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Abstract Shape recognition deals with the study geomet-
ric structures. Modern surface processing methods can cope
with non-rigidity—by measuring the lack of isometry, deal
with similarity or scaling—by multiplying the Euclidean arc-
length by the Gaussian curvature, and manage equi-affine
transformations—by resorting to the special affine arc-length
definition in classical equi-affine differential geometry. Here,
we propose a computational framework that is invariant to
the full affine group of transformations (similarity and equi-
affine). Thus, by construction, it can handle non-rigid shapes.
Technically, we add the similarity invariant property to an
equi-affine invariant one and establish an affine invariant
pseudo-metric. As an example, we show how diffusion geom-
etry can encapsulate the proposed measure to provide robust
signatures and other analysis tools for affine invariant surface
matching and comparison.

1 Introduction

Differential invariants for planar shape matching and recog-
nition were introduced to computer vision in the 1980’s
(Weiss 1988) and studied in the early 1990’s (Bruckstein et al.
1992, 1993; Cohignac et al. 1994; Bruckstein and Netravali
1995; Calabi et al. 1998; Bruckstein and Shaked 1998), where
global invariants were computed in a local manner to over-
come numerical sensitivity of the differential forms. Scale
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space entered the game as a stabilizing mechanism, for exam-
ple in Bruckstein et al. (1997), where locality was tuned by a
scalar indicating how far one should depart from the point of
interest. Along a different path, using a point matching oracle
to reduce the number of derivatives, semi-differential signa-
tures were proposed in Van Gool et al. (1992a,b), Moons et
al. (1995), Pauwels et al. (1995), Carlsson et al. (1996). Non-
local signatures, which are more sensitive to occlusions, were
shown to perform favorably in holistic paradigms (Olver
1999, 2005; Brook et al. 2005; Ling and Jacobs 2005). At
another end, image simplification through geometric invari-
ant heat processes were introduced and experimented with
during the late 1990’s, (Sapiro 1993; Alvarez et al. 1993;
Kimmel 1996). At the beginning of this century, scale space
theories gave birth to the celebrated scale invariant feature
transform (SIFT) (Lowe 2004) and the affine-scale invari-
ant feature transform ASIFT (Morel and Yu 2009), that are
used to successfully locate repeatable informative (invariant)
features in images.

Matching surfaces while accounting for deformations
was performed with conformal mappings (Lipman and
Funkhouser 2009), embedding to finite dimensional Euclid-
ean spaces (Elad and Kimmel 2001) and infinite ones (Bérard
et al. 1994; Rustamov 2007), topological graphs (Hamza and
Krim 2006; Wang et al. 2008), and exploiting the Gromov–
Hausdorff distance (Mémoli and Sapiro 2005; Bronstein et
al. 2006; Chazal et al. 2009). Which is just a subset of
the numerous methods used in this exploding field. Another
example, relevant to this paper is diffusion geometry, intro-
duced in Coifman et al. (2005) for manifold learning that was
first applied for shape analysis in Bronstein et al. (2010a).
This geometry can be constructed from the eigen-structure
of the Laplace–Beltrami operator. The same decomposition
was recently used in Sun et al. (2009), Ovsjanikov et al.
(2009), Ovsjanikov et al. (2010), Bronstein et al. (2010a) to
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construct surface descriptors for shape retrieval and match-
ing.

Some approaches in the field of shape matching, measure
the discrepancy between surfaces and volumes by weigh-
ing the effort it takes to deform one geometric structure into
another. Such geometric constructions can be used to define
a Riemannian metric on the space of all possible shapes.
These methods are popular, for example, in medical infor-
mation analysis. They incorporate statistical priors (Davies
et al. 2002), use spherical harmonics (Huang et al. 2005),
exploit global symmetric deformations (Reuter et al. 2010),
and use smooth diffeomorphic mappings (Beg et al. 2005).
Statistics of curved domains can be utilized, for example, to
overcome uncertainty, to evaluate different hypothesis, and
compare between observations (Fletcher et al. 2003; Pennec
2006). The pseudo-metric proposed in this paper applies to
the way a single shape is treated as a Riemannian structure
rather than the space of all possible shapes as a whole.

