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Abstract Traditional models of bendable surfaces are based
on the exact or approximate invariance to deformations that
do not tear or stretch the shape, leaving intact an intrinsic
geometry associated with it. These geometries are typically
defined using either the shortest path length (geodesic dis-
tance), or properties of heat diffusion (diffusion distance)
on the surface. Both measures are implicitly derived from
the metric induced by the ambient Euclidean space. In this
paper, we depart from this restrictive assumption by observ-
ing that a different choice of the metric results in a richer
set of geometric invariants. We apply equi-affine geometry
for analyzing arbitrary shapes with positive Gaussian curva-
ture. The potential of the proposed framework is explored
in a range of applications such as shape matching and re-
trieval, symmetry detection, and computation of Voroni tes-
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sellation. We show that in some shape analysis tasks, equi-
affine-invariant intrinsic geometries often outperform their
Euclidean-based counterparts. We further explore the poten-
tial of this metric in facial anthropometry of newborns. We
show that intrinsic properties of this homogeneous group are
better captured using the equi-affine metric.

Keywords Equi-affine · Affine · Metric invariant · Intrinsic
geometry · Shape analysis

1 Introduction

Many methods of shape analysis in computer vision, graph-
ics, and pattern recognition, model shapes as Riemannian
manifolds. Differential geometry provides a broad arsenal of
tools allowing to describe local and global invariant proper-
ties of the shape and compute similarity and correspondence
between two given shapes. Moreover, it is possible to repre-
sent metric structures in different spaces that are convenient
to work with.

One of the early efforts in this domain is of Schwartz
et al. [58], who proposed to study the surface of the brain
cortex by embedding it into the plane. This approach was
further developed by Elad and Kimmel [27], who showed
that by finding the most isometric embedding of a non-rigid
3D shape into a Euclidean space with more than two dimen-
sions, it is possible to undo the deformations. The embed-
ding was computed using multidimensional scaling (MDS).
The resulting canonical form representation allowed to com-
pute shape similarity invariant to inelastic deformations.
Canonical forms were used for different applications in de-
formable shape analysis, ranging from texture mapping [26]
to face recognition [11, 14], while embeddings into non-
Euclidean spaces (e.g., a sphere) were discussed in [10, 70].
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The introduction of canonical forms led to a number of
follow-up papers, where shapes were represented as met-
ric spaces with some intrinsic (e.g. geodesic) distance met-
ric, and their comparison involved the similarity of the un-
derlying metric spaces. Mémoli and Sapiro [39] and Bron-
stein et al. [12, 13] computed shape similarity by discretiz-
ing the Gromov-Hausdorff metric [31]. In [12], an MDS-
like optimization algorithm (branded generalized MDS or
GMDS) was introduced for the computation of the Gromov-
Hausdorff metric, and a different optimization based on hi-
erarchical graph labeling was used in [69]. Different metrics
were studied in [16, 38] in the Gromov-Hausdorff frame-
work for shape matching and later on in [48, 50] for the de-
tection of intrinsic symmetries of deformable shapes, mod-
eled as self-isometries.

In [7] Bérard et al. introduced the concept of embed-
ding the structure of a Riemannian manifold into the eigen-
structure of its Laplace-Beltrami operator. This theoretical
framework was later exploited by Rustamov [55] who used
the fact that it is possible to isometrically embed surfaces
into Euclidean spaces defined by the eigenfunctions of the
Laplace-Beltrami operator. Belkin and Niyogi [6] realized
that heat kernels extracted from the Laplace-Beltrami oper-
ator can be used for quantifying the distance between points
in abstract manifolds. In this new geometry, the distance be-
tween two points is expressed as the integrated difference
between two heat kernels each of which is centered about
one of the points. The diffusion geometry was later refined
and applied to manifold learning problems by Coifman and
Lafon [21] while Lévy [36] showed that significant geo-
metric information of a shape can be captured by consider-
ing diffusion operators on its Riemannian manifold. Proper-
ties of Laplacian eigenfunctions were later used for intrinsic
symmetry detection [45], and shape matching [59].

