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AUGMENTED-LAGRANGIAN REGULARIZATION OF

MATRIX-VALUED MAPS∗
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Abstract. We propose a novel framework for fast regularization of matrix-valued images. The
resulting algorithms allow a unified treatment for a broad set of matrix groups and manifolds. Using
an augmented-Lagrangian technique, we formulate a fast and highly parallel algorithm for matrix-
valued image regularization.

We demonstrate the applicability of the framework for various problems, such as motion analysis
and diffusion tensor image reconstruction, show the formulation of the algorithm in terms of split-
Bregman iterations and discuss the convergence properties of the proposed algorithms.
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1. Introduction. Matrix-manifolds and Matrix-valued images have become an
integral part of computer vision and image processing. Matrix-manifolds and groups
have been used for tracking [43, 56], robotics [38, 58, 10], motion analysis [45, 20],
image processing and computer vision [9, 40, 42, 45, 60], as well as medical imaging
[4, 39]. Efficient regularization of matrix-valued images is therefore highly important
in the fields of image analysis and computer vision. This includes applications such
as direction diffusion [29, 53, 59] and scene motion analysis [33] in computer vision,
as well as diffusion tensor MRI (DT-MRI) regularization [5, 15, 25, 50, 54] in medical
imaging.

We present an augmented Lagrangian method for efficient regularization of
matrix-valued images, or maps. We assume the matrix-manifold to have an effi-
cient projection operator onto it from some embedding into a Euclidean space, and
that the distortion associated with this mapping is not too large in term of the metric
accompanying these spaces.

Examples of matrix-manifolds that are of interest include the special-orthogonal
and special-Euclidean Lie-groups and the symmetric positive-definite matrices, as
well as Stiefel manifolds. We show that the augmented Lagrangian technique allows
us to separate the optimization process into a regularization update step of a map
onto an embedding-space, and a per-pixel projection step. An efficient regularization
step is shown for the total-variation (TV, [48]) regularization, and a second-order
regularization penalizing the Hessian norm. Both the regularization step and the
projection steps are simple to compute, fast and easily parallelizable using consumer
graphic processing units (GPUs), achieving real-time processing rates. The resulting
framework unifies algorithms using in several application domains into one framework,
since they differ only in the choice of projection operator. While such an optimization
problem could have been approached by general saddle-point solvers such as [12], the
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domain of our problem is not convex, requiring such algorithms to be revisited in
order to demonstrate convergent behavior.

In order to obtain fast update steps we add two auxiliary fields, with appropriate
constraints. One field approximates the gradient of the image and simplifies the
total-variation cost function minimization, as done, for example, in [11, 37, 23, 52].
Another field approximates the image, but is forced during its update to stay on
matrix manifold, turning the group constraint into a simple projection operator. This
results in a unified framework for processing of SO(n), SE(n) and SPD(n) images, as
we describe in Section 3. This framework was initially presented in a recent conference
paper [47] and we now expand upon it, with additional explanations and a partial
convergence proof. In addition, we relate in this section the proposed algorithms to
split-Bregman iterations and describe their convergence properties. In Section 4 we
demonstrate a few results of our method, in regularization of 3D motion analysis,
medical image analysis, and direction diffusion. Section 5 concludes the paper.

2. A short introduction to Lie-groups and matrix manifolds. We now
shortly describe the matrix manifolds we deal with in our algorithm. Their structure
allows us to define priors on matrix-valued data in computer vision and has been
the subject of intense research efforts, especially involving statistics of matrix-valued
data [39], optimization on matrix-manifolds [18], and regularization of matrix-valued
images [54], as well as describing the dynamics of spatial processes involving Lie-group
data [33]. Lie-groups are algebraic groups endowed with a differentiable manifold
structure and an appropriate group action. We briefly describe the Lie-groups our
algorithm deals with, and refer the reader to the literature for an introduction to
Lie-groups [26].

