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The question whether a caricature of a 2D sketch, or an object in 3D can be generated automatically is proba-

bly as old as the attempt to answer the question of what defines art. In an attempt to provide a partial answer,

we propose a computational approach for automatic caricaturization. The idea is to rely on intrinsic geomet-

ric properties of a given model that are invariant to poses, articulations, and gestures. A property of a surface

that is preserved while it undergoes such deformations is self-isometry. In other words, while smiling, run-

ning, and posing, we do not change much the intrinsic geometry of our facial surface, the area of our body, or

the size of our hands. The proposed method locally amplifies the area of a given surface based on its Gaussian

curvature. It is shown to produce a natural comic exaggeration effect which can be efficiently computed as a

solution of a Poisson equation. We demonstrate the power of the proposed method by applying it to a variety

of meshes such as human faces, statues, and animals. The results demonstrate enhancement and exaggera-

tion of the shape’s features into an artistic caricature. As most poses and postures are almost isometries, the

use of the Gaussian curvature as the scaling factor allows the proposed method to handle animated sequences

while preserving the identity of the animated creature.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

A caricature is an illustration of an object in which some features

re exaggerated. The terms feature exaggeration usually refers to an

peration that relates measures of a given object to those of a ref-

rence one. For example, a small mouth, relates the size of a given

outh to its average in a given population. The procedure we have in

ind is one that emphasizes and extends such discrepancies. An in-

eresting question is what happens when there is no reference pop-

lation or an average to relate to. At the other end, it would be in-

riguing to design a caricaturization procedure that would have the

ame effect on an articulated object which is not affected by its pose,

r posture (Fig. 1).

The oldest caricatures known today were drawn in ancient Egypt

t about 3000 BC [2]. Later, the Greek and the Roman Empires used

aricatures to intimidate people and spread their propaganda. The

haracters in these ancient caricatures were often monstrous hy-

ridizations of humans and animals, see for example Fig. 2. In the

fteenth century, there was a change in the attitude towards cari-

atures. It has probably started with Leonardo da-Vinci, who in his

tudy and exploration for shapes and forms searched for people with

xtremely deformed facial characteristics, that he used for his scien-
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ific art. Followers of da-Vinci started to emphasize properties of faces

y exaggerating features in their drawings.

Drawing professional caricatures is a skill that requires long prac-

ice and innate talent. Skilled caricaturists are intimately familiar

ith human faces and their saddle variations. They can perceptually

ifferentiate key features in one’s face from an average one. Before

rawing, a caricaturist finds the discrepancy of common parts and

emorizes them. Then, she draws the subject while amplifying the

ore distinct characteristics. The process is described in Fig. 3. The

hoice of features and the ability to exaggerate while maintaining

he identity is where art comes into play. Obviously, personal touch

nd drawing skills would lead to different projections onto different

rtists perceptions of reality.

Several papers attempt to automate a process of caricature draw-

ng. The main efforts in this area can be divided into model-based

nd geometry-based approaches. The model based procedures are

sually designed specifically for human faces that are represented by

ome parametric model. The discrepancies between the representa-

ions of a given subject face and an average one are exaggerated. In

he geometry-based approach, intrinsic features of a shape are ex-

ggerated. Here, we show how the proposed framework bridges be-

ween these two models.

While designing an automatic exaggeration procedure a funda-

entally important property is robustness to isometric deformations,

uch as rigid body transformations, as well as changes of expressions

nd poses. Based on the above arguments, the two axioms we would
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Fig. 1. Caricaturization of a synthetic model [1]. Left to right: original model, caricature with exaggeration parameter γ = 0.25, and γ = 0.5.

Fig. 2. The Egyptian God Typhoon (left) probably goes back to 3000 BC and a Greek

Gordon (right) 600 BC as reproduced in [2].

o

f

t

G

a

p

t

d

p

w

i

t

f

s

a

e

f

r

2

r

g

a

f

p

t

p

t

d

e

like to have for an automatic shape caricaturization procedure are

thereby

• The ability to extend discrepancies with respect to a reference

model.
• Robustness or invariance to isometric deformations.

Indeed, when exaggerating a shape in motion, a key principle is

to ensure that the processed sequence of exaggerated shapes are all

related in a similar fashion to the original one. This property would

enable applying the algorithm to animated figures and 3D scans

while preserving the identity of the modified creature. Here, we

propose a caricaturization framework that obeys these guidelines.

Our axiomatic construction is based on the analysis provided in [4]

by which facial expressions and articulations are almost isometries.