In this paper, following the adoption of metric/differential
geometry tools to image-analysis, we introduce a new geom-
etry for affine invariant surface analysis. In Raviv et al.
(2011a,b), the equi-affine invariant metric was first intro-
duced to the surface analysis arena. Invariant curvatures were
studied in Rugis and Klette (2006), Andrade and Lewiner
(2012), and a scale invariant metric was the main theme of
Aflalo et al. (2013), Bronstein and Kokkinos (2010). Here, we
introduce a framework that handles affine transformations in
its most general form including similarity. The proposed full
affine invariant geometry for non-rigid surfaces copes with
linear (affine) transformations including scaling and isome-
try.

The paper is organized as follows: In Sect. 2 we intro-
duce the affine invariant pseudo-metric. Section 3 proves the
invariance of the construction. In Sect. 4 numerical imple-
mentation considerations are discussed. Next, Sect. 5 briefly
reviews some ideas behind diffusion geometry that could be
used as a numerically stabilizing mechanism for the proposed
geometry. Section 6 is dedicated to experimental results, and
Sect. 7 concludes the paper.

2 Affine Metric Construction

We model a surface (S, g) as a compact two dimensional
Riemannian manifold S with a metric tensor g. Let us fur-
ther assume that S is embedded in R

3 by a regular map
S : U ⊂ R

2 → R
3. The Euclidean metric tensor can be

obtained from the re-parameterization invariant arc-length s
of a parametrized curve C(s) on S. As the simplest Euclid-
ean invariant is length, we search for the parameterization s
that would satisfy |Cs | = 1, or explicitly,

1 = 〈Cs, Cs〉 = 〈Ss, Ss〉

=
〈
∂S

∂u

du

ds
+ ∂S

∂v

dv

ds
,
∂S

∂u

du

ds
+ ∂S

∂v

dv

ds

〉

= ds−2
(

g11du2 + 2g12dudv + g22dv2
)

, (1)

where

gi j = 〈Si , S j 〉, (2)

using the short hand notation S1 = ∂S/∂u, S2 = ∂S/∂v,
where u and v are the coordinates of U . An infinitesimal
displacement ds on the surface is thereby given by

ds2 = g11du2 + 2g12dudv + g22dv2. (3)

The metric coefficients {gi j } translate the surface parame-
trization coordinates u and v into a Euclidean invariant dis-
tance measure on the surface. This distance would not change
under Euclidean transformations of the surface RS+b where
R is a rotation matrix in R

3. It would also be preserved w.r.t.
isometric (length preserving) transformations.

The equi-affine transformation, defined by the linear oper-
ator AS+b, where det(A) = 1, requires a different treatment,
see Blaschke (1923), Su (1983). Consider the curve C ∈ S,
parametrized by w. The equi-affine transformation is vol-
ume preserving, and thus, its invariant metric is constructed
by restricting the volume defined by Su , Sv , and Cww to one.
That is,

1 = det(Su, Sv, Cww)

= det (Su, Sv, Sww)

= det

(
Su, Sv, Suu

du2

dw2 + 2Suv

du

dw

dv

dw

+ Svv

dv2

dw2 + Su
d2u

dw2 + Sv

d2v

dw2

)

= dw−2 det
(

Su, Sv, Suudu2 + 2Suvdudv + Svvdv2
)

= dw−2
(

r11du2 + 2r12dudv + r22dv2
)

, (4)

where now, the metric elements are given by

ri j = det
(
S1, S2, Si j

)
, (5)

and we extended the short hand notation to second order
derivatives by which S11 = ∂2 S

∂u2 , S22 = ∂2 S
∂v2 , and S12 = ∂2 S

∂u∂v
.

Note, that the second fundamental form in the Euclidean case
is given by bi j = √

gri j where g = det(gi j ) = g11g22 −g2
12.

The equi-affine re-parametrization invariant metric (Su 1983;
Blaschke 1923) reads

qi j = |r |− 1
4 ri j , (6)

where r = det(ri j ) = r11r22 − r2
12.

