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Graph Isomorphisms and Automorphisms via
Spectral Signatures

Dan Raviv, Ron Kimmel Fellow, IEEE, and Alfred M. Bruckstein

Abstract—An isomorphism between two graphs is a connectivity preserving bijective mapping between their sets of vertices. Finding
isomorphisms between graphs, or between a graph and itself (automorphisms) is of great importance in applied sciences. The inherent
computational complexity of this problem is yet unknown. Here, we introduce an efficient method to compute such mappings using heat
kernels associated to the graph Laplacian. While the problem is combinatorial in nature, in practice we experience polynomial runtime
in the number of vertices. As we demonstrate, the proposed method can handle a variety of graphs, and is competitive with state of the
art packages on various important examples.

Index Terms—Graph isomorphism, Graph symmetries, Graph automorphisms, Graph Laplacian, Heat kernel maps, Heat kernel
signatures
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1 INTRODUCTION

A one to one mapping between the vertex sets of two
given graphs, such that connectivity is preserved, is
called an isomorphism or graph-isometry. Mapping a
graph to itself in a similar structure preserving man-
ner is an automorphism or graph-symmetry. There is
no known polynomial-time algorithm for finding such
mappings, and the problem was never classified as NP-
complete. The graphs can be directed or undirected,
weighted or unweighted, and possibly even discon-
nected. Here, we limit our discussion to the problem
of graph symmetry/isometry extraction for undirected,
weighted and unweighted, connected graphs.

Symmetries and isometries of graphs play an impor-
tant role in modern science. In chemistry for example,
symmetries can predict chemical properties of a given
material [1], as molecules can be classified according to
symmetries of the graph representing the connectivity
between their atoms.

Babai and Lukas’ paper [2] on permutation groups,
provided an upper bound of exp(

√
n logn) for finding

graph symmetry/isometry, where n is the number of
vertices in the graph. Restricting the structure of the
graph better bounds were found. Such restrictions in-
volve limiting the degree of vertices [3], or consideration
of hyper graphs of fixed rank [4]. For some special
type of graphs even linear complexity was proven. Such
graphs include interval graphs [5], planar graphs [6], and
graphs with bounded eigenvalue multiplicity [7].

Treating either very simple types of graphs or dealing
with exponential complexity poses a challenge for ap-
plied sciences. Heuristic approaches for general graphs
have been proposed and were found to be quite efficient
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in many practical applications. Some, e.g. [8], [9] sug-
gested to use the branch-and-bound approach, which is
an exhaustive search algorithm with pruning that can
be applied to graphs with a small number of vertices.
Gori et al. [10] experimented with random walks, while
Umeyana [11] investigated the eigen-decomposition of
the adjacency matrix. Several fast canonical labeling
algorithms were proposed to address the graph-isometry
problem, such as Ullmann’s algorithm [12], VF [13] and
VF2 [14]. In addition, software packages implementing
fast labeling such as Bliss [15], Nauty [16] and Saucy [17]
are well known. These tools can detect isometries and
symmetries for graphs with tens of thousands of vertices
quite efficiently for many different graphs.

Isometries of shapes can sometimes be translated to
isomorphisms of graphs. Bèrard et al. [18] considered
embedding of Riemannian manifolds into an infinite di-
mensional Euclidean space defined by the eigenfunctions
of the Laplace Beltrami operator in order to compute
the Gromov-Hausdorff distance between such geometric
structures. Rustamov [19] applied this idea to surface
matching. Horaud et al. [20] proposed a matching pro-
cess based on the eigenvectors of the Laplace Beltrami
operator, Sun et al. [21] noted that the diagonal of the
heat kernel is a stable shape descriptor when evaluated
in several scales, while Ovsjanikov et al. [22] used heat
kernels to find correspondences between shapes, and
Xiao et al. [23] discussed the structure of graphs as
reflected in the heat kernel trace. This research led to
a variety of algorithms which define and search approx-
imate symmetries and isometries [24], [9] between two
and high dimensional shapes.