The rotations group SO(n) - The group SO(n) describes all rotation matrices
of the n-dimensional Euclidean space,

SO(n) =
{

R ∈ Rn×n,R
TR = I, det(R) = 1

}

.(1)

The special-Euclidean group SE(n) - This group represents rigid transfor-
mations of the n-dimensional Euclidean space. This group can be thought of as the
product manifold of the rotations manifold SO(n) and the manifold Rn representing
all translations of the Euclidean space. In matrix form this group is written as

SE(n) =

{(

R t
0 1

)

,R ∈ SO(n), t ∈ R
n

}

.(2)

The symmetric positive definite set SPD(n) - Another matrix manifold
that has an efficient projection operator is the cone of symmetric positive definite
matrices. This matrix manifold has been studied extensively in control theory (see
[19] for example), as well as in the context of diffusion tensor images [39], where
the matrices are used to describe the diffusion coefficients along each direction. By
definition, this set is given in matrix form as

SPD(n) = {A ∈ Rn×n,A ≽ 0} .(3)

3. An augmented Lagrangian regularization algorithm for matrix-
valued images. We now proceed to describe a fast regularization algorithm for
images with matrix-valued data, referred to as Algorithm 1. The standard regular-
ization problem of Lie-groups maps is formulated in terms of the Lie-algebra,

argmin
u∈G

∫

∥u−1∇u∥+ λ∥u− u0∥
2dx,(4)
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where ∥ · ∥ is the Frobenius norm, u represents an element in an embedding of the
Lie-group G into Euclidean space. We use the notation ∇u to denote the Jacobian of
u, described as a column-stacked vector. We note that we use the same notation to
represent the Lie-group element, its matrix representation, and the embedding into
Euclidean space, as specified in each case we explore.

The term ∥u−1∇u∥ can be thought of as a regularization term placed on elements
of the Lie algebra about each pixel. This formulation parallels the time derivatives
in construction of Lie-group integrators [10], and defines smoothness in the tangent
plane of the Lie-group. Smoothness expressed in the regularization term ∥u−1∇u∥
is in sense of the geometry of the Lie-group, via the Lie-algebra, but this may not
generalize to other matrix groups. Furthermore, its minimization is inefficient as it
requires computing the logarithm and exponential maps at each pixel update. In
order to obtain a fast regularization scheme that applies for all matrix groups, we
look instead at the regularity of an embedding of the Lie-group into Euclidean space,

(5) argmin
u ∈ G

∫

∥∇u∥+ λ∥u− u0∥
2dx,

where ∥∇u∥ denotes (by abuse of notation) the Frobenius norm of the Jacobian of the
map from the domain (R2 or R3) into the embedding space. This allows us to consider
also matrix manifolds that are not Lie-groups, such as symmetric positive-definite
matrices and Stiefel matrices, as part of the same framework. In our formulation,
elements of SO(n) can be embedded into Rm,m = n2, and elements of SE(n) can
similarly be embedded into Rm,m = n(n + 1). The elements of SPD(n) can be
embedded into Rm,m = n(n+ 1)/2.

The rationale behind the different regularization term ∥∇u∥ stems from the fact
that SO(n) and SE(n) are isometries of Euclidean space. Hence, the two regular-
ization are the same for these sets of matrices. In general, such a regularization can
always be defined, and can be related to the regularization term shown in Equation 4
whenever the data consists of nonsingular matrices. This regularization term has also
been used for SPD matrices [57]. We refer the reader to our technical report [46] for
a more in-depth discussion of this important point. Next, instead of restricting u to
G, we add an auxiliary variable, v, at each point, such that u = v, and restrict v to
G, where the equality constraint is enforced via augmented Lagrangian terms [27, 41].
The suggested augmented Lagrangian optimization now reads

min
v∈G,u∈Rm

max
µ

L(u, v;µ) =(6)

min
v∈G,u∈Rm

max
µ

∫
[

∥∇u∥+ λ∥u− u0∥2+
r
2∥u− v∥2 + tr(µT (u− v))

]

dx.