This equi-affine metric applies to surfaces with positive
Euclidean Gaussian curvature, that are oriented so as to pro-
vide positive squared distances. See also Raviv et al. (2011a).
At hyperbolic points, when the Euclidean Gaussian curvature
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Fig. 1 Voronoi diagrams of ten points selected by farthest point sampling. Diffusion distances were used based on Euclidean metric (top) and an
affine invariant one (bottom)

is negative, we have one positive and one negative eigenvalue
of the metric r . In this case, we set the metric tensor to be

zero. Numerically, we assign (qi j ) = εI = ε

(
1 0
0 1

)
met-

ric to that point, where ε is a small constant. That is, such
regions would practically be ignored by the proposed geom-
etry (Raviv et al. 2013). Note that as S is a compact manifold,
we can define a continuous shrinkage of the metric while the
error is kept at the order of ε. In our implementation we chose
a small ε at all hyperbolic and parabolic points. It was numer-
ically validated and supported by the experimental results for
the non-trivial surfaces reported in this paper.

Next, we resort to the similarity (scale and isometry)
invariant metric proposed in Aflalo et al. (2013). Scale invari-
ance is obtained by multiplying the metric by the Gaussian
curvature. In metric notations, the Gaussian curvature K is
defined as the ratio between the determinants of the second
and the first fundamental forms. We propose to compute the
Gaussian curvature with respect to the equi-affine invariant
metric, and then construct a new metric by multiplying the
equi-affine metric elements by the equi-affine Gaussian cur-
vature. Specifically, consider the surface (S, q), where qi j

is the equi-affine invariant pseudo-metric, and compute the
equi-affine Gaussian curvature K q of (S, q) at each point.
The affine invariant pseudo-metric is then defined by

hi j = ∣∣K q
∣∣ qi j . (7)

Let us next prove the affine invariance of the above construc-
tion for surfaces.

3 Invariance Properties

In this section we prove affine invariance of the proposed
pseudo-metric. Let us first justify the scale invariant metric
constructed by multiplication of a given Euclidean metric by
the Gaussian curvature.

Theorem 1 Let K be the Gaussian curvature of a surface S,
and gi j the elements of its Riemannian metric. Then, |K |gi j

is a scale invariant metric.

Proof Let the surface S be scaled by a scalar α > 0, such
that

S̃(u, v) = αS(u, v). (8)

In what follows, we omit the surface parameterization u, v

for brevity, and denote the a quantity y computed for the
scaled surface by ỹ. The first and second fundamental forms
are scaled by α2 and α respectively,

g̃i j = 〈αSi , αS j 〉 = α2〈Si , S j 〉 = α2gi j ,

b̃i j = 〈αSi j , N 〉 = α〈Si j , N 〉 = αbi j , (9)

which yields

det(g̃) = α4 det(g)

det(b̃) = α2 det(b). (10)

Since the Gaussian curvature is the ratio between the deter-
minants of the second and first fundamental forms, we readily
have that

K̃ ≡ det(b̃)

det(g̃)
= α2 det(b)

α4 det(g)
= 1

α2 K , (11)

from which we conclude that multiplying the Euclidean met-
ric by the magnitude of its Gaussian curvature indeed pro-
vides a scale invariant metric. That is,

|K̃ |g̃i j =
∣∣∣∣ 1

α2 K

∣∣∣∣α2gi j = |K |gi j . (12)

	

Theorem 2 Let ri j = det

(
S1, S2, Si j

)
, and qi j = |r |− 1

4 ri j ,
then, qi j is an equi-affine invariant quadratic form.

For proof see Su (1983).

Corollary 1 Let Q = (qi j ) = U�UT and � =
(

γ1 0
0 γ2

)

then,

Q̂ =
⎧⎨
⎩

U
( |γ1| 0

0 |γ2|
)

UT if sign(γ1)sign(γ2) > 0

0 if sign(γ1)sign(γ2) ≤ 0,

is an equi-affine invariant pseudo-metric.
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Fig. 2 The 9’th LBO eigenfunction textured mapped on the sur-
face using four different metrics, from left to right: Euclidean, scale-
invariant, equi-affine, and affine. Deformations from top to bottom:
None, local scale, equi-affine, and affine. At the top, the accumulated

(histogram) values of the eigenfunction are displayed. The blue curve
depicts the original shape, red the a locally scaled one, green the equi-
affine and black the affine transformation (Color figure online)

Proof According to Su (1983), the tensor Q is re-parametriza
tion equi-affine invariant form for all elliptic points. For
all elliptic points with γ1, γ2 > 0, we have the local met-
ric structure Q̂ = Q. For all elliptic points with γ1, γ2 <