The diffusion framework was found useful also for the
construction of local shape descriptors. Sun et al. [65], and
Gebal et al. [29] used the heat kernel of the diffusion equa-
tion to construct multi-scale intrinsic descriptors referred
to as heat kernel signatures (HKS). HKS descriptors were
extended to textured shapes in [34] and to volumetric data
in [49]. Scale-invariant HKS were proposed in [18]. These
descriptors performed successfully in large-scale shape re-
trieval applications [17, 43], using the bag of features [60]
paradigm. Ovsjanikov et al. [44] used HKS to find dense
correspondence, while Castellani et al. were using HKS [20]
in brain analysis applications.

A different approach for alignment was adopted within
the medical community, where a smooth velocity field is
found. Early attempts such as [3] addressed this problem but
faced self folding of the grid. A later approach, which be-
came the standard for non rigid mapping, was presented in
[5]. In their scheme, a numerical procedure called Large De-
formation Diffeomorphic Metric Mapping (LDDMM) opti-

mizes for the best diffeomorphism between images by com-
bining smoothness of the velocity field with a data term from
the images. Another approach named SPHARM-PDM [63]
rigidly aligns shapes according to their spherical parameter-
ization. It showed good results on brain images, but is only
relevant for those with a spherical topology. In an entirely
different path, we encounter skeletal representations such as
[56], which can handle larger deformations, but limited to
coarse matching. An improved alignment which better han-
dles reparameterization, as noted in [32], was later addressed
in [35].

The starting point of all the aforementioned methods is
the model of a shape or shape space as a Riemannian man-
ifold. For example, MDS and GMDS frameworks that are
based on diffusion geometry rely on a Laplace-Beltrami op-
erator that is expressed through the Riemannian metric. Lo-
cal descriptors are also expressed through Riemannian struc-
tures defined on the manifold. In the vast majority of cases,
the standard choice of a metric is the one induced by the em-
bedding of the shape. Such a metric is invariant to inelastic
deformations of the shape and to global Euclidean transfor-
mations, that is, rotations, reflections, and translations. In
this paper we show how to construct a metric that is invari-
ant to a larger group of transformations. Besides theoretical
importance, we argue that this invariance has many impor-
tant applications in shape analysis (see, e.g., [30, 34]).

Affine invariance was explored in the field of image pro-
cessing [2] more than twenty years ago, and re-appeared
in state of the art descriptors as ASIFT affine-scale invari-
ant feature transform [41], that are used to successfully lo-
cate repeatable informative (invariant) features in images.
We can find affine measures in planar curves [19], flows
[57, 61], and structures [22] while stability was the main
topic of [4]. Here, we apply the known equi-affine invariant
quadratic form for surfaces with positive Gaussian curva-
ture to less trivial geometric structures. Using the resulting
metric, we show its application to spectral shape analysis by
deriving an associated Laplace-Beltrami operator that is not
just invariant to bendings but also to equi-affine transforma-
tions. This, in turn, allows us to derive global affine-invariant
measures such as diffusion (Fig. 1) and commute-time dis-
tances, as well as local equi-affine ones such as HKS.

The equi-affine metric was introduced by Blaschke [8,
64] as a theoretical framework for dealing with volume pre-
serving linear transformations of R3 in which a given two di-
mensional surface is embedded. We first applied equi-affine
geometry to surfaces in [51, 52], where computational and
numerical considerations were explored. Here, we present
a somewhat more mature view on using the equi-affine ge-
ometry for surface analysis, new numerical procedures are
discussed, a compact derivation of the equi-affine quadratic
form is provided, as well as an alternative construction of
the invariant measures. We follow our brief exploration of
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Fig. 1 Diffusion distances from the horse’s abdomen (colored red) are invariant under equi-affine stretching (middle) and non-rigid deforma-
tions (left). (Color figure online)

exploiting the diffusion geometry that was presented in a
conference [51] for the construction of stable equi-affine in-
variant measures on which we elaborate in this journal pub-
lication.

The rest of the paper is organized as follows. We be-
gin in Sect. 2 by describing the contribution of this paper.
In Sect. 3 we provide the mathematical background of Eu-
clidean, Riemmannian, and Diffusion geometries, followed
by Sect. 4 where we elaborate on the equi-affine metric.
Section 5 is dedicated to numerical aspects of the proposed
framework, with several synthetic experiments presented in
Sect. 6. We explore the potential of this metric for facial
morphometry in Sect. 7, and conclude the paper in Sect. 8.