Given a fixed Lagrange multiplier µ, the minimization w.r.t. u, v can be split into
alternating minimization steps with respect to u and v, both of which lend themselves
to an efficient and parallel optimization. Specifically, we can further reformulate the
regularization of u in the same way as Wu and Tai [61], by introducing an auxiliary
variable p

min
v∈G,u∈Rm,p∈Rmn

max
µ

L(u, v, p;µ, µ2) =(7)

min
v∈G,u∈Rm,p∈Rmn

max
µ

∫

⎡

⎣

∥p∥+ λ∥u− u0∥2+
r
2∥u− v∥2 + tr(µT (u− v))+

r2
2 ∥∇u− p∥2 + tr(µT

2 (∇u − p))

⎤

⎦ dx,
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where µ2 is the Lagrange multiplier associated with the constraint p = ∇u, and r2 is
the related penalty coefficient.

3.1. Minimization w.r.t. v. The advantage of adding the auxiliary variable v
is that minimization w.r.t v becomes a simple projection problem per pixel,

argmin
v∈G

r

2
∥v − u∥2 + tr(µT (u− v))

= argmin
v∈G

r

2

∥

∥

∥
v −

(µ

r
+ u

)
∥

∥

∥

2
(8)

= Proj
G

(µ

r
+ u

)

,

where ProjG denotes a projection operator onto the specific matrix-group G. The
numerical update step for SO(n), SE(n) and SPD(n) will be explicitly given later
on.

3.2. Minimization w.r.t. u. The update step w.r.t u in Equation 6 is a vec-
torial TV denoising problem

argmin
u∈Rm

∫

∥∇u∥+ λ̃ ∥u− ũ (u0, v, µ, r)∥
2 dx,(9)

with ũ = (2λu0+rv+µ)
(2λ+r) . This problem can be solved via fast minimization techniques for

TV regularization of vectorial images, such as [8, 17, 22]. In our case, we regularize
the image using the algorithm [52], as we now describe. In order to obtain fast
optimization of the problem with respect to u, we add an auxiliary variable p, along
with a constraint that p = ∇u. Again, the constraint is enforced in an augmented
Lagrangian manner. The optimal u now becomes a saddle point of the optimization
problem

min
u ∈ Rm

p ∈ R2m

max
µ2

∫
[

λ̃ ∥u− ũ (u0, v, µ, r)∥
2 + ∥p∥

+µT
2 (p−∇u) + r2

2 ∥p−∇u∥2

]

dx.(10)

We solve for u using the Euler-Lagrange equation,

2λ̃(u− ũ) + (div µ2 + r2 div p) +∆u = 0,(11)

for example, in the Fourier domain, or by Gauss-Seidel iterations. We have chosen
Gauss-Seidel iterations since complete minimization of the functional is not required
at each substep.

The auxiliary field p is updated by rewriting the minimization w.r.t. p as

argmin
p ∈ R2m

∫

∥p∥+ µT
2 p+

r2
2
∥p−∇u∥2,(12)

with the closed-form solution [52]

p =
1

r2
max

(

1−
1

∥w∥
, 0

)

w,w = r2∇u− µ2.(13)
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Hence, the main part of the proposed algorithm is to iteratively update v, u, and p
respectively. Also, according to the optimality conditions, the Lagrange multipliers µ
and µ2 should be updated by taking

µk = µk−1 + r
(

vk − uk
)

,(14)

µk
2 = µk−1

2 + r2
(

pk −∇uk
)

.

An algorithmic description is summarized as Algorithm 1.

Algorithm 1 Fast TV regularization of matrix-valued data
1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), according to Equation (11). For the modified scheme as discussed

in Sub-subsection 3.4.1, use Equation 21.
3: Update pk(x), according to Equation (13).
4: Update vk(x), by projection onto the matrix group,

• For SO(n) matrices, according to Equation (19). For the modified
scheme use Equation 22.

• For SE(n) matrices, according to Equation (28). See Sub-
subsection 3.4.1 for details on how to modify the update step.

• For SPD(n) matrices, according to Equation (29). See Sub-
subsection 3.4.1 for details on how to modify the update step.

5: Update µk(x), µk
2(x), according to Equation (14).

6: end for

3.3. Split-Bregman method for matrix-valued regularization. An addi-
tional interpretation of augmented-Lagrangian total variation regularization has been
suggested in [52], relating it to split-Bregman techniques, and specifically, the method
suggested in [31]. In fact, for the case of G = Sm, the projection operator for v would
be the same as the one used in [31]. In split-Bregman iterations [24], in each iteration
a Bregman distance [7] is minimized.