0, we use our freedom of surface orientation to obtain
positive distances. In other words, by virtually changing
the surface orientation we obtain a re-parametrization
invariant metric structure with two positive eigenvalues,
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Fig. 3 Affine heat kernel signatures for the regular metric (left), and
the invariant version (right). The blue circles represent the signatures
for three points on the original surface, while the red plus signs are

computed for the deformed version. Using log–log axes, we plot the
scaled-HKS as a function of t (Color figure online)

Q̂ = U
( |γ1| 0

0 |γ2|
)

UT. For all hyperbolic, and parabolic

points we have a trivial invariant Q̂ = 0, that altogether con-
struct the equi-affine invariant pseudo-metric. 	


Using Brioschi formula (Gray et al. 2006) we can evaluate
the Gaussian curvature directly from the metric and its first
and second derivatives. Specifically, given the metric tensor
qi j , we have

K q ≡ β − γ

det2(q)
, (13)

where

β =

det

⎛
⎝ − 1

2 q11,vv + q12,vu − 1
2 q22,uu

1
2 q11,u q12,u − 1

2 q11,v

q12,v − 1
2 q22,u q11 q12

1
2 q22,v q12 q22

⎞
⎠

γ = det

⎛
⎝ 0 1

2 q11,v
1
2 q22,u

1
2 q11,v q11 q12
1
2 q22,u q12 q22

⎞
⎠ , (14)

here qi j,u denotes the derivation of qi j with respect to u, and
in a similar manner qi j,uv is the second derivative w.r.t. u and
v. Same notations follow for qi j,v , qi j,vv , and qi j,uu .

Corollary 2 Let q be the equi-affine metric. Then, K q is an
equi-affine invariant curvature.

Proof From Brioschi’s formula we have that the curvature
can be evaluated directly from the metric and its derivatives.
Hence, as by Corollary 1 the metric is equi-affine invariant,
it follows that so does the equi-affine Gaussian curvature. 	

Corollary 3 Let K q be the equi-affine invariant Gaussian
curvature, then the metric defined by hi j = |K q | qi j is scale
invariant.

Proof Scaling the surface S by α, the corresponding equi-
affine invariant components are

r̃i j = det(αS1, αS2, αSi j ) = α3ri j

r̃i j,u = α3ri j,u

r̃i j,uv = α3ri j,uv

det(r̃) = α6 det(r), (15)
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Fig. 4 Diffusion distances—Euclidean (left) and affine (right)—is measured from the nose of the cat after non-uniform scaling and stretching.
The accumulated (histogram) distances (at the bottom) are color-coded as in Fig. 2 (Color figure online)

that leads to

q̃i j = r̃i j

(det(r̃))
1
4

= α3ri j

(α6 det(r))
1
4

= α
3
2 qi j , (16)

that yields det(q̃) =
(
α

3
2

)2
det(q) = α3 det(q). Denote the

equi-affine Gaussian curvature of the scaled surface S̃ = αS
by K̃ q . We have that

β̃ =
(
α

3
2

)3
β,

γ̃ =
(
α

3
2

)3
γ,

K̃ q = β̃ − γ̃

det2(q̃)
=

(
α

3
2

)3
(β − γ )

(
α3

)2 det2(q)
= α− 3

2 K q . (17)

It immediately follows that

|K̃ q |q̃i j = |K̃ q |α 3
2 qi j = |α− 3

2 K q |α 3
2 qi j = |K q |qi j (18)

which concludes the proof. 	

Theorem 3 hi j is an affine invariant pseudo-metric.

Proof Putting corollaries 1, 2 and 3 together, we obtain the
main result of this paper; Namely, hi j is equi-affine invariant
as well as scale invariant and thus affine invariant. 	