2 Main Contributions

This note contains the mathematical aspects of the equi-
affine metric first shown in [51, 52]. The novelty of this pa-
per can be summarized as follows:

– New and self contained proof of the equi-affine quadratic
form in matrix formulation.

– Analysis of degenerate cases, when the metric is unde-
fined or vanishes.

– New synthetic experiments, showing the advantages of
the equi-affine metric over the Euclidean one.

– Analysis of facial measurements in newborns. We show
the potential of the equi-affine metric for statistical geo-
metric measurements in medical imaging.

3 Background

We model a surface (X,g) as a compact complete two di-
mensional Riemannian manifold X with a metric tensor g,

evaluated on the tangent plane TxX of point x in the natural
base using the inner product ⟨·, ·⟩x : TxX × TxX → R. We
further assume that X is embedded into E = R3 by means
of a regular map x : U ⊆ R2 → R3, so that the metric ten-
sor can be expressed in coordinates as the coefficients of the
first fundamental form

gij =
〈

∂x
∂ui

,
∂x
∂uj

〉
, (1)

where ui are the coordinates of U . The metric tensor yields
the arclength

dp2 = g11du1
2 + 2g12du1du2 + g22du2

2. (2)

Given a smooth scalar field f on the manifold, its gra-
dient gradf is the vector field satisfying f (x + dr) =
f (x)+ ⟨gradf (x), dr⟩x for every infinitesimal tangent vec-
tor dr ∈ TxX. The inner product ⟨gradf (x), v⟩x can be in-
terpreted as the directional derivative of f in the direction v.
A directional derivative of f whose direction at every point
on X is defined by the values of a vector field V on the
manifold is called the Lie derivative of f along V . The Lie
derivative of the manifold volume (area) form along a vec-
tor field V is called the divergence of V , divV . The negative
divergence of the gradient of a scalar field f ,

"f = −div gradf, (3)

is called the Laplacian of f . The operator " is called the
Laplace-Beltrami operator, and it generalizes the standard
notion of the Laplace operator to manifolds. Note that we
define the Laplacian with the negative sign to conform to the
computer graphics and computational geometry convention.

Evaluating " in local coordinates for any metric g holds
an important part in this paper, as it bridges between lo-
cal metric evaluation and global features of a shape. A well
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known formulation of (3) in local coordinates u = (u1, u2)
T

is [23]

"f = 1√
det G

∂T

∂u

(√
det GG−1 ∂

∂u
f

)
, (4)

where the sign is flipped to impose a semi-positive struc-
ture, and ∂

∂u = ( ∂
∂u1

, ∂
∂u2

)T and G = (gij ) ∈ R2×2. Being a
positive self-adjoint operator, the Laplacian admits an eigen-
decomposition

"φ = λφ (5)

with non-negative eigenvalues λ and corresponding or-
thogonormal eigenfunctions φ. Furthermore, due to the as-
sumption that our domain is compact, the spectrum is dis-
crete, 0 = λ1 < λ2 < · · · . In physics, (5) is known as the
Helmholtz equation representing the spatial component of
the wave equation. Thinking of our domain as of a vibrat-
ing membrane (with appropriate boundary conditions), the
φi ’s can be interpreted as natural vibration modes of the
membrane, while the λi ’s assume the meaning of the cor-
responding vibration frequencies. In fact, in this setting the
eigenvalues have inverse area or squared spatial frequency
units.

3.1 Extrinsic and Intrinsic Geometry

There exist two natural ways to measure distances on X:
First, one can simply consider X a subset of E equipped
with the standard Euclidean metric dE, and measure the dis-
tance on X using the restricted Euclidean metric dE|X×X .
Under this metric, shortest paths between points on X are
straight lines, possibly not entirely contained in X. Quanti-
ties expressed with it are often referred to as the extrinsic
geometry of the shape.