Looking at the function

E (p, u, v) =

∫

∥p∥+ ∥u− u0∥
2 ,(15)

and vector sequence

dkBREG =
(

dku, d
k
p, d

k
v

)

= −
(

div µk
2 + µk, µk

2 ,−µk
)

,(16)

we use the Bregman distance

Ddk
BREG

(

(u, q, v) ,
(

uk, pk, vk
))

=(17)
∫

∥p∥+ ∥u− u0∥
2 − ∥pk∥ −

∥

∥uk − u0

∥

∥

2
−
〈

dkBREG, (u, p, v)
〉

.

Re-examining our inner update step in algorithm 1, we can reformulate our algo-
rithm (between updates of the Lagrange multipliers) in the form of a split-Bregman
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iterations
(

uk+1, pk+1, vk+1
)

=(18)

argmin
u,p,v

D(dk
u,d

k
p,d

k
v)

(

(u, p, v) ,
(

uk, pk, vk
))

+ r
2

∫

∥p−∇u∥2 + r2
2

∫

∥u− v∥2
=

argmin
u,p,v

∫

∥p∥+ ∥u− u0∥
2 +

〈

div µk
2 + µk, u

〉

+
〈

µk, p
〉

+
〈

−µk
2 , v

〉

+ r2
2 ∥p−∇u∥2 + r

2∥u− v∥2
=

argmin
u,p,v

∫

∥p∥+ ∥u− u0∥
2 +

〈

µk
2 , p−∇u

〉

+
〈

µk, u− v
〉

+ r2
2 ∥p−∇u∥2 + r

2∥u− v∥2
.

We note that we take into account the nature of v while minimizing the Bregman
distance only. In this sense, and in the choice of vector dkBREG the algorithm differs
from the split-Bregman method. This is not surprising as our domain is not neces-
sarily convex, and the convergence properties of the split-Bregman iteration cannot
automatically hold for non-convex domains. Partial convergence proofs for the algo-
rithm can be obtained in the context of the augmented-Lagrangian formulation, with
some small modification, as mentioned in the following section for non-convex matrix
manifolds.

3.4. Regularization of maps onto SO(n). In the case of G = SO(n), Al-
though the embedding of SO(n) in Euclidean space is not a convex set, the projection
onto the matrix manifold is easily achieved by means of the singular value decompo-
sition [21]. Let USVT =

(

µ
r
+ uk

)

be the SVD decomposition of µ
r
+ uk, we update

v by

vk+1 = Proj
SO(n)

(µ

r
+ uk

)

= U(x)VT (x),(19)

USVT =
(µ

r
+ uk

)

.

Other possibilities include using the Euler-Rodrigues formula, quaternions, or the
polar decomposition [32]. We note that the non-convex domain SO(n) makes the
analysis of global convergence for this scheme quite elaborate.

3.4.1. Convergent behavior of the inner iterations. Despite the non-
convex domain, and non-continuous projection operator, the inner iterations (update
of u, v, p) of a modified variant of the algorithm, in the case of G = SO(n) (and
G = SE(n)) can be easily made convergent in a weak sense using the method inspired
by the work of Attouch et al. [3], as described in our technical report [46]. In this
limited setup, we hold the Lagrange multipliers µ, µ2 fixed, and update p, u, v, mini-
mizing them as described above. Adapting our notation to that of Attouch et al. [3],
we rewrite

f(u, p) = ∥p∥+ µT
2 (p−∇u) +

r2
2
∥p−∇u∥2,(20)

g(v) = ig (v) ,

Q(u, p, v) = µT (u− v) +
r

2
∥u− v∥2,

L(u, v, p) = f(u, p) +Q(u, p, v) + g(v),

where Q, f, g would fill similar roles as in [3], and ig (v) is the indicator function for
the group g. We note that care needs to be taken when adapting the proofs from [3],
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as in our case the minimization step of v is confined to a subset of the Euclidean space
which is not an affine subspace, and hence many of the proofs utilizing the subgradient
w.r.t v need to be significantly revised. We can still, however, prove convergence of
the residuals towards zero in the following manner. We modify our update steps to
be

uk = argmin
u

L(u, pk−1, vk−1) +
1

2θ
∥u− uk−1∥2,(21)

vk = argmin
v

L(uk, pk−1, v) +
1

2θ
∥v − vk−1∥2,(22)

pk = argmin
p

L(uk, p, vk),(23)

where θ is a (finite and positive) constant coefficient. We begin by noting according
to Equation 23 that