This paper was motivated by the Ovsjanikov et al. pa-
per [22] on isometries between surfaces. They discussed
structures with one possible symmetry which lead to-
wards a simple (one point) matching algorithm based
on heat distribution. In this note we consider shapes
(graphs) with many automorphisms and the ambiguity
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of their heat kernel maps.
We provide theoretical support for the uniqueness

of the signatures and justify the fact that a subset of
matching vertices is sufficient for solving the problem
as a whole. We then propose a greedy algorithm for
handling signatures in a process of finding isometries
and symmetries, which is exponential in the worst case,
yet appears to be linear (in the number of symmetries)
in practice.

The rest of the paper is organized as follows; Section 2
reviews three definitions of graph Laplacians, followed
by Section 3 where the heat kernel signatures are defined
and discussed. Section 4 is devoted to a method for
evaluating spectral signatures, and Section 6 describes
the proposed isomorphism computation algorithm. We
provide numerical validation in Section 7 and conclude
in Section 8.

2 GRAPH LAPLACIAN

A graph G = (V,E) is defined as a set of vertices V
and edges E ⊆ V ×V describing the vertex connectivity.
In this note we consider G to be undirected, connected,
without trivial loops. We define the symmetric adjacency
matrix A by

A(u, v) =

{
1 if (u, v) ∈ E
0 otherwise , (1)

and the diagonal matrix D(u, u) = deg(u) u ∈ V
displaying the vertices’ degrees.

In the literature there are two alternative definitions
for graph Laplacians, a standard and a normalized Lapla-
cian [25]. The standard Laplacian is defined as

L = D −A, (2)

while the normalized Laplacian is given by

L̂ = D−
1
2LD−

1
2 . (3)

Both Laplacians are positive semidefinite, and, hence,
have nonnegative eigenvalues. The normalized version’s
eigenvalues are bounded by 2 from above, but both are
adequate for our framework.

A weighted Laplacian can also be defined, which we
shall use in evaluating approximate symmetries, also
known as ε-symmetries [24]. In this case the adjacency
matrix is defined as

Ã(u, v) =

{
w(u, v) if (u, v) ∈ E
0 otherwise , (4)

and the diagonal matrix becomes D̃(u, u) =∑
(u,v)∈E

w(u, v). The weighted Laplacian is defined

as before

L̃ = D̃ − Ã. (5)

The weights w(u, v) for graphs with vertices embedded
in a metric space can be computed using l2 or l1 distances
between the spatial location of the vertices.

3 HEAT KERNEL SIGNATURES

One way to analyze graphs is based on heat flows. In
nature heat diffusion is governed by the heat equation(

Δ+
∂

∂t

)
f(x; t) = 0, (6)

where Δ represents the continuous Laplace-Beltrami op-
erator, and f : X×R

+ → R a time varying scalar function
on the manifold X . Substantial research in geometry
was done to analyze the heat equation in general, and
specifically the Laplace Beltrami operator. One branch of
modern shape analysis focuses on spectral properties of
the Laplacian operator to address problems from shape
matching to shape retrieval. Here, we follow this line of
research in the discrete domain of graphs.

The heat kernel, which is the impulse response solu-
tion of (6), describes the heat flow between vertices, and
can be evaluated from the spectral decomposition of the
Laplacian [25]

Kt(x, y) =

|V |∑
l=0

e−λltφl(x)φl(y), (7)

where λl, φl are the eigenvalues and eigenfunctions of
the Laplacian, and x, y ∈ V . As we consider symmetric
Laplacian such decomposition always exists.

In shape analysis, a special attention was given to
the diagonal of the heat kernel Kt(x, x). Sun et al. [21]
introduced a robust local shape descriptor referred to
as heat kernel signature (HKS), that is evaluated from the
heat propagation at different scales. In addition to the
diagonal, additional information can be extracted from
the rows of the kernel. A vertex q at time t, defines a
map from the vertices of a graph to R by considering the
mapping Kt(q, ·) : X → R, known as a heat kernel map
[22]. These maps play a major role in the forthcoming
construction.

4 SPECTRAL SIGNATURES

In what follows we build a unique descriptor for each
vertex in the graph (V,E) based on the eigendecompo-
sition of the Laplacian, and a subset of k graph vertices.

