (column 4) makes points on the back mis-

akenly close to p, by using the spectral GFs feature vector this ef-

ect is diminished. This can be explained by the use of the νi, j fea-

ures (column 3), that include the cross product operation which is

n extrinsic operation. Pure intrinsic embeddings do not use this im-

ortant attribute of the surface, so the embedding J�ν presents addi-

ional global features. Combined with the inner product based em-

edding J�ω which is more locally accurate (column 2), the spectral

radient fields embedding J� is well suited for finding point to point

orrespondences.
d point p on shape X and all points in shape Y. From left to right: spectral GFs with the
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Fig. 6. Evaluation of the correspondence system applied to shapes from the SCAPE
3.5. Compatible eigenfunctions

For two nearly isometric shapes X,Y , one might say that the eigen-

function φX
i

is matched to the eigenfunction φY
j

up to a sign, if the

difference between φX
i

and φY
j

◦ ϕ

E(i, j) ≡ min
s∈{+1,−1}

∫
X

|φX
i (x) − sφY

j (ϕ(x))|2da(x), (4)

is lower than a certain threshold, where da is the area element of X.

In Fig. 5, we see that for the databases we analyze [15,16], the prob-

ability of finding a match for the ith eigenfunction drops sharply as

i increases beyond a certain point (the seventh eigenfunction for the

databases we tested). This means that N0, the number of eigenfunc-

tions that is used for defining the common embedding, should be

kept small.

3.6. Implementation

For the purpose of testing our ideas, we developed a holistic corre-

spondence system. At the heart of the system we use the spectral GFs

embedding, defined in Eqs. (1) and (2), and compute the inter-shape

point to point distances dX,Y (x, y) of Eq. (3), where we use N0 = 6

compatible eigenfunctions that are found automatically (based on

[17]). Then, we apply a nearest neighbor search to find the initial cor-

respondence

ϕ̂0(x) = argmin
y∈Y

dX,Y (x, y). (5)

As a preprocess step, pairs of points that have low possibility of

being matched are filtered out by comparing a mix of global and lo-

cal features, using the compatible eigenfunctions themselves and the

wave kernel signature [6]. We filter out pairs of points if their fea-

ture vectors are too far in the L2 sense. After applying the spectral

GFs embedding method using Eq. (5), we refine the correspondence

with the iterative closest spectral kernel maps (ICSKM) algorithm [18].

The alignment of the spectral kernels of the two shapes by the ICSKM

algorithm, produces the final dense map ϕ̂ : X → Y .

3.7. Performance

We tested the proposed method on pairs of shapes represented

by triangulated meshes from both the SCAPE database [15] and
Fig. 5. The empirical probability that there is an eigenfunction φY
j

that matches φX
i

up

to a sign. The matching threshold is set to 0.1, i.e. we check if E(i, j) < 0.1 for some j (see

Eq. (4)). Notice, that this probability drops sharply beyond the seventh eigenfunction.

d

F

d

he TOSCA database [16]. The SCAPE dataset contains 71 registered

eshes of a particular person in different poses. The TOSCA dataset

ontains 80 densely sampled synthetic human and animal surfaces,

ivided into several classes with given ground-truth point-to-point

orrespondences between the shapes within each class. We compare

he results of our framework to several correspondence detection

ethods.

• Spectral GFs Embedding – the method proposed in this paper.
• Spectral Maps – the correspondence system used in this paper,

without the use of the spectral GFs embedding. At the preprocess

stage we filter out all correspondences except one.
• Blended – the method proposed by Kim et al. that uses a weighted

combination of isometric maps [14].

Figs. 6 and 7 compare our correspondence method with ex-

sting methods on the SCAPE and TOSCA benchmarks, using

he evaluation protocol proposed in [14]. For each method we

lot the distortion curves with the ICSKM refinement procedure

solid), and without it (dotted). The distortion curves describe the
atabase, using the protocol of [14], (with allowed symmetries).

ig. 7. Evaluation of the correspondence system applied to shapes from the TOSCA

atabase, using the protocol of [14].
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Fig. 8. Bilateral symmetry. The two mirror halves of several shapes from the TOSCA database are found by embedding the shape using spectral gradient fields.
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ercentage of surface points falling within a relative geodesic dis-

ance from what is assumed to be their true locations. For each shape,

he geodesic distance is normalized by the square root of the shape’s

rea. It is evident from the benchmarks that the proposed method

s well suited for finding maps between approximately isometric

hapes, and together with the ICSKM algorithm achieves state-of-the-

rt results.