Next, the simplest differential isometry invariant measure is the

Gaussian curvature. We show how to efficiently modify the geometry
f a given surface such that its area is locally amplified by some scalar

unction of the Gaussian curvature. The proposed model links be-

ween the two schools of thoughts of computerized caricaturization.

iven the correspondence between the subject shape and a reference

verage shape, the relation between the curvatures at corresponding

oints determines the local stretching of the shape. The results of

he algorithm are demonstrated to be robust to almost isometric

eformations. It is simple to incorporate the proposed framework as

art of a real-time system using the implementation consideration

e provide.

The organization of this paper is as follows. We start by review-

ng caricature generation related papers in Section 2. We next in-

roduce the proposed approach by briefly reviewing a classical sur-

ace modification technique to which we apply our axiomatically de-

igned amplification factor in Section 3. Details about discretization

nd boundary conditions are given in Section 5. Section 6 discusses

xperimental results of the model applied to synthetic and real sur-

aces, as well as potential applications. We conclude with future di-

ections in Section 7.

. Related work

The challenge of automatically generating caricatures occupied

esearchers since the 1980’s. Brennan [3] introduced the idea of exag-

erating the discrepancies between a sketch of a subject and an aver-

ge face. She developed an interactive system in which the user picks

eature points on a facial image. Simple interpolation of these points

rovides a sketch of the faces. Then, the sketch is aligned and regis-

ered to an average one, and the distances between matched feature

oints are exaggerated to construct a caricature.

Blanz and Vetter [5] proposed an extension of Brennan’s concept

o facial surfaces embedded in R
3. By finding bijective correspon-

ences between approximately 200 faces, they constructed a lin-

ar model for facial geometries and facial textures. The caricature
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Fig. 3. Abstraction of caricature drawing process, according to [3]. The artist extracts key characteristic curves of the subject from a facial image, and compares them against those

of an average face. The caricature emphasizes the discrepancies.
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onstruction procedure was implemented by increasing the distance

f the sample from the statistical mean. Their algorithm was trained

n many faces between which dense and accurate correspondences

ere manually provided.

Alkeman et al. [6] designed an interactive caricaturization frame-

ork. They provide a tool for manually tiling facial images with sim-

lices (points, lines, and triangles) and translating some of them. Us-

ng blending functions, the deformation of each triangle is interpo-

ated. They extended their system to 3D faces in [7]. In [8], Lim et al.

eveloped a mobile system for real-time caricature generation out of

acial images. A survey of these and other caricaturization techniques

an be found in [9].

At the other end, Steiner et al. [10] developed a method for en-

ancing and exaggerating planar shapes based on intrinsic (geomet-

ic) properties. They used the level set method [11] to iteratively stabi-

ize inverse geometric diffusion operators of a given curve. This exag-

eration method was intrinsic and did not require a reference average

odel.

Eigensatz et al. [12] proposed a shape deformation technique that

nables manipulating the principal curvatures at arbitrary points on

he shape. The non-linear relation between the principal curvatures

nd the shape vertex positions lead the authors to a costly non-linear

east-squares optimization process.

Kim et al. [13] proposed an interactive method for exaggerating

hape features by manipulating parts of the mesh in the frequency

omain of the Laplace–Beltrami operator. Lewiner et al. [14] devel-

ped a real-time interactive caricaturization framework that exag-

erates spectral representation of the difference between a given face

nd a template one. Cimen et al. [15] developed a method for carica-

urizing 3D meshes based on its saliency measure using Free Form

eformation techniques.
In [16], Yu et al. introduced a surface editing framework in which

he surface embedding gradients are manipulated smoothly through

solution of a Poisson equation. Chuang et al. in [17] extended that

pproach to feature enhancement and smoothing. Their technique

cales the same gradient fields and solves a modified version of the

oisson equation known as the screened Poisson equation. That equa-

ion enables balancing between the fidelity and enhancement regu-

arization of the manipulated surface.

. Surface enhancement

.1. Notations

Consider the boundary of a 3D shape as a surface or a two dimen-

ional manifold M ⊂ R
3 given in a parametric form as S : � ⊂ R

2 →
. Throughout this exposition, the surface M will be described by its

oordinates S(u, v) = {x(u, v), y(u, v), z(u, v)}, where x, y, and z are

he coordinate-functions of the manifold.

The first partial derivatives of the parametric form, Su and Sv, are

wo vectors that are tangent to the surface and linearly independent.

hus, one can set the basis for the tangent plane TpM, about a point p

S on the surface, as {Su, Sv}.