L
(

uk, pk, vk
)

≤ L
(

uk, pk−1, vk
)

.(24)

Using Equation 22 we get

L
(

uk, pk−1, vk
)

+
1

2θ
∥vk − vk−1∥2 ≤ L

(

uk, pk−1, vk−1
)

.

Finally, using Equation 21 we get

L
(

uk, pk−1, vk−1
)

+
1

2θ
∥uk − uk−1∥2 ≤ L

(

uk−1, pk−1, vk−1
)

,

resulting in the inequality

L
(

uk, pk, vk
)

+
1

2θ
∥uk − uk−1∥2 +

1

2θ
∥vk − vk−1∥2 ≤ L

(

uk−1, pk−1, vk−1
)

,

or alternatively

∥uk − uk−1∥2 + ∥vk − vk−1∥2 ≤ 2θ
(

L
(

uk−1, pk−1, vk−1
)

− L
(

uk, pk, vk
))

.(25)

Since the sequence of L
(

uk, pk, vk
)

is non-increasing, and is bounded from below
(because of the quadratic structure of L with respect to u, v, p) for a given set of
multipliers, we know that

2θ
(

L
(

uk−1, pk−1, vk−1
)

− L
(

uk, pk, vk
))

→ 0,(26)

and therefore

∥uk − uk−1∥2 + ∥vk − vk−1∥2 → 0.(27)

Thus, we can show that the residual decreases towards 0, and give some assurance
as to the convergent behavior of the algorithm. A complete convergence analysis is not
straightforward, as mentioned in [31]. Empirical results seem to demonstrate strong
convergence properties in a variety of applications and scenarios, for a wide variety
of θ values. Convergence plots for a range of θ values is shown in Figure 1. As can be
seen, there is a slight advantage in terms of convergence speed for high θ values and
weak coupling, but in general, the method works well for a large variety of θ values.

Moreover, the case where only partial updates of u, v, p are performed is more elab-
orate and its analysis is left as future work. We note that for the case of total-variation
regularization, properties of the split-Bregman iterations with partial accuracy have
been analyzed by Yin and Osher [62].



112 G. ROSMAN ET AL.

0 500 1000 1500
10−4

10−3

10−2

10−1

100

101

102

 

 
10
1
0.1
0.01
0.001

Fig. 1. Residual plots for a variety of θ values, for the optimization problem given in Figure 2

3.5. Regularization of maps onto SE(n). In order to regularize images with
values in SE(n), we use the embedding of SE(n) into Rn(n+1) as our main optimiza-
tion variable, u, per pixel.

The projection step w.r.t. v applies only for the n2 elements of v describing the
rotation matrix, leaving the translation component of SE(n) unconstrained.

Specifically, let v = (vR, vt), vR ∈ Rn2

, vt ∈ Rn denotes the rotation and transla-
tion parts of the current solution, with a similar partition for the Lagrange multipliers
µ = (µR, µt). Updating v in line 4 of Algorithm 1 assumes the form

vk+1
R = Proj

SO(n)

(µR

r
+ uk

R

)

, vk+1
t =

(µt

r
+ uk

t

)

(28)

vk+1 = Proj
SE(n)

(vk) = (vk+1
R , vk+1

t ).

Modification of the update scheme in order to obtain weak convergence guarantees
can be done in a manner parallel to that shown in Subsection 3.4.

3.6. Regularization of maps onto SPD(n). The technique described above
can be used also for regularizing symmetric positive-definite matrices. Here, the
intuitive choice of projecting the eigenvalues of the matrices onto the positive half-
space is shown to be optimal [28]. Many papers dealing with the analysis of DT-MRI
rely on the eigenvalue decomposition of the tensor as well, i.e. for tractography,
anisotropy measurements, and so forth.