.8. Reflective symmetry

Intrinsic symmetry detection can be viewed as finding a map from

shape to itself [19]. When the shape has a reflective symmetry, its

elf-map flips the orientation of the surface. In that case, we can apply

he proposed shape matching method, by adjusting the normal to the

urface to point inward, and consequently change the external prod-

ct features of the reflective shape to be −νi, j . Then, we can use the

stimated reflective self-map ϕ̂R : X → X to partition the shape into

ts two mirror halves. First, we find a point p that is well inside one of

he two halves of the shape, for example by selecting a point that is

s far as possible from its reflective image ϕ̂(p), i.e. we find the point

p = argmaxx∈X g(x, ϕ̂R(x)), where g : X × X → R≥0 is the geodesic dis-

ance function between two points on the surface of the shape. Then,

e check if each point x ∈ X belongs to the half of the shape that in-

ludes p. We assign x to this half if g(x, p) + g(ϕ̂R(x), ϕ̂R(p)) is less

han g(ϕ̂R(x), p) + g(x, ϕ̂R(p)). In Fig. 8, we demonstrate the effec-

iveness of the proposed approach, by visualizing the bilateral sym-

etry for several shapes from the TOSCA database.

. Conclusions

A new feature vector for embedding nonrigid shapes was intro-

uced and integrated into a holistic shape matching system. The em-

edding, which is proved to be injective, induces a distance between

oints on the surface, and can be defined to measure a distance be-

ween shapes. We have demonstrated the effectiveness of the pro-

osed approach by achieving state-of-the-art results on shape match-

ng benchmarks.

In the future, we plan to examine the properties of the GFs em-

edding in conjunction with compatible functions on the two shapes,

hat are different from the eigenfunctions. For example, one may

se the heat kernel signature (HKS), wave kernel signature (WKS)

6] or the heat kernel maps (HKM) [20] set with landmark corre-

pondences. These options seem particularly useful when the shapes

re noisy, or the deformations are large, making the eigenfunctions

ncompatible.
cknowledgment
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ppendix A. Proof of Proposition 1

We need to prove that if x1, are two distinct points on the Rie-

annian manifold, then, there exists a smooth function f, such that

f (x1) �= 0, and ∇ f (x2) = 0. We use two technical Lemmas.

emma 1. Let U1,U2 be two disjoint closed sets. Then, there exists a

mooth function u1 : X → R≥0 , such that

i. u1(x) = 1,∀x ∈ U1.

ii. u1(x) = 0,∀x ∈ U2.

roof. U1,U2 are disjoint, thereby {XU2, XU1} is an open cover for

. Hence, there exists a partition of unity of nonnegative functions

1, u2 : X → R≥0, such that the support of u1 is contained in XU2 and

he support of u2 is contained in XU1. Moreover, u1 + u2 = 1 every-

here.

i. The support of u2 is contained in XU1, hence, u2(x) = 0, ∀x ∈ U1.

Therefore, u1(x) = 1 − u2(x) = 1, ∀x ∈ U1.

ii. Because the support of u1 is contained in XU2, it follows that

u1(x) = 0,∀x ∈ U2.

emma 2. Let x1, be two distinct points on the Riemannian manifold.

hen, there exists a smooth function u1 : X → R≥0, such that u1(x1) =
, u1(x2) = 0,∇u1(x1) = 0 and ∇u1(x2) = 0 .

roof. Construct two disjoint closed sets U1,U2, such that x1 is in the

nterior of U1, and x2 is in the interior of U2. Then, use Lemma 2 to

ake such u1. �

Now, take a smooth function g : X → R, with a non zero gradient

t point x1, i.e. g(x1) �= 0. Using Lemma 2, construct the function f =
1g. By the chain rule

f (x1) = u1(x1)∇g(x1) + g(x1)∇u1(x1) = 1 · ∇g(x1) + g(x1) · 0,

f (x2) = u1(x2)∇g(x2) + g(x2)∇u1(x2) = 0 · ∇g(x2) + g(x2) · 0.

