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Abstract: A fundamental tool in shape analysis is the virtual embedding of the Riemannian
manifold describing the geometry of a shape into Euclidean space. Several methods
have been proposed to embed isometric shapes into flat domains, while preserving the
distances measured on the manifold. Recently, attention has been given to embedding shapes
into the eigenspace of the Laplace–Beltrami operator. The Laplace–Beltrami eigenspace
preserves the diffusion distance and is invariant under isometric transformations. However,
Laplace–Beltrami eigenfunctions computed independently for different shapes are often
incompatible with each other. Applications involving multiple shapes, such as pointwise
correspondence, would greatly benefit if their respective eigenfunctions were somehow
matched. Here, we introduce a statistical approach for matching eigenfunctions. We
consider the values of the eigenfunctions over the manifold as the sampling of random
variables and try to match their multivariate distributions. Comparing distributions is done
indirectly, using high order statistics. We show that the permutation and sign ambiguities
of low order eigenfunctions can be inferred by minimizing the difference of their third
order moments. The sign ambiguities of antisymmetric eigenfunctions can be resolved by
exploiting isometric invariant relations between the gradients of the eigenfunctions and the
surface normal. We present experiments demonstrating the success of the proposed method
applied to feature point correspondence.
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1. Introduction

The embedding of nonrigid shapes into a Euclidean space is well established and widely used by
shape analysis applications. Usually, the mapping from the manifold to the Euclidean space preserves
distances, that is the distance measured between two points on the manifold is approximated by the
respective distance calculated in the Euclidean space. The embedding of multiple isometric shapes into
the same common Euclidean space seems to be ideal for applications like pointwise correspondence and
shape editing. A useful property of this common embedding would be if any corresponding points
of different isometric shapes were mapped to nearby target points in the Euclidean space. If this
property is fulfilled, then the simultaneous processing of shapes in the target domain can be done in
a straightforward manner.

Elad et al. [1] used classical multi-dimensional scaling (MDS) embedding into the geodesic kernel
eigenspace. The MDS dissimilarity measure was based on the geodesic distances computed by the
fast marching procedure [2]. Bérard et al. [3] used the heat operator spectral decomposition to define
a metric between two manifolds M and M ′. They embedded the two manifolds into their respective
eigenspaces, and measured the Hausdorff distance [4] between the two shapes in the spectral domain.
The Hausdorff distance dH(M,M ′), being the greatest of all the distances from a point in one set to the
closest point in the other set, can easily be calculated in this common Euclidean space. They showed
that dH(M,M ′) = 0 if and only if the Riemannian manifolds M and M ′ are isometric. Lafon et al. [5]
defined the diffusion maps and showed that the embedding into the heat kernel eigenspace is isometry
invariant and preserves the diffusion metric. Rustamov [6] introduced the global point signature (GPS)
embedding for deformation-invariant shape representation.

Although the diffusion maps computed independently on isometric shapes have a nearly compatible
eigenbasis, several inconsistencies arise:

• Eigenfunctions are defined up to a sign.

• The order of the eigenfunctions, especially those representing higher frequencies, is not repeatable
across shapes.

• The eigenvalues of the Laplace–Beltrami operator may have a multiplicity greater than one, with
several eigenfunctions corresponding to each such eigenvalue.

• It is generally impossible to expect that an eigenfunction with a large eigenvalue of one shape will
correspond to any eigenfunction of another shape.

• Intrinsic symmetries introduce self-ambiguity, adding complexity to the sign estimation challenge.

These drawbacks limit the use of diffusion maps in simultaneous shape analysis and processing; they
do not allow using high frequencies and usually require some intervention to order the eigenfunctions or
solve sign ambiguities.

In this paper, we present a novel method for matching eigenfunctions that were independently
calculated for two nearly isometric shapes. We rely on the fact that for low order eigenfunctions,
inconsistencies are usually governed by a small number of discrete parameters characterized by the
sign sequence and permutation vector. We estimate these parameters by matching statistical properties
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over the spectral domain. The matching of the corresponding eigenfunctions enables the use of diffusion
maps for consistent embedding of multiple isometric shapes into a common Euclidean space.