We define a k-signature Sk(u) for a vertex u based on
k chosen vertices {pi}ki=1 and |T | times

{
t1, t2, ..., t|T |

}
,

to be the vector of length |T | × k

Sk(u) =
(
Kt(p

i, u)
)k
i=1

t ∈ T, (8)

where we concatenate all kernel values to one column
signature.

We shall show that for every undirected, connected
graph, there exists a subset of vertices {pi}i which
defines a unique signature Sk(u) for every vertex given
|V | times are used, meaning that:

Sk(u) = Sk(v) → u = v, (9)

and, as shown in the next section, this signature is also
unique for isomorphic graphs. In some cases k = |V |
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chosen vertices are needed, for examples in cliques, but
surprisingly in many instances much fewer vertices are
required and this value depends on the number of re-
peated eigenvalues and the values of the corresponding
eigenvectors themselves.

If all eigenvalues are distinct then inferring that the
signatures are bijective can be done given one vertex
assuming its value is not zero in all eigenvectors, as
can be seen in Theorem 1. A more general result is
given in Theorem 2 where more vertices are needed for
constructing distinct signatures.

Lemma 1: Assuming λi ∈ R are distinct, a, b ∈ R
k, then

Σk
i=1exp(−λit)ai = Σk

i=1exp(−λit)bi for every t if and
only if ai = bi for all i.
Proof: If ai = bi we clearly have equality. Choosing k
different times allows us to write k different equations,
one for each t, using an invertible matrix M such that
Ma = Mb, where M ∈ R

k×k, and Mij = exp (−λjti). We
conclude that ai = bi for all i. .

Lemma 2: Given {φi}ni=1 eigenfunctions of the Laplacian.
φi(u) = φi(v) for all i if and only if u = v.
Proof: In one direction the proof is trivial. Consider a
matrix where column i is the vector φi, then φi(u) for all
i is a row vector in that matrix. The matrix is invertible
as its columns are linear independent, hence, its rows
must be linear independent as well. Because two rows
can not be same, φi(u) for all i is a distinct row vector
for every u.

Theorem 1: If the Laplacian does not have repeated
eigenvalues and vanishing values in its eigenvectors,
then there exists one vertex p for which S1(u) is distinct
for every u. In other words, S is bijective.
Proof: From Lemmas 1 and 2, given ai = φi(p)φi(u),
it follows that φi(p)φi(u) = φi(p)φi(v) for all i. Since
φi(p) �= 0 we conclude from Lemma 1 that u = v.

Theorem 2: For a general graph G there exist k < n
vertices for which Sk(u) is bijective.
Proof: For k vertices

{
pi
}k

i=1
and n different times

{tj}nj=1 we assume Kt(p
i, u) = Kt(p

i, v), which can be
written as

⎡
⎢⎢⎢⎣
M11φ1(p

k) M12φ2(p
k) · · · M1nφn(p

k)
M21φ1(p

k) M22φ2(p
k) · · · M2nφn(p

k)
...

Mn1φ1(p
k) Mn2φ2(p

k) · · · Mnnφn(p
k)

⎤
⎥⎥⎥⎦ = Mk

⎡
⎢⎢⎢⎣
M1

M2

...
Mk

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣
φ1(u)− φ1(v)
φ2(u)− φ2(v)

...
φn(u)− φn(v)

⎤
⎥⎥⎥⎦ = 0̄, (10)

where Mij = exp(−λjti). While every M i is not neces-
sary invertible, we can extract n independed rows from

their concatenation in (10) because for each j exists p
such that φj(p) �= 0 and the different times in Mk (for
all k) are chosen to prevent linear dependencies between
the rows. Note that at most n−1 vertices are required to
construct n linear independent rows since the Laplacian
has one constant eigenvector there must be a row with
two non vanishing coefficents. Finally, we conclude that
u = v using Lemma 2.