For G = SPD(n), the minimization problem w.r.t. v in step 3 of Algorithm 1
can be solved by projection of eigenvalues. Let Udiag (λ)UT be the eigenvalue
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decomposition of the matrix µ
r
+ uk. v is updated according to

vk+1 = Proj
SPD(n)

(vk) = U(x) diag
(

λ̂

)

UT (x),(29)

Udiag (λ)UT =
(µ

r
+ uk

)

,
(

λ̂

)

i
= max ((λ)i , 0) ,

where the matrix U is a unitary one, representing the eigenvectors of the matrix, and

the eigenvalues
(

λ̂

)

i
are the positive projection of the eigenvalues (λ)i. Optimization

w.r.t. u is done as in the previous cases, as described in Algorithm 1.
Furthermore, the optimization w.r.t. u, v is now over the domain Rm × SPD(n),

and the cost function is convex, resulting in a convex optimization problem. The
convex domain of optimization allows us to formulate a convergence proof for the
algorithm similar to the proof by Tseng [55], even without the modifications described
in subsection 3.4. We refer the interested reader to our technical report [46]. An
example of using the proposed method for DT-MRI denoising is shown in Section 4.
In the example we have used the same scheme as in subsection 3.4 in order to use
consistently the same algorithmic framework, although both in theory and in practice
this was not necessary in order to assure convergence.

3.7. A higher-order prior for group-valued images. We note that the
scheme we describe is susceptible to the staircasing effect, since it minimizes a total
variation regularization of the map u. Several higher-order priors can be incorporated
into our scheme, that avoid this effect. One such possible higher-order term general-
izes the scheme presented by Wu and Tai [61], by replacing the per-element gradient
operator with a Hessian operator. The resulting saddle-point problem becomes

min
u ∈ Rm

p ∈ R4m,
v ∈ G

max
µ2

∫
[

∥p∥+ λ̃ ∥u− ũ (u0, v, µ, r)∥
2

+µT
2 (p−H(u)) + r2

2 ∥p−H(u)∥2

]

dx,(30)

where H denotes the per-element Hessian operator,

(H(u))i,· =
(

D−+
xx ui, D

++
xy ui, D

++
yx ui, D

−+
yy ui

)

,(31)

where we use, for example D−+
xx to describe the second order derivative obtained by

first applying the forward and then the backward first order derivative. Minimizing
this functional with respect to p is done by shrinkage, as described in [61]. Solving with
respect to u given p is done by solving the resulting optimality system of equations
[61],

2λ̃ (u) + r2H
∗ (H(u)) = H∗(µ2) + r2H

∗ (p) + 2λ̃ũ,(32)

where H∗(·) denotes the adjoint operator for the operator H(·),

H∗(p) = D+−
xx p1 +D−−

xy p2 +D−−
yx p3 +D+−

yy p4,(33)

where pi denotes the ith element of the per-pixel vector p for each element in u,
using scalar notations in order to avoid further complicating the notation. We refer
the reader to [61] for the complete discussion and definition of these operators, and
remark that in our case, Gauss-Seidel iteration were used instead of a Fourier-domain
solver.

We show an example using the appropriately modified scheme, for the case of
G = SO(2) in Figures 2, 3.
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4. Numerical results. As discussed above, the proposed algorithmic framework
is considerable general and suitable for various applications. We now show several
examples from different applications domain to demonstrate our algorithm.

4.1. Directions regularization. Analysis of principal directions in an image
or video is an important aspect of modern computer vision, in fields such as video
surveillance [36, 30, and references therein], vehicle control [16], crowd behavior anal-
ysis [35], and other applications[40].

The input in this problem is a set of normalized / unnormalized direction vectors
located throughout the image domain, either in a dense or sparse set of locations. The
goal is to obtain a smoothed version of the underlying direction field. Since SO(2)
is isomorphic to S1, the suggested regularization scheme can be used for regularizing
directions, such as principal motion directions in a video sequence. A reasonable
choice for a data term that does not depend on the vector lengths would try to align
the rotated first coordinate axis with the motion directions in the neighborhood,

EPMD(U) =
∑

(xj ,yj)∈N (i)

(

U1,1 (vj)x + U1,2 (vj)y

)

,

where
(

xj , yj, (vj)x , (vj)y

)

represent a sampled motion particle [35] in the video se-

quence (location and velocity), and Ui,j represent elements of the solution u at each
point.