1.1. Related Work

The problems of eigenfunctions permutation and sign ambiguity were previously addressed in the
context of simultaneous shape processing. Several authors, among them Shapiro and Brady [7] and
Jain et al. [8], proposed using either exhaustive search or a greedy approach for the eigenvalue ordering
and sign detection. Umeyama [9] proposed using a combination of the absolute values of the
eigenfunctions and an exhaustive search. Mateus et al. [10] expressed the connection between the
eigenfunctions of two shapes by an orthogonal matrix. They formulated the matching as a global
optimization problem, optimizing over the space of orthogonal matrices, and solved it using the
expectation minimization approach. Later, Mateus et al. [11] and Knossow et al. [12] suggested using
histograms of eigenfunctions values to detect their ordering and signs. Dubrovina et al. [13] suggested
using a coarse matching based on absolute values of eigenfunctions together with geodesic distances
measured on the two shapes.

Most of these methods do not reliably resolve eigenfunction permutation [7,8,10,12]. Some of
the above algorithms are limited by high complexity and do not allow the matching of more
than a few eigenfunctions [9,13]. None of these methods reliably estimate the sign sequence of
antisymmetric eigenfunctions.

At the other end, Kovnatsky et al. [14] proposed avoiding the matching problem by constructing
a common approximate eigenbases for multiple shapes using approximate joint diagonalization
algorithms. Yet, it relies on prior knowledge of a set of corresponding feature points.

Finally, the algorithm proposed by Pokrass et al. [15] mostly resembles our approach. They used
sparse modeling to match the Laplace–Beltrami operator (LBO) eigenfunctions that span the wave kernel
signature (WKS). Yet, that approach does not reliably infer the signs of the antisymmetric eigenfunctions.

1.2. Background

1.2.1. Laplace–Beltrami Eigendecomposition

Let us be given a shape modeled as a compact two-dimensional manifold M . The divergence of the
gradient of a function f over the manifold:

∆Gf = div gradf (1)

is called the Laplace–Beltrami operator (LBO) of f and can be considered as a generalization of
the standard notion of the Laplace operator to manifolds [16,17]. The Laplace–Beltrami operator is
completely derived from the metric tensor G.

∆Gf = div grad f =
1√
|G|

∑
i

∂i
√
|G|︸ ︷︷ ︸

divergence

∑
j

gij∂j︸ ︷︷ ︸
gradient

f (2)

where gij = (G−1)ij are the components of the inverse metric tensor.
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Since the operator −∆G is a positive self-adjoint operator, it admits an eigendecomposition with
non-negative eigenvalues λi and corresponding orthonormal eigenfunctions φi,

−∆Gφi = λiφi (3)

where orthonormality is understood in the sense of the local inner product induced by the Riemannian
metric on the manifold. Furthermore, due to the assumption that our manifold is compact, the spectrum
is discrete. We can order the eigenvalues as follows 0 = λ1 < λ2 < · · · < λi < · · · . The set of
corresponding eigenfunctions given by {φ1, φ2, · · · , φi, · · · } forms an orthonormal basis of functions
defined on M .

1.2.2. Diffusion Maps

The heat equation describes the distribution of heat in time. On a manifold M , the heat equation is
governed by the Laplace–Beltrami operator ∆G:

∂u

∂t
= ∆Gu (4)

The heat kernel Kt(x, y) is the diffusion kernel of the heat operator et∆G(t > 0). It is a fundamental
solution of the heat equation with the point heat source at x (the heat value at point y after time t). The
heat kernel can be represented in the Laplace–Beltrami eigenbasis as:

Kt(x, y) =
∑
i

(λ̃i)
tφi(x)φi(y) =

∑
i

e−λitφi(x)φi(y) (5)

where λ̃i are the eigenvalues of the heat operator, λi are the eigenvalues of the LBO and λ̃i = e−λi .
Using the heat kernel, we can define the diffusion distance [5]:

d2
M,t(x, y) = ||Kt(x, · )−Kt(y, · )||2L2

=

∫
M

(Kt(x, z)−Kt(y, z))
2da(z)

(6)

where da is the area element of M .
The diffusion distance dM,t(x, y) can be computed by embedding the manifold into the infinite

Euclidean space spanned by the LBO eigenbasis:

dM,t(x, y) =

(∑
i

e−2λit(φi(x)− φi(y))2

) 1
2

(7)

The diffusion map {Φt} embeds the data into the finite N -dimension Euclidean space:

Φt(x) =


e−λ1tφ1(x)

e−λ2tφ2(x)

...

e−λN tφN(x)

 (8)

so that in this space, the Euclidean distance is equal to the diffusion distance up to a relative
truncation error:

dM,t(x, y) ≈ ||Φt(x)− Φt(y)|| (9)
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1.2.3. Multivariate Distribution Comparison

The distribution of N continuous random variables φ1, φ2, ..., φN is directly represented by the
probability density function fφ1,φ2,...,φN (φ1, φ2, ..., φN). The direct estimation of the multivariate
probability density function from data samples is hard to accomplish. Therefore, instead of using a
direct comparison of distribution functions [18,19], an indirect representation is often being utilized.
The probability distribution can be indirectly specified (under mild conditions) in a number of different
ways, the simplest of which is by its raw moments:

µi1,i2,...,iN ≡ E[φi11 φ
i2
2 ...φ

iN
N ], {i1, i2, ..., iN} ∈ Z≥0 (10)

In order to compare the multivariate distributions of two sets of N random variables φX1 , φ
X
2 , ..., φ

X
N

and φY1 , φ
Y
2 , ..., φ

Y
N , we can use this indirect representation and compare the raw moments of the random

variables. In practice, only a small set of the moments I can be used for measuring the difference
between the distributions:

CX,Y =
∑

{i1,i2,...,iN}∈I

ρi1,i2,...,iN (µXi1,i2,...,iN − µ
Y
i1,i2,...,iN

)2

(11)

where ρi1,i2,...,iN are the weights associated with each raw moment.

2. Eigenfunction Matching

2.1. Problem Formulation

Let us denote by X and Y the two shapes that we would like to match. We represent the
correspondence between X and Y by a bijective mapping ϕ : X 7→ Y , such that for each point
x ∈ X , its corresponding point is ϕ(x) ∈ Y . The diffusion map embeds each point x ∈ X into the N
dimension Euclidean space RN according to ΦX,N

t (x). Correspondingly, each point y ∈ Y is embedded
by the mapping ΦY,N

t (y) into RN . We denote the diffusion map at t = 0 by ΦX(x) = ΦX,N
t=0 (x) and

ΦY (y) = ΦY,N
t=0 (y), respectively.

We wish to find embeddings of shape X and shape Y to the finite dimensional Euclidean space, such
that the corresponding points x ∈ X and ϕ(x) ∈ Y will be mapped to nearby points in the embedded
space. Because of the inconsistencies described in the Introduction, the diffusion maps of shapes X and
Y do not necessarily fulfill this property. Our task is to modify the diffusion map ΦY (y) by a small
number of parameters θ, such that the new embedding Φ̃Y

θ (y) will match ΦX , i.e., ΦX(x) ≈ Φ̃Y
θ (ϕ(x)).

For the N low eigenvalues, the matching is characterized by the following parameters:

• The respective signs of the eigenfunctions s : si ∈ {+1,−1}.

• The permutation vector π of the eigenfunctions: π : {1, 2, ..., N} 7→ {1, 2, ..., N}.