5 FROM AUTOMORPHISMS TO ISOMORPHISMS
In contrast to automorphisms, where one Laplacian de-
composition was required to construct signatures, we
now face two sets of eigenvalues and eigenvectors.
Assuming G and G̃ are isomorphic ensures that the
eigenvalues are equal, but the eigenfunctions can be
chosen arbitrary in each subspace corresponding to re-
peated eigenvalues. In what follows we assume that
there exists a decomposition of the Laplacian of G into
λi eigenvalues and φi eigenvectors, and the Laplacian of
G̃ into λ̃i and φ̃i such that λi = λ̃i and φi = φ̃i for all i,
where the equality in the last equation reads that there
exists f : G → G̃ such that φi(u) = φ̃i(f(u)) for all u
and for all i. Since the signatures remain the same for
every choice of basis we only need to compensate for
the reordering function f .

Lemmas 1 and 2, are technical results that will be use-
ful here as well, while the uniqueness of the signatures
needs to be redefined.

Given two isomorphic graphs G and G̃ and the corre-
sponding eigendecomposition of their Laplacians λi, φi

and λ̃i, φ̃i, we define their k-signatures for u, v ∈ G and
f : G → G̃ as before

Sk(u) =
(
Kt(p

i, u)
)k
i=1

t ∈ T (11)

S̃k(f(v)) =
(
Kt(p̃

i, f(v))
)k
i=1

t ∈ T,

where p̃i = f(pi) and pi are the anchor vertices.
We will show that the signatures are unique in the

sense that

Sk(u) = S̃k(f(v)) → u = v. (12)

Signatures within each graph are unique as seen ear-
lier. What remains to be shown is that between two
isomorphic graphs the signatures are still bijective.

Theorem 3: If the Laplacians of the isomorphic graphs G
and G̃, do not have repeated eigenvalues and vanishing
values in their eigenvectors, then there exists a vertex
p for which S1(u) is distinct for every u ∈ G, and it
corresponds to only one vertex in G̃.
Proof: S1(u) is unique for every u ∈ G as proven in
Theorem 1. Following lemmas 1 and 2 we conclude that

φi(p)φi(u) = φ̃i(f(p))φ̃i(f(v)) ∀ i, (13)

where f : G → G̃. Because φ(p) = φ̃i(f(p)), and φ(v) =
φ̃i(f(v)) for every v, it follows that

φi(p)φi(u) = φi(p)φi(v) ∀ i, (14)
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Algorithm 1: Greedy Algorithm for automorphisms
(isomorphisms) evaluation

Input: Eigenfunctions and Eigenvalues of the
graph (graphs)

Output: Set of possible automorphisms
(isomorphisms) {Φ}

1 Choose p1 arbitrary and find all possible
(
p̃1
)

matches according to similarity of the Heat Kernel
Signatures (HKS)

2 for i > 1 do
3 Construct Si−1(u) given (pj)i−1

j=1 and S̃i−1(v)

given (p̃j)i−1
j=1 for all u and v.

4 For unique match Si−1(u) = S̃i−1(v) define
Φ(u) = v.

5 If all vertices are matched then an automorphism
(isomorphism) is found. Add it to {Φ}.

6 If u is already matched to a different location or
does not have any possible match then stop the
search in this branch.

7 For one (arbitrary) u such that S(u) = S̃(vj)
1 > j ≥ k (e.g. exist k options) split the search
and define pi+1 = u, and p̃i+1 = vj .

from which we conclude, as done in Theorem 1, that
u = v, meaning S1(u) is unique for every u ∈ G, and fits
only one vertex in G̃.

Theorem 4: For two general graphs G and G̃ there exists
k < n vertices for which Sk(u) is distinct for every u ∈ G,
and has a unique match S̃k(f(v)) in G̃.
Proof: The proof is identical to that of Theorem 2, using
the correspondence function f such that

φi(u) = φ̃i(f(v)) ∀ i. (15)

6 ALGORITHMS

From theorems 2 and 4 we conclude that only a subset
of vertices is required to construct unique signatures and
hence define an automosrphism or an isomorphism. We
provide a greedy algorithm that constructs the signatures
by adding new matches pi → p̃i in the i’th step. We must
emphasize that even though we considered a joined
eigendecomposition in the proof given earlier, it does
not have any effect on the algorithms, as the signatures
are not influenced by different decompositions. We sum-
marize the procedure in Algorithm 1.

Even though |V | different times are needed for distinct
signatures we noticed in the experiments that in practice
fewer times are actually needed.