4 Implementation Considerations

Given a triangulated surface we use the Gaussian curvature
approximation proposed in Meyer et al. (2003) while oper-
ating on the equi-affine metric tensor. The Gaussian curva-
ture for smooth surfaces can be defined using the Global
Gauss-Bonnet Theorem, see Do Carmo (1976). Polthier and
Schmies used this property to approximate the Gaussian
curvature of triangulated surfaces in Polthier and Schmies
(1998). Given a vertex in a triangulated mesh that is shared
by p triangles such that the angle of each triangle at that
vertex is given by θi , where i ∈ 1, . . . , p. The Gaussian
curvature K at that vertex can be approximated by

K ∼= 1
1
3

∑p
i=1 Ai

(
2π −

p∑
i=1

θi

)
, (19)

where Ai is the area of the i-th triangle, and θi is the cor-
responding angle of the i-th triangle touching the vertex for
which K is being approximated.

The metric tensor translates angles, distances, and areas
from the parametric plane to the surface. Let us justify some
known relations, as we use them in our numerical construc-
tion of the affine metric.

Corollary 4 Consider a triangle ABC ={S(u0, v0), S(u0+
du, v0), S(u0, v0 + dv)}, infinitesimally defined on the sur-
face S(u, v) with metric (qi j ), then,

cos θA = q12√
q11q22

. (20)

Proof Consider the above infinitesimal triangle ABC . For
simplicity of notations let du = dv = 1. The length of the
edges of the triangle would then be l2

c = (1 0)(qi j )(1 0)T =
q11, l2

b = q22, and l2
a = (1 1)(qi j )(1 1)T = q11 −2q12 +q22.

From the law of cosines we readily have that

cos θA = q11 + q22 − (q11 − 2q12 + q22)

2
√

q11q22
= q12√

q11q22
.

	

Corollary 5 The area of the above triangle can be expressed
by the metric coefficients as AABC = 1

2

√
det(qi j ).

Proof From Corollary 4 we have that

sin2 θA = 1 −
(

q12√
q11q22

)2

= q11q22 − q2
12

q11q22
.

The area of the triangle is half the length of its base multiplied
by its height,

AABC = 1

2
√

q22

⎛
⎝√

q11

√
q11q22 − q2

12

q11q22

⎞
⎠ = 1

2

√
det(qi j ).

	

Consider the surface S given by its three coordinate

functions x(u, v), y(u, v) and z(u, v), where, for example,
x : U ∈ R

2 → R, and

S(u, v) =
⎛
⎝x(u, v)

y(u, v)

z(u, v)

⎞
⎠ . (21)
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Fig. 5 Voronoi diagrams using ten points selected by the farthest point sampling strategy. The commute time distances were evaluated using the
Euclidean metric (top) and the proposed affine one (bottom)

In order to evaluate the equi-affine metric the surface is first
locally approximated by a quadratic form. For each triangle
we approximate

S(u, v) =
⎛
⎝x(u, v)

y(u, v)

z(u, v)

⎞
⎠ ≈ C

⎛
⎜⎜⎜⎜⎜⎜⎝

1
u
v

uv

u2

v2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

where the matrix C3×6 contains 18 parameters. The local
coefficients matrix C is evaluated from six surface points
(vertices). Three vertices belong to the triangle for which
the metric is evaluated, and three to its nearest neighboring
triangles.

The equi-affine metric coefficients for each triangle are
then evaluated from our local quadratic approximation
of S(u, v) and its corresponding derivatives. Finally, the
Gaussian curvature with respect to the equi-affine metric is
approximated for each vertex from the local area and angle
distortions as defined by the metric, see Eq. (19). In order
to construct the full-affine invariant metric we need to scale
the equi-affine metric by the equi-affine Gaussian curvature.
To that end, the curvature is linearly interpolated, from its
values at the vertices, at the center of each triangle.

Finally, following Raviv et al. (2011a), we use the finite
elements method (FEM) presented in Dziuk (1988) to
compute the spectral decomposition of the affine invariant
Laplace–Beltrami operator constructed from the metric pro-
vided by Eq. (7). The decomposition based on an affine
invariant pseudo-metric provides invariant eigenvectors and
corresponding invariant eigenvalues.

The equi-affine metric is well defined only at elliptic points
(Su 1983), that is, points with positive Euclidean Gaussian

curvature. At parabolic and hyperbolic points the equi-affine
metric trivially degenerates to zero, while at elliptic points
the local surface orientation is defined so as to provide pos-
itive distances. In order, to numerically handle non-elliptic
surface points we assigned a small εI to be the metric matrix.
The O(ε) error introduced to geodesic distances measured
with such a regularization is bounded by εD, where D is
the diameter of the surface. As many interesting shapes are
dominated by elliptic points, the error is often smaller than
the above upper bound.