The Jacobian of the parametrization J is a 3 × 2 matrix whose

olumns are Su and Sv, respectively. We define the matrix G = JT J as

he regular metric of the surface. Clearly, G is invertible, positive defi-

ite, and can be written explicitly in terms of Su and Sv as

=
(〈Su, Su〉 〈Su, Sv〉

〈Sv, Su〉 〈Sv, Sv〉
)

. (1)

Since the basis {Su, Sv} is not necessarily orthogonal, the inner

roduct between two vectors a, b ∈TpM represented in this basis is
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Fig. 4. The proposed method is invariant to poses and articulations that are mathematically captured by almost isometric transformations. Left to right: original shape, first pose

exaggerated with γ = 0.25, first pose with γ = 0.5, second pose with γ = 0.5, second pose with γ = 0.25, and the original shape in its second pose.
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given by

〈a, b〉G = aT Gb. (2)

Next, consider two surfaces M1 and M2, and suppose we are given

a parametrization for the first surface S1(u, v). Suppose we are given

a bijective map between the surfaces φ: M1 → M2. We can then build

a parametrization for the second surface M2 by composing φ on S1.

That is, a parametrization for the second surface is given by

S2(u, v) = φ ◦ S1(u, v). (3)

Given the parametrizations for both surfaces, we can calculate the

metric matrices, G1 and G2, at each point (u, v) in the parametriza-

tion domain ,see Eq. (1). If at each point (u, v) in the parametrization

domain, G1(u, v) = G2(u, v), then φ is said to be an isometry. If there

exists an isometry between two surfaces M1 and M2, they are said to

be isometric.

A curve on one surface has the same length as that of its isometri-

cally mapped version. An area of a patch on one surface is mapped by

φ to a patch that has the same area. In fact, any geometric property

that can be measured in terms of the metric G and its derivatives and

integration with respect to u and v are preserved by the isometry φ.

We call such properties isometric invariant or intrinsic.

For each function f : S → R defined on the surface there exists

a corresponding function in the parameter domain f̃ : � ⊂ R
2 → R,

such that

f̃ (u, v) = f ◦ S(u, v). (4)
imilarly, we define a tangent vector field on the surface, �F : M → TpM,

s an assignment of a tangent vector to each point on the surface.

ince these fields are in the tangent plane, one can represent them

n terms of the basis {Su, Sv}. For each tangent vector field �F on the

urface, there exists a corresponding vector field with identical coor-

inates in the parametrization domain �̃F represented by the natural

asis of R
2.

As defined in [18], the gradient of a function on the surface, which

e term here as gradient with respect to the metric G is a differential

perator that satisfies

∇G f (p), �w〉G = dp f = lim
h→0

f (p + h �w) − f (p)

h
, (5)

or each �w ∈ TpM. It follows that

f (p + h �w) = f (p) + h〈∇G f (p), �w〉G + O(h2). (6)

or the corresponding function in the parametrization domain

f̃ (u, v),

f̃ (u0 + hw1, v0 + hw2)

= f̃ (u0, v0) + h〈∇u,v f̃ (u0, v0), �w〉 + O(h2), (7)

here p = S(u0, v0), and �w = (w1, w2). Since for some small enough

> 0, the left hand sides of (6) and (7) are equal, it follows that

∇G f (p), �w〉G = 〈∇u,v f̃ (u0, v0), �w〉. (8)

nd, therefore

� T G∇G f (p) = �wT∇u,v f̃ (u0, v0), (9)
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Fig. 5. The gradient fields of the coordinate functions at each point on the surface

reside in the tangent plane.
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or each �w ∈ TpM. This provides a formula for the gradient in terms

f the gradient of its corresponding function in the parametrization

omain f̃ and the parametrization S as

G f (p) = G−1∇u,v f̃ (u0, v0). (10)

Treating the space of functions and the space of fields on the sur-

ace as an Hilbert space, one can define inner product between two

unctions, f and g, as

f, g〉L2 =
∫
�

f (x)g(x)da (11)

nd the inner product between to vector fields, �F and �H, as

�F , �H〉F2 =
∫
�

�F (x)T G�H(x)da. (12)

ere, da =
√

det Gdudv.

The divergence is a differential operator that produces a function

rom a tangent field. It is defined as minus the adjoint operator of

he gradient, with respect to the above inner products. That is, the

ivergence of fields on a manifold, denoted as ∇G ·, satisfies

∇G · �F , g〉L2 = −〈�F ,∇Gg〉F2 , (13)

or any function g and a field �F on the surface. By integration by parts

nd assuming that g vanishes on the boundaries, one can show that

he divergence with respect to the metric of a tangent field can be cal-

ulated by

G · �F = 1√
det G

∇u,v · (
√

det G�̃F ), (14)

here �̃F is the corresponding field of �F in the parameterization

omain.