The complexity of the algorithm is exponential when
there exists an exponential number of automorphisms,
for example in a clique where all matches are possible,
and it can be exponential for a polynomial number of
symmetries. Still, in all the experiments we performed a

Algorithm 2: Optimistic algorithm for one isomor-
phism evaluation

Input: Eigenfunctions and eigenvalues of the
graphs

Output: One of possible isomorphism Φ

1 Choose p1 arbitrary and find all possible
(
p̃1
)

matches according to similarity of the Heat Kernel
Signatures (HKS).

2 for i > 1 do
3 Construct Si−1(u) given (pj)i−1

j=1 and S̃i−1(v)

given (p̃j)i−1
j=1 for all u and v .

4 For unique match S(u) = S̃(v) define Φ(u) = v.
5 If all vertices are matched then an isomorphism

is found.
6 If u is already matched to a different location or

does not have any possible match then stop the
search (no isometry found).

7 For one (arbitrary) u such that S(u) = S̃(v)
define pi+1 = u, and p̃i+1 = v.

branch never back-folded, hence polynomial time, in the
number of vertices, was measured.

It lead us to define an optimistic isomorphism algo-
rithm. We do not perform a split in the solution space
but rather choose a single path. While this process is
efficient, we can not guarantee its success. Yet, we did
not encounter a case in which it failed.

The spectrum can be evaluated at a complexity of
O(V 3), but in practice we need only partial decomposi-
tion and the power method becomes a good alternative.
In our experiments we used matlab eigendecomposition
functions. For large graphs we only used part of the
eigenfunctions (around 1%) and received perfect results.

We use a small (constant) number of times (scales)
which means that in the each stage, where one additional
anchor vertex is added, it requires O(|V |2) in the worst
case to find all matches between signatures. In practice,
we use an approximate nearest neighbors (ANN) frame-
work for those comparisons which is O(|V | log |V |).

In Algorithm 2 we do not perform a split, hence, given
k anchor vertices the complexity is O(k|V | log |V |), where
usually k is very small. In Algorithm 1 an exponential
number of ANN evaluations with respect to the number
of vertices can be required, but in all the graphs we
examined only a linear number of ANN evaluations with
respect to the number of symmetries was measured.

7 NUMERICAL VALIDATION

In the following experiments we used 10 different times
spreading linearly from 10−1 to 10−4. We found the
framework robust for different times given small to
medium graphs. We used all eigenvectores in the con-
struction of the signatures. Basic shapes such as lines,
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Fig. 5. The Frucht graph has no nontrivial automorphisms. No
additional matchings were found by the algorithm.

triangles and squares are the first to be explored. In
Figure 1 we see that all automorphisms were found.
More challenging graphs are presented in Figure 2.

We applied our method on several benchmarks. Figure
3 depicts 9 out of the 336 automorphisms that were
found for the Coxeter graph. It is a 3-regular graph
with 28 vertices and 42 edges. Using the proposed
algorithm all automorphisms were detected. Next, we
considered the Dodecahedral graph which is the platonic
graph corresponding to the connectivity of the vertices
of a Dodecahedron. Figure 4 depicts 9 out of the 120
automorphisms. Again, all automorphisms were found.
After evaluating the eigenvalues and eigenfunctions we
measured linear complexity of the algorithm for both
graphs. This means that, once a match between vertices
was marked, the algorithm did not disqualify it in the
following steps.

Next, we checked the Frucht graph shown in Figure
5, which is a 3-regular graph with 12 vertices and 18
edges but with no nontrivial symmetries. As expected,
no additional matching signatures were found.

Finally, we searched for isomorphisms between two
graphs. In each experiment we show two graphs and
the isometry by matching colors and numbers. In Figure
6 we provide one isometry between nodes of the Coxeter
graph after randomly shuffling its indices, and in a
similar manner for the Dodecahedral graph in Figure 7.
The last small scale experiment was done on a bipartite
graph, as seen in Figure 8, where we present one of the
48 possible isometries with the connectivity table below.