We would like to find the parameters θ̂ = {ŝ; π̂}, which create the matched embedding Φ̃Y
θ̂

(y) with
elements φ̃Yi = ŝiφ

Y
π̂(i), i ∈ 1, 2, ...N .
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2.2. Matching Cost Function

The entire algorithm can be expressed as the minimization of the following cost function:

{ŝ; π̂} = argmins;π(C(s,π) + CS(s,π) + α(CP
∇(s,π) + CP,S

∇ (s,π))) (12)

2.2.1. Overview

The objective function is comprised of four terms C,CS, CP
∇, C

P,S
∇ . The first and second terms

(C, CS) compare the mixed moments of compatible functions. Minimizing the terms C, CS is usually
sufficient to correctly reorder the eigenfunctions and find the right sign sequence. Alas, in the presence of
intrinsic symmetry, these mixed moments are ambiguous and cannot be compared effectively. The third
and fourth terms (CP

∇, CP,S
∇ ) work out this difficulty by using a pair of gradients of compatible functions.

The gradients are inserted into the functional, by incorporating their cross-product in the direction of the
outward pointing normal to the surface.

To enhance the discriminative properties of the algorithm and its robustness, we apply two
additional techniques.

� Pointwise signatures as side information: We mix in stable compatible signatures, like the heat
kernel signature (HKS), employed in CS , CP

∇, CP,S
∇ .

� Raw moments over segments: We blindly (i.e. , without correspondence) segment the shapes into
parts in a compatible way and integrate over these segments separately; employed in CP

∇, CP,S
∇ .

2.2.2. Cost Function Terms

The terms of the cost function can be expressed by:

• C(s,π) =
∑
i,j,k

(µXi,j,k − sisjskµYπ(i),π(j),π(k))
2

µi,j,k = E[φiφjφk], i, j, k ∈ {1, 2, ..., N}

• CP
∇(s,π) =

∑
i,j,k,p

(ξXi,j,k,p − sisjskξYπ(i),π(j),π(k),p)
2

ξi,j,k,p = E[νi,jφkwp(|φk|)],

i, j, k ∈ {1, 2, ..., N}, p ∈ {1..P}

νi,j = (∇Gφi ×∇Gφj) · n

• CS(s,π) = N
∑
i,q

(µX,Si,q − siµ
Y,S
π(i),q)

2

µSi,q = E[φiψq], i ∈ {1, 2, ..., N}, q ∈ {1, 2, ...Q}

• CP,S
∇ (s,π) =

∑
i,q,k,p

(ξX,Si,q,k,p − siskξ
Y,S
π(i),q,π(k),p)

2

ξSi,q,k,p = E[νSi,qφkwp(|φk|)],

i, k ∈ {1..N}, p ∈ {1..P}, q ∈ {1..Q}

νSi,q = (∇Gφi ×∇Gψq) · n
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where:

• φi are the eigenfunctions of the Laplace–Beltrami operator −∆Gφi = λiφi.

• wp : R≥0 7→ [0, 1] are nonlinear weighting functions.

• ψq : M 7→ R are the components of an external point signature.

• ∇G is the gradient induced by the metric tensor G.

• E[z] =
∫
M
zdaM , where daM is the area element of the manifold M .

• n is the normal to the surface.

• × is the cross-product in R3, and · is the inner product in R3.

• The weighting parameter α determines the relative weight of the gradient cost functions.

In Appendix A1, we give full details of the discretization that we have used to implement the
matching algorithm.

The application specific parameters include:

• N : the number of eigenfunctions to be matched.

• {wp}Pp=1: the P nonlinear weighting functions.

• {ψq}Qq=1: the external point signature of size Q.

• α: the relative weight of the gradient cost functions.

In Appendix A2, we give the details of the application specific parameters that were used in
our experiments.

Next, we review the different terms of the cost function.