The Laplacian is a differential operator that maps functions to

unctions. The Laplacian of functions on the surface is called the

aplace–Beltrami operator and is denoted here as �G. It is de-

ned as minus the divergence of the gradient. Thereby, it can be

ritten as

G · f = 1√
det G

∇u,v · (
√

det GG−1∇u,v f̃ ) (15)

.2. Gradient-based deformation

The gradient fields of the coordinate functions with respect to a

iven metric, ∇Gx, ∇Gy and ∇Gz, define three vector fields that reside

n the tangent plane TpM, defined by Su and Sv, about each point s on

he surface p ∈ M, see Fig. 5.

The gradient-based deformation method, proposed in [16], first

ransforms each field locally and arbitrarily, ∇Gx(p) → Tp(∇Gx(p)).

n order to derive the deformed surface, S̃ = {x̃, ỹ, z̃}, whose

oordinate-functions gradient fields mostly agree with the manipu-

ated ones in a least-squares sense, the method minimizes the follow-

ng term for each coordinate function separately

‖∇Gx̃(p) − Tp(∇Gx(p))‖2da(p), (16)

S

ith similar functionals for y and z. Here, da(p) is an area element

bout the point p ∈ S. The Euler–Lagrange equation of the above func-

ional is the Poisson equation

Gx̃ = ∇G · (Tp(∇Gx)),

r in surface notation,

GS̃ = ∇G · (Tp(∇GS)). (17)

This simple method gave birth to a rich family of surface deforma-

ion techniques. For example, restricting the deformations to isome-

ries, the set of local transformations {Tp} is limited to rotation ma-

rices. In the proposed exaggeration method, we restrict ourselves to

imple scalar scaling.

Other linear mesh deformation techniques includes thin-shell [19]

nd Laplacian-based [20], to name just a few. The paper [21] reviews

ome of these techniques and compares between them. For a broader

verview of these and other related deformation methods, we refer

o [22].

Next, we define a model-based framework for relative exaggera-

ion. Let S be the surface of a given object. In addition, assume we

re given a bijective map φ : S → Ŝ, between S and the surface, Ŝ, of

given representative average object. Such maps can be obtained by

urface registration algorithms like non-rigid ICP with a sparse corre-

pondence [23].

Based on our assumptions, there are two requirements from a car-

caturization process: First, it needs to exaggerate the discrepancies

rom a given model. Second, it needs to be invariant to pose or inde-

endent of the embedding. To satisfy the latter, we propose to scale

he given surface gradient fields by some function of the absolute

aussian curvature |K| of the surface S. The choice of the Gaussian

urvature, the simplest isometry invariant differential quantity, as an

mplification factor makes our method robust to isometries of the

urface.

In order to exaggerate the discrepancies from the average model,

e choose the following function as a local scaling factor

f (p) = |K(p)|β log da(p)
dâ(φ(p)) , (18)

here β is some positive constant, da(p) is an area element about

∈ S and dâ(φ(p)) is the corresponding area element about

(p) ∈ Ŝ - the average representative surface. Note that given φ the

orresponding area elements can be easily computed by defining a

orresponding parametrization.

In warped surface elements where there is no local scaling, that

s da(p) = da(φ(p)), no exaggeration is executed. Regions that were

hrank with respect to the reference model will shrink even more,

hile those that were stretched will stretch more in the proposed

ethod . In the case where no prior average model exists, we

ould assume, for example, that log da(p)
dâ(φ(p))

= ε and thereby scale

he gradient fields by |K|γ , where γ = εβ is some non-negative

onstant.

In order to find a regular surface whose gradients with respect

o the parametrization best fits the scaled ones, we minimize the

quared difference between the tangent fields and end up with the

ollowing Poisson equation

GS̃ = ∇G · ( f (p)∇GS)

= ∇G ·
(
|K(p)|β log da(p)

dâ(φ(p)) ∇S

)
. (19)

ere, S̃ is the exaggerated surface we are looking for, and the differ-

ntial operators are taken with respect to the metric of the given sur-

ace S (Fig. 6). When there is no reference surface Ŝ, the enhancement

implifies to the solution of the following Poisson equation

GS̃ = ∇G · (|K|γ ∇GS). (20)
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Fig. 6. Model-based caricaturization of a faces. From left to right: average face model, warped model, exaggerated with β = 0.3, and β = 0.5.
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4. Isometry preservation

We define two isometric surfaces as parametrized surfaces be-

tween which an isometric map exists (see Section 3.1). By construc-

tion, the proposed surface enhancement model is robust to isometric

transformations. That is, given two isometric surfaces S1 S2, if we

can find corresponding surfaces S̃1 and S̃2 that satisfy Eq. (20) we also

have that S̃1 S̃2.