We compared our results to the results obtained by
using the bliss package, and found that for random
graphs which have only one automorphism, the bliss
package is faster. This is due to the time needed for
spectral decomposition. Yet bliss failed to find all sym-
metries even for simple cases. It did find all 120 au-
tomorphisms of the Dodecahedral graph, but only 12
out of the 336 of the Coxeter graph, while the proposed
method found all of them. In addition, Jiang et. al. [9]
evaluated all the symmetries of the Dodecahedral graph
on a 2.4GHz computer using their branch-and-bound
approach and reported it took 131.2 seconds. Using the

Fig. 9. A Dodecahedron before (black) and after (red) adding
Gaussian noise.

proposed method, we found all symmetries after 0.35
seconds, including the eigendecomposition step, on a
2.7GHz computer running matlab as well.

In Algorithms 1 and 2, we stated that two signatures
are similar if they have equal values. In practice, we
considered two signatures to be equal if the l1 difference
between them was extremely small (10−10). In order
to find approximate symmetries we use the weighted
Laplacian and change the strict equality constraint to
a threshold barriar. We tested our scheme on a Do-
decahedron (Figure 9). Instead of using its adjacently
matrix, which is the Dodecahedral graph we previously
examined, we chose weights as the distances between
vertices. In Table 1 we show that for a low threshold only
the identity is found, but as the threshold increases we
find additional symmetries. We repeated the experiment
on different noisy versions of the Dodecahedron. The
original length of each edge was

(
1 +

√
5
)
/2, and we

added 5, 10, 15, 20 and 25 percentage of a Gaussian noise
with a zero mean and a variance of one. The barrier on
the signatures’ proximity was increased by a factor of
1.5 for each experiment starting with 10−8.

We tested the framework on large random graphs.
We found that in all cases only one (non-constant)
eigenvector was actually needed to find the matches.
We used a 2.7GHz computer with 4GB memory, with
matlab code for all stages. We repeated the experiment
50 times on graphs with 1K to 7.5K vertices, and 10K to
750K edges, and provide the average timing of the entire
process in Table 2 and the matching part alone (without
eigendecomposition) in Table 3.

Finally, we tested our framework on strongly regular
graphs. Such graphs are known for high number of auto-
morphisms with various connectivities. A regular graph
with v vertices and degree k is called strongly regular
with parameters λ and μ if every two adjacent vertices
have λ common neighbors, and every two non-adjacent
vertices have μ common neighbors. We denote such a
graph by (v, k, λ, μ). In this experiment we used 10 dif-
ferent times spreading linearly between 10−3 to 10−1. In
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Fig. 1. Automorphisms of basic shapes. Matching vertices have similar numbers and colors.

Fig. 2. Automorphisms of shapes. Matching vertices have similar numbers and colors.
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Fig. 3. 9 out of the 336 automorphisms of the Coxeter graph. All self matchings were detected.

Fig. 4. 9 out of the 120 automorphisms of the Dodecohedral graph. All self matchings were detected.

Fig. 6. One isometry between two coxeter graphs with different indexing. Similar colors and arrows represent the isometry.
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Fig. 7. One isometry between two dodecahedral graphs with different indexing. Similar colors and arrows represent the isometry.

Fig. 8. One isometry between two bipartite graphs (left two columns) with different indexing. Similar colors and arrows represent
the isometry (right column). We provide the connectivity tables on the bottom row.

Noise \ TH 1e-8 ×( 3
2
)x 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0 % 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
5 % 1 1 1 1 1 1 3 26 104 120 120 120 120 120 120
10 % 1 1 1 1 1 1 1 1 4 16 57 119 120 120 120
15 % 1 1 1 1 1 1 1 1 1 3 24 99 120 120 120
20 % 1 1 1 1 1 1 1 1 1 1 2 11 74 120 120
25 % 1 1 1 1 1 1 1 1 1 1 2 11 44 110 120

TABLE 1
Symmetries of a noisy Dodecahedron. In each row, different magnitude of white noise was added to vertices’

location. In each column we increased the threshold of signatures proximity. As the threshold increases we find more
optional symmetries.