2.2.3. Resolving Sign Ambiguities and Permutations

For now, let us limit our discussion to resolving the sign ambiguity s. If we had known the
correspondence between the two shapes, the sign of the i−th eigenfunction si could be inferred by
pointwise comparison:

ŝi = argminsi E[(φXi (x)− siφYi (ϕ(x))2] (13)

and the expectation is taken over the manifold:

E(f(x)) =

∫
X

f(x)daX (14)

where daX is the area element of the shape X . Unfortunately, the correspondence is unknown. Hence,
pointwise comparison cannot be used in a straightforward manner.
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We now make the analogy between the values of the eigenfunctions over the manifold and N random
variables. We consider the vector of values of the diffusion map ΦX(x) at point x as a sample out of
a multivariate distribution fΦ(φ1(x), φ2(x), ..., φN(x)). We wish to match the multivariate distributions
fΦX and fΦYθ

. As explained in Section 1.2.3. , an indirect representation of the distribution is suitable for
comparing multivariate distributions. Specifically, we shall use the raw moments.

By way of construction, the non-trivial eigenfunctions have zero mean and are orthonormal. Hence,
the first and second moments carry no information. Accordingly, we must use higher order moments to
match the distributions. We propose to use the third order moments over the manifold M

µi,j,k = E[φiφjφk] =

∫
M

φiφjφkdaM

i, j, k ∈ {1, 2, ..., N}
(15)

2.2.4. Resolving Antisymmetric Eigenfunctions

For shapes with intrinsic symmetries (see [20]), some of the eigenfunctions have antisymmetric
distributions. The distribution of the antisymmetric eigenfunctions is agnostic to sign change. Hence,
the signs of the antisymmetric eigenfunctions cannot be resolved by the simple scheme described in
Section 2.2.3.

The gradient of the eigenfunctions∇φk could be exploited to resolve the sign ambiguity:

• The gradient∇f of an antisymmetric eigenfunction f is not antisymmetric.

• The gradient is a linear operator. Consequently∇(−f) = −∇f, ∀f .

Therefore, we can farther expand the set of variables that are used in the calculation of the raw
moments, by incorporating the gradient. The gradient vector is contained in the tangent plane. Thus, the
cross-product of the gradients of two eigenfunctions points either outward or inward from an orientable
surface. Changing the sign of one eigenfunction will flip the direction of the cross-product. We can use
this property to define new functions νi,j over the manifold:

νi,j = (∇φi ×∇φj) · n (16)

where n is the outward pointing normal to the tangent plane. We shall use the joint moments of the
eigenfunctions and their gradients:

ξi,j,k = E[νi,jφk], i, j, k ∈ {1, 2, ..., N} (17)

We note that Equation (16) can be further simplified by:

νi,j = (∇φi ×∇φj) · n = ∇φi · (∇φj × n) (18)

(∇φj × n) can be computed only once for each φj .
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2.2.5. Raw Moments over Segments

Taking the expectation over the whole shape may be too crude, especially for detecting antisymmetric
sign ambiguities. We can refine the minimization criterion by taking the expectation over different
segments of the shapes. Remember that the correspondence between the shapes is yet unknown;
therefore, directly dividing the shape into corresponding segments is impossible. Indirectly dividing
the shape into different segments is possible by using the eigenfunctions themselves. The eigenfunctions
φk, k ∈ {1...N} have respective low eigenvalues, which means that they have a slow rate of change.
Therefore, it is possible to define indicator functions wp(|φk(x)|) : X → {0, 1}, p ∈ {1..P} in a way
that will output one or zero values at different segments of the shape. For example, we can define
h(|φk(x)|) = 1 if |φk(x)| > TH and zero otherwise, where TH is a scalar threshold. The output of
these functions automatically divides the two shapes into a similar manner, without the use of pointwise
correspondence. Moreover, because the function wp(|φk|) is symmetric, its output does not depend on
the sign of the eigenfunction φk. We conclude that we can use wp(|φk|) to make a weighted average of
the raw moments according to different segments:

ξi,j,k,p = E[νi,jφkwp(|φk|)]
i, j, k ∈ {1, 2, ..., N}, p ∈ {1..P}

(19)

2.2.6. Pointwise Signatures As Side Information

We can easily use other signatures (ψ1, ψ2, ..., ψQ) as side information to refine the minimization
criterion. Specifically, we can use signatures that carry no inconsistencies among different shapes.
In our experiments, we used the heat kernel signature (HKS) as an additional signature [21]. We can
use the joint moments of the diffusion maps and the additional signatures ψq:

µSi,q = E[φiψq], i ∈ {1, 2, ..., N}, q ∈ {1, 2, ...Q} (20)

and compute the cross of the eigenfunctions gradient∇φi and the signature functions gradients∇ψq:

νSi,q = (∇φi ×∇ψq) · n (21)

ξSi,q,k,p = E[νSi,qφkwp(|φk|)]
i, k ∈ {1, 2, ..., N}, p ∈ {1..P}, q ∈ {1..Q}

(22)

2.3. Solving the Minimization Problem

The minimization of Equation (12) is a non-convex optimization problem. Yet, it only involves a small
number of discrete parameters. Therefore, an exhaustive search is possible. In practice, we implemented
the search in four steps:

• Step 1: An initialization of s0 is determined by si = sign(µXi,i,iµ
Y
i,i,i) and π0 = [0, 1, ...N ].

• Step 2: The permutation vector π̂ is found by minimizing C(s,π) + CS(s,π). We make an
educated guess for the possible permutations, limiting the search for two permutation profiles:



Axioms 2014, 3 309

� two consecutive eigenfunction switching (with possible sign change), i.e.,
[πi, πj, πk, πl] = [j, i, l, k], j = i+ 1, l = k + 1

� triplet permutation (with possible sign change), i.e., [πi, πj, πk] = [j, k, i] or [k, i, j],

j = k + 1, i = j + 1;

• Step 3: The sign sequence is resolved again by minimizing C(s,π) + CS(s,π). In this step, all
possible quadruple sign changes are checked, setting the permutation vector found in Step 2. If the
cost function was decreased in Step 2 or Step 3, then return to Step 2. While finding the optimal
sign sequence and permutation vector, we keep a list of all possible good sign sequences for the
next step.

• Step 4: The optimal sign sequence ŝ is found by comparing the entire cost function C(s,π) +

CS(s,π) + α(CP
∇(s,π) + CP,S

∇ (s,π)) for each sign sequence in the list created in Step 3.

3. Results

We tested the proposed method on pairs of shapes represented by triangulated meshes from the
TOSCA database [22]. Figures 1, 3 and 5 show how the proposed method succeeds in matching the
eigenfunctions of several isometric shapes. In each figure, at the top, are the first four eigenfunctions
of the first pose of the object. In the middle are the eigenfunctions of the second pose of the object.
At the bottom are the first four eigenfunctions of the second pose with the correct sign sequence
and permutations.

For example, we can see in Figure 1 that the eigenfunction matching algorithm swapped φY3 and φY4 .
It also correctly flipped the signs of φY1 , φY2 and φY4 . We also notice that the matching algorithm was able
to detect the correct signs of the antisymmetric eigenfunctions. For example, in Figure 3, the sign of the
antisymmetric eigenfunction φY2 was correctly flipped, while keeping the sign of φY3 .

We used the matched eigenfunctions for detecting feature point correspondence between the two
shapes. A selected number of feature points from the first shape were matched to the second one using a
combination of two signatures:

• The matched low order eigenfunctions that represent the global structure of the shapes.

• The heat kernel signature (HKS) derivative (Equation (A11)) that, being a bandpass filter,
expresses more local features.

Figures 2, 4 and 6 show that the correspondences between feature points were found correctly. Notice
that this approach was able to resolve the symmetries of the given shapes.

The algorithm was implemented in MATLAB. All of the experiments were executed on a 3.00 GHz
Intel Core i7 machine with 32 GB of RAM. The runtime for matching the eigenfuctions for a typical pair
of shapes from the TOSCA database is 1.5 s, excluding the calculation of the eigenfunctions.

We utilized these feature points to propagate correspondence to the whole shape. The signatures we
used for this application were:
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• The global point signature (GPS) kernel (Equation (A12)), propagating the correspondence of each
feature point.