In Figure 2 we demonstrate two sparsely sampled, noisy, motion fields, and a
dense reconstruction of the main direction of motion at each point. The data for the
direction estimation was corrupted by adding component-wise Gaussian noise. In the
first image, the motion field is comprised of 4 regions with a different motion direction
at each region. The second image contains a sparse sampling of an expansion motion

field of the form v⃗(x, y) = (x,y)T−c

∥(x,y)T−c∥
, where c denotes the center of the image. Such

an expansion field is often observed by forward-moving vehicles. Note that despite
the fact that a vanishing point of the flow is clearly not smooth in terms of the motion
directions, the estimation of the motion field remains reasonable, due to the robust
nature of total-variation regularization.

Another classical example of direction diffusion is in denoising of directions in
fingerprint images. An example of direction diffusion on a fingerprint image taken
from the Fingerprint Verification Competition datasets [1] can be seen in Figure 3.
Adding a noise of σ = 0.05 to the image and estimating directions based on the
structure tensor, we then smoothed the directions field and compared it to the field
obtained from the original image. We used our method with λ = 3, and the modified
method based on Equation 30 with λ̃ = 10, as well as the method suggested by
Sagiv et al. [49] with β = 100, T = 425. The resulting MSE values of the tensor
field are 0.0317, 0.0270 and 0.0324, respectively, compared to an initial noisy field
with and MSE of 0.0449. The results demonstrate the effectiveness of our method
for direction diffusion, even in cases where the staircasing effect could have lead to
unwanted artifacts.

4.2. SE(n) regularization. An example of SE(3) valued images can be ob-
tained by doing local matches between two range scans obtained from a Kinect de-
vice. For each small surface patch from the depth image we use an iterative closest
point algorithm [13, 6] to match the surface from the previous frame. This provides
us with a field over SE(3) over the image plane for every time frame. The method is
described as Algorithm 2.
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Algorithm 2 Regularized 3D rigid motion estimation
1: for each frame t, and the scanned 3D surface at time t, St do

2: for each pixel xi ∈ St do
3: Crop a small patch around xi, Pi = St ∩Br (xi)
4: Estimate the rigid motion Ri, ti that minimizes the L2 error between Pi and

St−1, by running the iterative closest point algorithm.
5: Set u0(xi) = (Ri, ti)
6: end for

7: Perform regularization of u0 using Algorithm 1.
8: end for

Table 1
Processing times (ms) for various sizes of images, with various iteration counts.

Outer iterations 15 15 25 50 100
GS iterations 1 3 1 1 1
320× 240 49 63 81 160 321
640× 480 196 250 319 648 1295
1920× 1080 1745 2100 2960 5732 11560

We note that this measurement process is highly contaminated by non-Gaussian
noise. Despite this highly level of noise we can use our algorithm to smooth this SE(3)
image, obtaining a scale-space of SE(3) images, as shown in Figure 4. It can be seen
that for a careful choice of the regularization parameter, total variation in the group
elements is seen to significantly reduce rigid motion estimation errors. Visualization
is accomplished by projecting the embedded matrix onto 3 different representative
vectors in R12.

In order to demonstrate the efficiency of this method and its parallelizable na-
ture, we implement it using the CUDA framework, and measure the computational
time required in order to obtain practical levels of convergence, at least 3 orders of
magnitude. The computation times are shown in Table 1, for various image sizes and
iterations. Most of the examples shown are with only 1 inner iteration since this has
given us the fastest convergence, without artifacts in the final result. In the GPU
implementation the polar decomposition was chosen for its simplicity and efficiency.
In practice, one Gauss-Seidel iteration sufficed to update u. Using 15 outer iterations,
practical convergence is achieved in 49 milliseconds on an NVIDIA GTX-580 card for
QVGA-sized images, demonstrating the efficiency of our algorithm and its potential
for real-time applications. This is especially important for applications such as gesture
recognition where fast computation is crucial. We note that we do not use here the
information between more than two frames, as is often done in optical flow. Further-
more, using nonrigid deformation rather than ICP in order to compute u0 leads to
significantly better results using the same regularization scheme, as we demonstrated
[44], including segmentation of articulated motion. Comparative discussion of the
effect of various initial estimation methods is beyond the scope of this paper.