Table 4 we provide the timing results of the framework
using the optimistic algorithm for isomorphisms search.
For each graph shown in the left column, we provide
the timing (second column) for full eigendecomposition
and the timing results of five experiments (columns three
to seven). We search for an isomorphisms between the
strongly connected graph before and after we permute
the vertices (third column). We repeated the experiment
after we remove and add one and two edges, such that
no isomorphism exists.

8 CONCLUSIONS

We analyzed graph automorphisms and isomorphisms
from a spectral point of view, based on concatenation
of heat kernel signatures. We found the scheme to be
efficient, robust and feasible for practical usage. The
arbitrary choice of time in the algorithm may not be
sufficient for all graphs, and further research is needed
especially for large challenging graphs.
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Vertices \ Edges 10 20 30 40 50 60 70 80 90 100
1000 0.15 0.14 0.15 0.17 0.20 0.22 0.24 0.26 0.28 0.31
1500 0.16 0.19 0.24 0.24 0.28 0.34 0.39 0.42 0.47 0.47
2000 0.19 0.31 0.37 0.44 0.49 0.54 0.62 0.61 0.66 0.72
2500 0.30 0.43 0.58 0.77 0.81 1.02 0.96 0.96 0.91 0.97
3000 0.53 0.53 0.93 1.22 1.31 1.25 1.45 1.50 1.59 1.42
3500 0.83 0.94 1.67 1.72 1.85 1.63 2.08 2.17 2.11 1.88
4000 1.50 1.32 2.31 2.06 2.43 2.93 2.50 2.72 3.03 3.10
4500 1.66 1.32 2.52 3.95 3.97 3.76 4.67 4.48 4.09 4.18
5000 3.77 2.58 4.91 5.82 5.25 5.15 5.60 5.25 6.05 5.28
5500 3.30 4.08 6.11 7.18 6.84 7.67 9.40 7.83 9.09 8.41
6000 7.77 6.56 8.90 9.22 9.28 13.51 13.11 12.10 11.24 11.88
6500 10.49 8.92 11.50 14.24 15.99 18.13 16.41 17.39 12.96 15.65
7000 12.82 11.70 13.79 19.18 22.20 26.46 22.43 21.41 21.69 22.57
7500 23.36 14.00 17.32 28.59 28.09 24.09 32.13 27.45 26.12 26.50

TABLE 2
Timing (seconds) of random graphs isomorphism search. The number of vertices increases in each row, and the number of edges per vertex

increases per column. The largest graph has 7.5K vertices, and 0.75M edges.

Vertices \ Edges 10 20 30 40 50 60 70 80 90 100
1000 0.12 0.10 0.11 0.13 0.15 0.17 0.20 0.21 0.23 0.25
1500 0.11 0.13 0.16 0.18 0.20 0.23 0.31 0.32 0.37 0.38
2000 0.15 0.18 0.21 0.25 0.29 0.34 0.40 0.43 0.47 0.50
2500 0.18 0.23 0.28 0.35 0.40 0.44 0.49 0.56 0.59 0.65
3000 0.22 0.28 0.36 0.43 0.49 0.54 0.62 0.66 0.76 0.82
3500 0.26 0.34 0.42 0.52 0.61 0.67 0.72 0.84 0.91 0.97
4000 0.31 0.40 0.51 0.62 0.73 0.82 0.91 0.99 1.02 1.11
4500 0.41 0.51 0.64 0.73 0.80 0.97 1.06 1.10 1.24 1.32
5000 0.47 0.60 0.71 0.86 0.93 1.10 1.15 1.31 1.39 1.47
5500 0.53 0.70 0.82 0.95 1.12 1.25 1.32 1.50 1.58 1.71
6000 0.63 0.77 0.97 1.11 1.24 1.40 1.63 1.68 1.86 1.96
6500 0.72 0.92 1.09 1.21 1.41 1.55 1.63 1.81 2.03 2.15
7000 0.84 1.01 1.20 1.35 1.56 1.67 1.90 2.02 2.20 2.39
7500 0.90 1.11 1.34 1.56 1.73 1.88 2.02 2.36 2.46 2.54

TABLE 3
Timing (seconds) of random graphs matching search. Similar experiment as shown in Table 2, but without the eigendecomposition preprocessing.
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