• The heat kernel signature (HKS) derivative (Equation (A11)), as before.

Figure 1. The eigenfunction matching of two nearly isometric shapes. Hot and cold colors
represent positive and negative values, respectively. (Top) The first pose of a dog; (center)
the second pose of a dog; (bottom) the second pose of a dog after the matching algorithm.

ΦX

ΦY

Φ̃Y

φ1 φ2 φ3 φ4

Figure 2. Feature point correspondence of two nearly isometric shapes of a horse.
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Figure 3. Eigenfunction matching of two nearly isometric shapes. Hot and cold colors
represent positive and negative values, respectively. (Top) The first pose of a human;
(center) the second pose of a human; (bottom) the second pose of a human after the
matching algorithm.

ΦX

ΦY

Φ̃Y

φ1 φ2 φ3 φ4

Figure 4. Feature point correspondence of two nearly isometric shapes of a horse.
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Figure 5. Eigenfunction matching of two nearly isometric shapes. Hot and cold colors
represent positive and negative values, respectively. (Top) The first pose of a horse; (center)
the second pose of a horse; (bottom) the second pose of a horse after the matching algorithm.

ΦX

ΦY

Φ̃Y

φ1 φ2 φ3 φ4

Figure 6. Feature point correspondence of two nearly isometric shapes of a horse.

The correspondence method was applied to pairs of shapes represented by triangulated meshes
from both the TOSCA and SCAPE databases [22,23]. The TOSCA dataset contains densely sampled
synthetic human and animal surfaces, divided into several classes with given ground-truth point-to-point
correspondences between the shapes within each class. The SCAPE dataset contains scans of real human
bodies in different poses. We compare our work to several correspondence detection methods.

• Matched eigenfunctions: the method proposed in this paper.



Axioms 2014, 3 313

• Blended: the method proposed by Kim et al. [24] that uses a weighted combination of
isometric maps.
• Best conformal: the least-distortive conformal map roughly describes what is the best performance

achieved by a single conformal map without blending.
• Möbius voting: the method proposed by Lipman et al. [25] counts votes on the conformal Möbius

transformations.
• Heat kernel matching (HKM) with one correspondence: This method is based on matching features

in a space of a heat kernel for a given source point, as described in [26]. A full map is constructed
from a single correspondence, which is obtained by searching a correspondence that gives the most
similar heat kernel maps. We use the results shown in [24].
• HKM with tow correspondences: in a non-isometric case, the previous method might obtain better

results by using a second correspondence. The matching is then performed in the augmented
feature space of two heat kernel maps [26]. We use the results shown in [24].

Note that all of the above methods, including the one we propose, can be followed by the
post-processing iterative refinement algorithm [27]. The refinement procedure is based on the iterative
closest point (ICP) method [28,29], applied in the spectral domain, and is known to improve the quality
of other isometric shape matching methods.

Figures 7 and 8 compare our correspondence framework with existing methods on the TOSCA
benchmark and SCAPE, using the evaluation protocol proposed in [24]. The distortion curves describe
the percentage of surface points falling within a relative geodesic distance from what is assumed to be
their true locations. For each shape, the geodesic distance is normalized by the square root of the shape’s
area. We see that out of the methods we compared, the proposed method is second best to the blended
method, which is currently state-of-the-art.

Figure 7. Evaluation of the proposed correspondence framework applied to shapes from the
TOSCA database, using the protocol of [24].

TOSCA correspondence
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Figure 8. Evaluation of the proposed correspondence framework applied to shapes from the
SCAPE database, using the protocol of [24].