5 Metric Invariant Diffusion Geometry

Diffusion Geometry introduced in Coifman et al. (2005);
Coifman and Lafon (2006), deals with geometric analysis of
metric spaces where usual distances are replaced by integral
difference between heat kernels. The heat equation
(

∂

∂t
+ 
h

)
f (x, t) = 0, (23)

describes the propagation of heat, where f (x, t) is the heat
distribution at a point x in time t . Initial conditions are given
as f (x, 0), and 
h is the Laplace Beltrami operator with
respect to the metric h. The fundamental solution of (23) is
called a heat kernel, and using spectral decomposition it can
be written as

kt (x, x ′) =
∑
i≥0

e−λi tφi (x)φi (x ′), (24)

where φi and λi are the corresponding eigenfunctions and
eigenvalues of the Laplace–Beltrami operator satisfying


hφi = λiφi . (25)
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Fig. 6 Matching two shapes using the GMDS Bronstein et al. (2006)
framework with diffusion distances. The affine (right) metric finds the
proper correspondence as expected unlike the Euclidean one (left) which

is sensitive to non-uniform stretching. Corresponding surface segments
share the same color (Color figure online)

As the Laplace–Beltrami operator is an intrinsic geometric
quantity, it can be expressed in terms of a metric h of the
surface S.

The value of the heat kernel kt (x, x ′) can be interpreted as
the transition probability density of a random walk of length
t from point x to point x ′. The length for time t defines a
family of diffusion distances

d2
t (x, x ′) =

∫ (
kt (x, ·) − kt (x ′, ·))2

da

=
∑
i>0

e−2λi t (φi (x) − φi (x ′))2, (26)

between any two surface points x and x ′. Special attention
was given to the diagonal of the kernel kt (x, x), that was
proposed as robust local descriptor, and referred to as the
heat kernel signatures (HKS), by Sun et al. in Sun et al.
(2009).

6 Experimental Results

The first experiment presents eigenfunctions of the Laplace
Beltrami operator defined by various metrics and different
deformations. In Fig. 2 we present the 9’th eigenfunction
textured mapped on the surface using a Euclidean metric,
scale invariant, equi-affine and the proposed affine invariant
pseudo-metric. At each row a different deformation of the
surface is presented. Local scaling was applied to the shapes
at the second row, while surfaces on the third row under-
went volume preserving stretching (equi-affine). The bottom
row shows a full affine transformation that was applied to
the surface (including local scaling). The accumulated his-
togram values of the corresponding 9’th eigenfunction are
plotted at the top of each column. Blue is used for the orig-
inal shape, red for the locally scaled one, green for the equi-
affine transformed one, and black for the affine transformed
version.

In the second experiment, shown in Fig. 3, we evaluate the
Heat Kernel Signatures of a surface subject to an affine trans-
formation using the Euclidean metric and the affine pseudo-

metric. We plot the signatures using log-log axes for three
different corresponding points on the surfaces.

The third experiment, Fig. 4 shows diffusion distances
measured from the nose of a cat after anisotropic scaling and
stretching as well as an almost isomeric pose transformation.

Next, we compute the Voronoi diagrams for ten points
selected by the farthest point sampling strategy, as seen in
Figs. 1 and 5. Distances are measured with the global scale
invariant commute time distances (Qiu and Hancock 2007),
and diffusion distances receptively, using a Euclidean and the
proposed affine metrics. Again, the affine metric is proven to
be invariant to affine transformations as expected.

In the next experiment we used the affine metric for find-
ing the correspondence between two shapes. We used the
GMDS framework (Bronstein et al. 2006) with diffusion dis-
tances using the same initialization for both experiments.
Figure 6 displays the Voronoi cells of matching surface
segments.

Finally, we evaluated the proposed metric on the SHREC
2010 dataset (Bronstein et al. 2010b) using the shapeGoogle
framework (Ovsjanikov et al. 2009), while introducing four
new deformations; equi-affine, isometry and equi-affine,
affine, and a combination of isometry and affine. Table 1
shows that the new affine metric discriminative power is as
good as the Euclidean one, performs well on scaling as the
scale invariant metric, and similar to the equi-affine one for
handling volume preserving affine transformations. More-
over, the new metric is the only one capable of dealing with
the full affine deformations. Note that shapes which were
considered to be locally scaled in that database, were in
fact treated with an offset operation (morphological erosion)
rather than scaling. This explains part of the performance
degradation in the local scale examples.