Theorem 4.1. If the surfaces S1 and S2 are isometric, and there exist two

surfaces S̃1 and S̃2 such that

∇G1
S̃1 = |K1|∇G1

S1, (21)

and

∇G2
S̃2 = |K2|∇G2

S2, (22)

then, S̃1 and S̃2 are isometric.

Proof. By definition, the metric of S̃1 can be written in terms of the

Jacobian of the parametrization as

G̃1 = J̃T
1 J̃1, (23)

where J̃1 is a matrix whose columns are S̃1u and S̃1v.

By writing the gradient of the coordinate functions of S̃1 as func-

tions on the surface S1 explicitly, we get

∇G1
S̃1 = G−1

1 ∇ S̃1

= G−1
1 J̃1. (24)

Therefore

G̃1 = ∇G1
S̃T

1G1G1∇G1
S̃1. (25)

By plugging relation (21) into the above equation, we get

G̃1 = |K1|2∇G1
ST

1G1G1∇G1
S1

= |K1|2∇ST
1∇S1

= |K1|2G1. (26)

By repeating the same derivation for S̃2, we similarly obtain

G̃2 = |K2|2G2. (27)

Since we assumed that the surfaces S1 and S2 are isometric, the metric

and the Gaussian curvatures are equal for corresponding points on

the these surfaces. Hence

|K1|2G1 = |K2|2G2. (28)

We can conclude that

G̃1 = G̃2 (29)

which proves that indeed the surfaces S̃ and S̃ are isometric. �
1 2
Since we minimize the difference between the fields on isometric

urfaces, and the divergence is intrinsic, the exaggeration is robust

o isometries in a least squares sense. In practice, surfaces which are

sometric to one another are rigidly equivalent in the discrete case.

owever, experimentally, for almost isometric shapes, the isometric

eviation of the resulting caricatures, i.e. the Gromov–Hausdorff dis-

ance, is negligible.

. Implementation considerations

One possible implementation of the proposed framework is when

pproximate continuous surfaces by triangulated meshes. In what

ollows, we briefly review discrete approximations of a continuous

unction defined on the surface, its gradient, the surface Gaussian cur-

ature, a discrete divergence operator [24], and a discrete Laplace–

eltrami operator [25]. We conclude by combining these elements

ogether for solving the system of equations (20), with some addi-

tional constraints that would fix, for example, some surface points as

boundary conditions.

For the discretization we use the finite element method (FEM),

in which every function f defined on the surface is assumed to be

piecewise linear. As such, it can be represented with the piecewise

linear basis functions {Bi}n
i = 1

as

f (x) =
n∑

i = 1

fiBi(x),

here n is the number of vertices, fi is the value of the function f at

he vertex vi, and Bi(x) is a linear B-spline function that is equal to 1

t the vertex vi and 0 at the rest of the vertices. Within each triangle

= (vi, v j, vk), f is linearly interpolated only by fi, fj, and fk. It can be

hown that the gradient of f within each triangle is constant [25], and

iven by

f (T ) = ( f j − fi)
(si − sk)

⊥

2AT

+ ( fk − fi)
(s j − si)

⊥

2AT

,

here si, sj, and sk are the coordinates of the vertices vi, vj, and vk,

espectively, ⊥ denotes the counterclockwise 900 rotation operator

n the triangle plane, and A is the area of the triangle T (Fig. 7).
T
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Fig. 7. Exaggerated shapes of dogs. Top: different poses (approximately isometric) shapes, and bottom: exaggeration with a factor γ = 0.3.
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There are different computational schemes for locally estimat-

ng the Gaussian curvature of a triangulated mesh. See [26] for a re-

iew and evaluation. Introduced in [25] is the so called Gauss–Bonnet

cheme given by

(vi) = 1

Ai

(
2π −

∑
j:v j∈N1(vi)

θ i
j

)
,

here Ai is the Voronoi area about the vertex vi, and θ i
j
s are the in-

ident angles to the vertex vi. Another scheme, presented in [27],

pproximates the second fundamental form at each vertex vi. The

igenvalues of the second fundamental form are the principal cur-

atures, k1 and k2, by which we derive the Gaussian curvature to

e K(vi) = k1(vi) · k2(vi). An implementation of this scheme in MAT-

AB is given in Gabriel Peyre’s Toolbox Graph [28]. We tested both

chemes in our experiments.