4.3. DT-MRI regularization. In Figure 5 we demonstrate a smoothing of
DT-MRI data from [34], based on the scheme suggested in Section 3.6. We show an
axial view of the brain, glyph-based visualization using Slicer3D [2], with anisotropy-
based color coding. In this visualization, the color of the glyphs marks isotropic (red)
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to anisotropic (blue/violet) tensors. The relative size of the ellipsoids denotes the
amount of diffusion (trace of the tensor), and the directions of the ellipsoids’ principal
axes align with the eigenvectors of the tensor at each point.

The noise added is an additive Gaussian noise in each of the tensor elements
with σ = 0.1. Note that while different noise models are often assumed for diffusion-
weighted images, at high noise levels the Gaussian model is a reasonable approxi-
mation. Regularization with λ = 30 is able to restore a significant amount of the
white matter structure. At such levels of noise, the TV-regularized data bias towards
isotropic tensors (known as the swell effect [14]) is less significant. The RMS of the
tensor representation was 0.0406 in the corrupted image and 0.0248 in the regularized
image. An additional application of our method is to perform regularized recon-
struction of DT-MRI signals from diffusion-weighted images (DWI). This is done by
replacing the quadratic fidelity term with a fitting term based on the Stejskal-Tanner
equation [51]. Demonstrating this application is shown in our technical report [46],
as discussion of such reconstruction terms is beyond the scope of this paper.

5. Conclusions. We propose in this paper a general framework for matrix-
valued image regularization. Our framework is based on the augmented-Lagrangian
technique, and its reformulation in terms of split-Bregman iterations is shown. Using
the augmented Lagrangian technique, we separate the optimization problem into a
TV-regularization step and a projection step, both of which can be solved in an easy-
to-implement and parallel way. Specifically, we show the efficiency and effectiveness of
the resulting scheme through several examples whose data taken from SO(2), SE(3),
and SPD(3) respectively. Our algorithms allow real-time regularization for tasks in
image analysis and computer vision.

In future work we intend to explore other applications for matrix-valued image
regularization as well as generalize our method to other modalities and domains of
the maps.
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Directions Original

Total Variation Second order TV

Directions Original

Total Variation Second order TV

Fig. 2. TV regularization of SO(n) data. Left-to-right, top-to-bottom: a noisy, TV-denoised,
and higher-order regularized (minimizing Equation 30) version of a piecewise constant SO(2) image,
followed by a expansion field direction image. Different colors mark different orientations of the
initial/estimated dense field, black arrows signify the measured motion vectors, and blue arrows
demonstrate the estimated field
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Fig. 3. TV regularization of SO(2) data based on fingerprint direction estimation. Top two
rows,left-to-right: The fingerprint image with added Gaussian noise of σ = 0.05, the detected direc-
tion angles displayed as arrows, the detected directions after regularization with using a higher-order
regularization term shown in Equation 30 with λ = 6, the regularization result by Sochen et al. [49].
Bottom two rows: color legend for the directionality images, initial estimated field, result of TV
regularization with λ = 3, higher-order regularization with λ = 6.
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Fig. 4. Regularization of SE(3) images obtained from local ICP matching of the surface patch
between consecutive Kinect depth frames. Left-to-right: diffusion scale-space obtained by different
values of λ: 1.5, 1.2, 0.7, 0.2, 0.1, 0.05 , the foreground segmentation based on the depth, and an
intensity image of the scene. Top-to-bottom: different frames from the depth motion sequence.

Fig. 5. TV denoising of images with diffusion tensor data, visualized by 3D tensor ellipsoid
glyphs colored by fractional anisotropy. Left-to-right: the original image, an image with added
component-wise Gaussian noise of σ = 0.1, and the denoised image with λ = 30.
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