Performance was evaluated using precision/recall charac-
teristics. Precision P(r) is defined as the percentage of rele-
vant shapes in the first r top-ranked retrieved shapes. Mean
average precision (mAP) is defined as mAP = ∑

r P(r) ·
rel(r), where rel(r) the relevance of a given rank, was
used as a single measure of performance. Intuitively, mAP
is interpreted as the area below the precision-recall curve.
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Table 1 Performance of different metrics with shape Google framework (mAP in %)

Strength

Transformation 1 ≤2 ≤3 ≤4 ≤5

Affine invariant pseudo-metric
Isometry 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 100.00 98.72 98.97

Shot noise 100.00 100.00 98.72 97.60 97.05

Scale 28.87 56.74 61.42 53.75 47.77

Local scale 100.00 100.00 98.72 91.79 87.40

Equi-affine 100.00 98.08 92.52 87.72 83.05

Iso+equi-affine 100.00 97.12 92.95 85.32 79.99

Affine 88.46 77.79 70.81 65.21 61.21

Isometry+affine 88.46 77.82 73.76 68.35 64.60

Scale invariant metric

Isometry 100.00 100.00 100.00 100.00 100.00

Micro holes 100.00 92.12 84.66 78.90 74.96

Noise 100.00 95.00 92.42 87.49 81.62

Shot noise 100.00 100.00 97.01 94.94 92.21

Scale 100.00 100.00 100.00 100.00 100.00

Local scale 100.00 97.44 94.87 90.21 82.98

Equi-affine 81.03 72.35 65.82 61.55 59.86

Iso+equi-affine 81.03 74.13 63.93 61.17 62.30

Affine 100.00 90.87 87.36 84.64 81.99

Isometry+affine 100.00 93.75 89.64 84.33 83.11

Equi-affine invariant pseudo-metric

Isometry 100.00 100.00 100.00 100.00 100.00

Micro holes 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 91.88 83.72 75.62

Shot noise 100.00 100.00 100.00 97.12 92.31

Scale 29.82 50.81 48.34 43.16 39.89

Local scale 100.00 100.00 95.51 87.81 81.08

Equi-affine 100.00 100.00 100.00 100.00 100.00

Iso+equi-affine 100.00 100.00 100.00 100.00 100.00

Affine 75.90 60.35 52.54 47.82 43.86

Isometry+affine 75.46 59.59 52.08 47.39 44.34

Affine invariant pseudo-metric

Isometry 100.00 100.00 98.72 99.04 99.23

Micro holes 100.00 100.00 98.08 97.02 95.53

Noise 100.00 95.51 94.02 94.55 94.87

Shot noise 100.00 100.00 100.00 99.04 97.69

Scale 94.87 97.44 98.29 95.03 92.40

Local scale 100.00 100.00 98.29 96.47 92.07

Equi-affine 100.00 100.00 96.79 96.63 96.08

Iso+equi-affine 100.00 98.08 93.80 94.39 94.36

Affine 96.15 95.51 95.73 95.83 96.67

Isometry+affine 96.15 98.08 97.44 98.08 98.46
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Ideal retrieval (mAP=100 %) is achieved when all queries
provide the correct answer as first match. Performance
results are summarized by the transformation class and
strength.

7 Conclusions

A new affine invariant pseudo-metric for surfaces was intro-
duced. Assuming the limbs of an articulated objects are con-
nected with non-elliptic regions, the proposed differential
structure allows us to cope with per-limb stretching and scal-
ing of the surface. We demonstrated the proposed geome-
try by incorporating it with known shape analysis tools that
were evaluated by computing the correspondence, matching,
and retrieval of synthetic surfaces. The power to deal with
a richer set of transformations when analyzing shapes has
already proven to be useful in the analysis of textured shapes
as shown in Kovnatsky et al. (2012). We hope that the pro-
posed affine geometry could be found useful in the future for
shape processing and analysis applicants.
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