e conclude that ∇ f (x ) �= 0 and that ∇ f (x ) = 0.
1 2
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Appendix B. Proof of Theorem 2

Proof. If the Riemannian manifold X̄ is obtained by uniformly scal-

ing the metric of the Riemannian manifold X by a factor α > 0, then,

the eigenvalues of the Laplace–Beltrami operator are scaled accord-

ing to λX̄
i

= α−2λX
i

, the corresponding L2-normalized eigenfunctions

become φX̄
i

= α−1φX
i

, and the gradient operator reads ∇ X̄ = α−1∇X .

We have

ωX̄
i, j = Vol(X̄)

〈∇ X̄φX̄
i
,∇ X̄φX̄

j
〉√

λX̄
i
λX̄

j

= α2Vol(X)
〈α−1∇Xα−1φX

i
, α−1∇Xα−1φX

j
〉√

α−2λX
i
α−2λX

j

= Vol(X)
〈∇XφX

i
,∇XφX

j
〉√

λX
i
λX

j

= ωX
i, j,

which means that ωX
i, j

is global scale invariant. Now, if we set t = α2t

( J�
X̄

t
)

i, j
= e−(λX̄

i
+λX̄

j
)t/2ωX̄

i, j = e−(α−2λX
i
+α−2λX

j
)α2t/2ωX

i, j

= e−(λX
i
+λX

j
)t/2ωX

i, j = ( J�
X

t )i, j .

Appendix C. Proof of Theorem 3

We would like to show that the spectral gradient fields distance

dGF
t : M × M → R≥0 satisfies the following properties of a pseudo-

metric.

1: Symmetry – dGF
t (X,Y) = dGF

t (Y, X) for every X,Y ∈ M.

2: Triangle-inequality – For every three Riemannian manifolds

X,Y, Z ∈ M,

dGF
t (X, Z) ≤ dGF

t (X,Y) + dGF
t (Y, Z).

3: Identity – If X,Y ∈ M are spectral GFs equivalent, then

dGF
t (X,Y) = 0.

Proposition 2. For every three Riemannian manifolds X,Y, Z ∈ M ,

dGF
t (X, Z) ≤ dGF

t (X,Y) + dGF
t (Y, Z).

Proof. We denote

dX,Y (x, y) ≡ ‖J�
X

t (x) − J�
Y

t (y)‖,

dis(ϕ) ≡ sup
x∈X

dX,Y (x, ϕ(x)),

dis(ψ) ≡ sup
y∈Y

dX,Y (ψ(y), y).

The Hausdorff distance between J�
X

t and J�
Y

t is

dH( J�
X

t , J�
Y

t ) = max

(
sup
x∈X

inf
y∈Y

dX,Y (x, y), sup
y∈Y

inf
x∈X

dX,Y (x, y)

)
.

Lemma 3. if dH =∈ , then there exist ϕ : X → Y and ψ : Y → X such

that dX,Y (x, ϕ(x)) ≤∈,∀x ∈ X and dX,Y (ψ(y), y) ≤∈,∀y ∈ Y .

Proof. X,Y ∈ M are compact and J�
X

t , J�
Y

t are continuous

one-to-one mappings. Thus, their images are also compact,

which allows us to define ϕ(x) = argminy∈Y dX,Y (x, y) and

ψ(y) = argminx∈X dX,Y (x, y). �
Now, if dGF
t (X,Y) ≤∈, then, for any �X , one can find �Y , ϕ,ψ (us-

ng Lemma 3) such that dis(ϕ) ≤∈, dis(ψ) ≤∈, i.e.