A discrete formulation of the divergence operator can be derived

rom the divergence theorem∫
∇ · �Fda =

∮
�F · n̂dl,
A ∂A w
here �F is a given vector field, and n̂ is an outward pointing unit vec-

or normal to the boundary. We assume that �F is constant within each

riangle of the mesh, and approximate its divergence at a vertex vi by

veraging the divergence over a 1-ring neighborhood

iv(�F)(vi) ∼=
∫∫

N1(vi)
∇ · �Fda∫∫

N1(vi)
da

=
∑

Tj∈N1(vi)

∫∫
A(Tj )

∇ · �Fda∑
Tj∈N1(vi)

A(Tj)

=
∑

Tj∈N1(vi)

∮
∂A(Tj )

�F · n̂dl∑
Tj∈N1(vi)

A(Tj)

=
∑

Tj∈N1(vi)

∑
ek∈Tj

�F(Tj) · ek(Tj)
⊥∑

Tj∈N1(vi)
A(Tj)

,

here N1(vi) is the 1-ring neighborhood comprised of the triangles

ncident to vi, A(Tj) is the area of the triangle Tj, and ek(Tj)
⊥ is an

utwardly directed vector normal to the kth edge of the triangle Tj

ith similar length to the edge ek(Tj).
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Fig. 8. The color of the meshes represents the approximated Gaussian curvature of the original mesh, where green denotes small values and purple large ones. From left to right:

original model, γ = 0.5, and γ = 1.

Fig. 9. The color of the meshes represents the approximated Gaussian curvature of the original mesh, where blue denotes small values and red large ones. From left to right:

original model, exaggerated with γ = 0.5, and γ = 0.75.

Fig. 10. Caricature generation for a lion. From left to right: the original model, exaggeration with γ = 0.25, and γ = 0.5.

Fig. 11. Caricature generation for a textured face. From left to right: the original model, exaggerated shape with γ = 0.5, and γ = 0.75.
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Fig. 12. Caricature generation of a faces. From left to right: original model, exaggerated with γ = 0.5, and γ = 0.75.

Fig. 13. Schnauzerization: caricature generation of a dog model. From left to right: original model, Schnauzer with γ = 0.5, and γ = 0.75.

Fig. 14. A printed face model and its caricature with γ = 0.5.

Table 1

Pre-processing and core run-times (in ms) of the proposed algorithm for exaggerating features of shapes from

TOSCA dataset.

Model name # of vertices # of faces Pre-processing runtime Core runtime

Wolf 4344 8684 349.5 7.4

Centaur 15768 31532 1538.2 29.3

Dog 25290 50528 2944.7 47.0

Human 52565 105032 7245.6 105.8
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For discretizing the Laplace–Beltrami operator, we use the cotan-

gent weight scheme for triangulated meshes [25]. We plug the values

of a given function at each vertex, fi = f (vi), to a vector, and mul-

tiply it by L = A−1W, where A is the diagonal matrix of the Voronoi

cell areas about each vertex, as introduced in [29]. W is the classic

cotangent weight matrix

i j =

⎧⎨
⎩

∑
j:v j∈N1(vi)

(cot αi j + cot βi j) if i = j

− cot αi j − cot βi j if i �= j, v j ∈ N1(vi)

0 otherwise,

where αij and β ij are the angles opposite to the edge (vi, vj).

Boundary conditions: one limitation of the proposed framework

is the fact that the Gaussian curvature is undefined along the bound-

ary of a surface. Still, many real world surfaces, like those acquired by

depth sensors, have a boundary. In practice, applying our framework

to meshes with boundaries results in shapes with distorted bound-
Fig. 15. Histogram of relative geodesic distortion (in %) between caricatures of a Centaur. Fro
ries. We need to specify the boundary of the shapes and to set proper

oundary conditions.

In order to find vertices on the boundary of the shape, we query

he neighbor triangles of each edge. If an edge is neighbor to a single

riangle, it is labeled as a boundary edge. The vertices that comprise

his edge are labeled as boundary vertices.

There are various boundary conditions that could apply to the

roposed model. Here, we describe three options, other alternatives

ould be used depending on the application. The boundary can be

ither hardly or softly constrained.