SCAPE correspondence

4. Conclusions

The Laplace–Beltrami operator (LBO) provides us with a flat eigenspace in which surfaces could
be represented as canonical forms in an isometric invariant manner. However, the order and directions
(signs) of the axises in this Hilbert space do not have to correspond when two isometric surfaces are
considered. In order to resolve such potential ambiguities, we resorted to high order statistics of the
eigenfunctions of the LBO and their interaction with the surface normal. It appears that these cross
moments allow for ordered directional matching of the components of corresponding eigenspaces. We
demonstrated that resolving the sign and order correspondence allows for shape matching in various
scenarios. In the future, we plan on extending the proposed framework to enable it to deal with more
generic transformations, like the scale-invariant metric introduced by Aflalo et al. [30].
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Appendix

A1. Discretization

A1.1. Laplace–Beltrami Eigendecomposition

We used the cotangent weight scheme for the LaplaceBeltrami operator discretization, proposed by
Pinkall et al. [31] and later refined by Meyer et al. [32]. In order to calculate the eigendecomposition of
the LaplaceBeltrami operator, we solved the generalized eigendecomposition problem, as suggested by
Rustamov [6].

Wφ = λAφ (A1)

where

wij =


cotαij+cotβij

2
i 6= j∑

k 6=i
wik i = j

(A2)

and A is a diagonal matrix. Aii equals the Voronoi area around vertex i.

A1.2. Gradient

We assume that the function f is linear over the triangle with vertices Vi, Vj, Vk with values fi, fj, fk
at the vertices. We define the local coordinates (u, v) with coordinates (0, 0), (0, 1), (1, 0) at the vertices
Vi, Vj, Vk. Because f is assumed to be linear:

∂f

∂u
= fj − fi (A3)

and:

∂f

∂v
= fk − fi (A4)

which can be written as:

∂f

∂(u, v)
=

[
∂f
∂u

∂f
∂v

]T
= (DF )T (A5)

where D =

[
−1 1 0

−1 0 1

]
and F =

fifj
fk

.

The Jacobian:

J =
∂(x, y, z)

∂(u, v)
=


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


T

= [Vj − Vi, Vk − Vi]T (A6)
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By the chain rule ∂f
∂(u,v)

= ∂f
∂(x,y,z)

∂(x,y,z)
∂(u,v)

and in matrix form:

(DF )T = (∇f)TJT (A7)

or equivalently

J∇f = DF (A8)

By taking the pseudoinverse, we get the discrete gradient operator over a triangle:

∇ = JT (JJT )−1D (A9)

A2. Application Specific Parameters

In our experiments, we used the following specific parameters for the matching algorithm:

• We matched the first N = 8 eigenfunctions from one shape to the first 10 eigenfunctions of the
other shape.

• Soft thresholding was used to define P = 2 nonlinear weighting functions wp:

w0(z) =


0, if |z| < TH

1, if |z| > 2TH

(|z| − TH)/TH otherwise

w1(z) = 1− w0(z)

(A10)

where TH = 0.1 1√∫
M da

.

• For generating the external pointwise signature ψq, the heat kernel signature (HKS) was

used [21]. In the approximation of the heat kernel signature HKSt(x) =
h∑
i=1

e−λitφ2
i (x), we used

h = 120 eigenfunctions. We used a bandpass filter form of the HKS by taking the derivative
of the heat kernel signature. The HKS derivative was logarithmically sampled Q = 6 times at
t = tq, q = 1, 2, ...Q, with t1 = 1

50λ1
and tQ = 1

λ1
. ψq were normalized according to the inner

product over the manifold.

ψq(x) =
ψ̃q(x)√∫

M
ψ̃2
q (x̃)da(x̃)

ψ̃q(x) =
∂

∂t
HKSt(x) sampled at t = tq

∂

∂t
HKSt(x) =

h∑
i=1

−λie−λitφ2
i (x)

(A11)

• For propagating the correspondence of each feature point p, the global pointwise signature
(GPS) kernel was used [6].

GPS(x, p) =
h∑
i=1

1

λi
φi(x)φi(p) (A12)
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• The relative weight parameter α was set by balancing the influence of the terms of the cost
function.

α =

∑
i,j,k

(µXi,j,k)
2 +N

∑
i,q

(µX,Si,q )2

∑
i,j,k,p

(ξXi,j,k,p)
2 +

∑
i,q,k,p

(ξX,Si,q,k,p)
2

(A13)
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