X,Y (x, ϕ(x)) ≤∈,∀x,

X,Y (ψ(y), y) ≤∈,∀y.

et dGF
t (X,Y) = ∈1 and dGF

t (Y, Z) = ∈2. Hence, for any �X , there ex-

st two eigenbases (�Y ,�Z), and two pairs of corresponding map-

ings (ϕ1 : X → Y,ψ1 : Y → X) and (ϕ2 : Y → Z,ψ2 : Z → Y) satisfy-

ng dis(ϕ1) ≤ ∈1, dis(ψ1) ≤ ∈1, and dis(ϕ2) ≤ ∈2, dis(ψ2) ≤ ∈2. De-

ote by ϕ = ϕ2 ◦ ϕ1 : X → Z,ψ = ψ1 ◦ ψ2 : Z → X . Invoking the tri-

ngle inequality for 	2 spaces, one has

dX,Z(x, ϕ(x)) ≤ dX,Y (x, ϕ1(x)) + dY,Z(ϕ1(x), ϕ(x))

≤ dis(ϕ1) + dis(ϕ2) ≤ ∈1 + ∈2,∀x ∈ X,

X,Z(ψ(z), z) ≤ dX,Y (ψ(z),ψ1(z)) + dY,Z(ψ2(z), z)

≤ dis(ψ1) + dis(ψ2) ≤ ∈1 + ∈2,∀z ∈ Z.

This means that for any �X , we can find �Z, ϕ,ψ , such that

X,Z(x, ϕ(x)) and dX,Z(ψ(z), z) are bounded by ∈1 + ∈2. Conse-

uently,

inf
�Z}

dH( J�
X

t , J�
Z

t ) ≤ ∈1 + ∈2,∀�X .

Clearly,

Jt (X, Z) = sup
{�X }

inf
{�Z}

dH( J�
X

t , J�
Z

t ) ≤ ∈1 + ∈2.

n the same way dJt (Z, X) ≤ ∈1 + ∈2, implying dGF
t (X, Z) ≤ ∈1 +

2. �

We conclude that the distance dGF
t (X,Y) : M × M → R≥0 satisfies

he properties of Theorem 3.

1: Symmetry – by definition, the function dGF
t (X,Y) is invariant to

permutation of X and Y.

2: Triangle-inequality – by Proposition 2.

3: Identity – X,Y cannot be spectral GFs equivalent if dGF
t (X,Y) �= 0.

ppendix D. Outline of a possible proof of Conjecture 1

Conjecture 1 states that the spectral GFs distance dGF
t is a met-

ic between spectral GFs equivalent classes of Riemannian manifolds.

his conjecture can be proved by assuming that dGF
t (X,Y) = 0 implies

hat there exist eigenbases �X ,�Y and maps ϕ : X → Y,ψ : Y →
, such that J�

X

t (x) = J�
Y

t (ϕ(x)),∀x ∈ X and J�
X

t (ψ(y)) = J�
Y

t (y),
y ∈ Y .

emark. To prove this assumption we suggest to follow the footsteps

f Bérard et al. [1], but a rigorous proof of this hypothesis is left for

uture work.

Now, because J�
X

t (x) = J�
Y

t (ϕ(x)),∀x ∈ X , then for all x1, ∈ X we

ave

J�
X

t (x1) − J�
X

t (x2)‖	2 = ‖J�
Y

t (ϕ(x1)) − J�
Y

t (ϕ(x2))‖	2 .

We also know that X,Y are equipped with the metrics d̃X , d̃Y de-

ived from the distances in the common space

X̃(x1, x2) = ‖J�
X

t (x1) − J�
X

t (x2)‖	2 , ∀x1, x2 ∈ X,

Ỹ (y1, y2) = ‖J�
Y

t (y1) − J�
Y

t (y2)‖	2 , ∀y1, y2 ∈ Y .

Hence, ϕ is a distance preserving map

X̃(x1, x2) = d̃Y (ϕ(x1), ϕ(x2)).
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d

M

e

ψ

J

ϕ
i

R

[

In the same way

X̃(ψ(y1),ψ(y2)) = d̃Y (y1, y2).

oreover, x = ψ(ϕ(x)) for all x ∈ X and y = ϕ(ψ(y)) for all y ∈ Y , or

lse w.l.g.o. there would be two distinct points x1, ∈ X such that x2 =
(ϕ(x1)). In that case J�

X

t (x1) and J�
X

t (x2) would both be equal to
�Y

t (ϕ(x1)), which contradicts the fact that J�
X

t is injective. Therefore,

,ψ are bijections and distance preserving, hence (if our assumption

s true), X,Y are spectral GFs equivalent.
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