For hard constraints, we formulate the linear system as the con-

trained least-squares optimization problem

in
x̃

‖Lx̃ − b‖2
A

s.t. x̃ j = x∗, v j ∈ ∂S, (30)

here b = Div(|K|γ Grad(x)). Note that the norm is weighted by the

rea of the Voronoi cells about any vertex. Therefore, the norm can be

ritten as ‖F‖2
A

= trace
(
FT AF

)
. The linear equality constraints can be

ritten as Bx̃ = x∗, where B is a sampling matrix, in which each row

s zero, besides those that correspond to the constrained vertices. x∗

s a vector of the final positions of the constrained vertices. Using the

agrange multipliers approach, the solution to the above problem is

iven by

L B

BT 0

)(
x̃

λx

)
=

(
Div(|K|γ Grad(x))

x∗

)
. (31)

imilar systems are solved for ỹ and z̃.
m bottom to top: almost isometric centaurs, exaggeration factor γ = 0.2, and γ = 0.3.
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For soft constraints, one can add a controllable quadratic term

or manipulating the boundary vertices and minimize the following

nconstrained optimization problem

in
x̃

‖Lx̃ − b‖2
A + μ‖Bx̃ − x∗‖2

A. (32)

he solution to Problem (32) is as follows:

˜ = (LAL + μBT AB)−1(ALb + μABT x∗). (33)

The third type of boundary constraints are set by fixing γ = 0 on

elected triangles. This technique enables keeping some regions fixed

hroughout the exaggeration.

. Results and discussion

We evaluate the proposed caricature generation framework by

onducting and discussing several example use cases. First, we

emonstrate its applicability by caricaturizing a number of synthetic

urfaces and captured geometries. Then, we discuss the performance

nalysis of a real-time implementation of the proposed algorithm.

ext, we examine the robustness of the method to almost isomet-

ic deformations. We conclude the section by proposing two possible

pplications.
ig. 16. Histogram of relative geodesic distortion (in %) between caricatures of a cat. From

sometric as possible map between a cat and a dog.
.1. Qualitative evaluation

We demonstrate the power of the self-caricaturization method by

pplying it to triangulated meshes. The color of the meshes in Figs. 8

nd 9, represents the approximated Gaussian curvature at each point.

he caricatures of the armadillo model in Fig. 8 and the face in

ig. 9 demonstrate how regions with high Gaussian curvature scale

p, whereas, regions with small Gaussian curvature shrank. Regions

ith approximately constant Gaussian Curvature were scaled uni-

ormly. These caricatures were created using the geometric driven

pproach. That is, without a reference model (Fig. 10).

We tested our method on faces and shapes with boundaries, see

igs. 9, 11, and 12. A printed three dimensional replica of the shapes in

ig. 12 are presented in Fig. 14. The resulting caricatures demonstrate

n exaggeration of unique features and expressions of the subject’s

ace in a natural comical fashion. The nose was stretched while flat

egions like the cheeks, shrank, suggesting the applicability of our

ethod to face recognition (Fig. 13).

As with most mesh deformation techniques, the proposed method

ay introduce self-intersections, particularly for large exaggeration

actors. However, since we solve a Poisson equation, this intersec-

ion occurs only globally. Using post-processing self-collision han-

ling methods, such as [30], one can remove these intersections

Table 1).
bottom to top: almost isometric cats, exaggeration factor γ = 0.2, and γ = 0.3, as
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Fig. 17. 2D Multidimensional scaling of the inter-geodesic distance matrices of dogs, cats and wolves. Top: without caricaturisation. Bottom: caricaturized shapes with exaggeration

factor γ = 0.3.
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Fig. 18. 2D Multidimensional scaling of the inter-geodesic distance matrices of dogs, cats, wolves, and horses. Top: without caricaturisation. Bottom: caricaturized shapes with

exaggeration factor γ = 0.3.
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Fig. 19. Exaggerated shapes of dogs. Top: different poses (approximately isometric) shapes, and bottom: exaggeration with a factor γ = 0.3.
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6.2. Run-time analysis

The algorithm was implemented both in Matlab and in C++. For

the C++ version, we used the open source version of Eigen Library

[31]. All the experiments were executed on a 2.6 GHz Intel core i7

machine with 8 GB RAM. Run-times for various meshes from TOSCA

dataset are shown in Table 1. The pre-processing stage includes cal-

culating the Laplacian matrix, the Gaussian curvature, the gradient

of the original shape, and matrices for calculating the discrete diver-

gence efficiently. This stage could be implemented more efficiently

and in parallel. The core runtime includes taking the power of the

curvature in each triangle, multiplying the gradients fields by |K|γ ,

and solving the resulting sparse linear system.

6.3. Robustness to almost isometric deformation analysis

To evaluate the robustness of the proposed method to almost iso-

metric deformations of shapes, we applied it to shapes in two differ-

ent poses. We calculated the histograms of normalized distortion of

geodesic distances between corresponding points on the two shapes,

before and after exaggeration was applied (see Figs. 15 and 16). The

results demonstrate that caricaturizing two almost isometric shapes

indeed produces two almost isometric caricatures.

To demonstrate the isometry preservation property, we exagger-

ated the centaur shape Fig. 4 in two different poses. Figs. 19–21 show

examples of exaggerated shapes in various poses for different values

for γ .
In order to explore the power of the proposed method on se-

uences of (naturally nearly isometric) shapes in motion, we gener-

ted an artificial motion by linearly interpolating between different

oses of the same object. This interpolation was then projected onto

he space of isometries by solving a Poisson equation, as described

n [32,33]. A video demonstrating the applicability of the proposed

ramework to animated sequences was produced and is provided in

he supplementary material.

.4. Shape classification by exaggeration

A prominent task in shape analysis is the ability of a computer to

lassify shapes. To facilitate this task we propose to exaggerate the

eatures of the query shapes as a preprocessing step before classifica-

ion. This idea is justified by an experiment which shows that humans

erform better in memorizing and recognizing caricaturized faces

han regular ones, [34]. In his book about the human brain, Kurzweil

35] mentions the ability of the brain to recognize the subject behind

caricature. That is, the human pattern recognition ability is robust

o some classes of exaggerations.

We now demonstrate the power of caricaturisation in facilitat-

ng recognition of shapes undergone various almost isometric de-

ormations. First, we manually sampled corresponding points on

uadruped mammals in various poses. We then normalize the shapes

nd calculate the geodesic distances between the corresponding

oints. In order to represent each shape as a point in the plane,

e applied the Multidimensional Scaling to the geodesic distance
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Fig. 20. Exagerated human shape. From top to bottom: almost isometric shapes, exaggeration factor γ = 0.3, and γ = 0.4.
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atrices. We repeated the process after exaggerating the shapes. The

mbeddings of the shapes to the plane are presented in Figs. 17 and

8. The exaggeration is shown to separate the mammal classes, mak-

ng the classification task simpler.

.5. Application : exaggeration volume

In order to demonstrate the smoothness of the exaggeration fac-

or, we used the proposed caricaturization method for generating
ome musical video clips. We first construct a look-up table of car-

catures for equally sampled values of the exaggeration parameter γ
[0, 1]. For each video frame, we calculate the mean absolute value

olume of the audio (sound) within the corresponding time-frame

f the song. Then, we find its the closest exaggeration parameter γ
n the look-up table and set the video frame to its corresponding ren-

ered caricature. The resulting video clip shows a 3D shape caricatur-

zed in synchronization with the played song that can be animated in

eal-time as an entertainment feature.
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Fig. 21. Exagerated human shape. From top to bottom: almost isometric shapes, exaggeration factor γ = 0.3, and γ = 0.4.
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As an alternative to the volume, one can pick the self-exaggeration

parameter at each time frame based, for example, on the dominant

or median frequency of the sound track. In order for the shape to

change temporally in a smooth fashion, we averaged the sound signal

by filtering it using a causal low pass filter. The camera position in the

shape rendering process can also change in correlation with the mu-

sic. A video clip demonstrating the proposed application is provided

as a supplemental material of this paper.

7. Conclusions

We introduced a novel caricature generation framework for sur-

faces. The method scales the gradient fields of the surface coordinates
y a function of the Gaussian curvature of the surface, and solves a

orresponding Poisson equation for finding the exaggerated shape.

hen a reference shape is provided, local discrepancies are used to

mplify the scaling effect, while in the absence of a reference shape,

he reference is assumed to be a scaled down version of the given

ne thereby letting the Gaussian curvature define the relative stretch.

e justified analytically and demonstrated empirically that the pro-

osed method is invariant to isometries and thus robust to poses, ar-

iculations and postures. This important property allows us to apply

he same procedure to a shape in motion (articulation, expression,

r pose) while keeping the same perceptual identity of the result-

ng exaggerated figure. The method was applied to faces and shown

o emphasize unique features while reducing flat areas with few-flat
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etails. In the future, we plan to explore alternative ways to scale the

mbedding gradients for providing a richer user-interface for com-

uterized caricature generation.
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