The second choice is to consider a path γ : [0,1] → X on
the surface. By subdividing the interval [0,1] into n points
0 = t1 < t2 < · · · < tn = 1, one can bound below the path
length by the sum of the lengths dE(γ (ti),γ (ti+1)). In this
way, a length structure

L(γ ) = sup
n,{t1,...,tn}

n−1∑

i=1

dE
(
γ (ti),γ (ti+1)

)
(6)

is constructed; a path is said rectifiable if the supremum ex-
ists. If further γ = x(β) is the image of some path β in the
parametrization domain, its length on the surface can be ex-
pressed in terms of the Riemannian structure as

L(γ ) =
∫ 1

0

√
g11β

2
1 (t) + 2g12β1(t)β2(t) + g22β

2
2 (t)dt, (7)

where βi is the partial derivative of β with respect to ui .
Being totally expressible in terms of the metric tensor, the

length structure L(γ ) is said intrinsic; such quantities are
collectively called the intrinsic geometry of X.

Using the length structure, one can define a metric be-
tween two points x and x′ on X as the length of the shortest
path connecting between them,

dL

(
x, x′) = inf

γ

γ (0)=x

γ (1)=x′

L(γ ), (8)

which is called the induced or the geodesic metric. Geodesic
distances can be obtained as the viscosity solution to the
eikonal equation

∥∇d∥2 = 1 (9)

(i.e., the largest d satisfying ∥∇d∥2 ≤ 1) with boundary
condition at the source point d(x) = 0, where the solution
represents d(x′) = dL(x, x′). In the past two decades, sev-
eral algorithms have been proposed for the computation of
geodesic distances, differing in accuracy and complexity.
In this study, we focus on a family of simulated wavefront
propagation algorithms called fast marching [33]. While the
complexity of the computation of geodesic distance from a
single point to the rest of the points on the surface using fast
marching is O(N logN), N being the number of points, it
was shown that linear complexity can be achieved without
sacrificing the linear order of approximation [66]. On para-
metric surfaces, fast marching can be carried out by means
of a raster scan and efficiently parallelized, which makes it
especially attractive for GPU-based computation [62, 68].

We conclude that a shape can be modeled as a met-
ric space equipped either with an extrinsic (restricted Eu-
clidean) or intrinsic (geodesic) metrics [15, 37]. The choice
of the metric impacts dramatically on the resulting geomet-
ric properties. While the extrinsic geometry is invariant only
to rigid motion, its intrinsic counterpart remains intact under
inelastic deformations that do not stretch or tear the surface.
However, a major disadvantage of the geodesic metric is its
extreme sensitivity to topological changes. Even when lo-
calized to a single point, topological noise greatly affects the
shortest paths on the manifold and, consequently, the intrin-
sic geometry they define. A way counter this phenomenon
is by replacing the notion of a shortest path by some no-
tion of an “average” path length. In what follows, we briefly
overview a construction of a family of intrinsic geometries
based on this principle.

3.2 Diffusion Geometries

As a starting point, let us consider the heat equation describ-
ing diffusion processes on manifolds, which in our notation
can be expressed as
(

" + ∂

∂t

)
f (x, t) = 0 (10)
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where f (x, t) is the distribution of heat on the manifold at
point x at time t . The initial condition is some initial heat
distribution f0(x) at time t = 0, and boundary conditions
are applied in case the manifold has a boundary.

The solution of the heat equation at time t can be ex-
pressed as the application of the heat operator

f (x, t) =
∫

ht (x, y)f0(y)da(y) (11)

to the initial distribution. The kernel ht (x, y) of this integral
operator is called the heat kernel and it corresponds to the
solution of the heat equation at point x at time t with the ini-
tial distribution being a delta function at point y. From the
signal processing perspective, the heat kernel can be inter-
preted as a non shift-invariant “impulse response”. It also de-
scribes the amount of heat transferred from point x to point
y after time t , as well as the transition probability density
from point x to point y by a random walk of length t .

According to the spectral decomposition theorem, the
heat kernel can be expressed as

ht (x, y) =
∑

i≥0

exp(−λi t)φi (x)φi (y), (12)

where exp(−λt) can be interpreted as its “frequency re-
sponse” (note that with a proper selection of units in (11),
the eigenvalues λi assume inverse time or frequency units).
The bigger is the time parameter, the lower is the cut-off fre-
quency of the low-pass filter described by this response and,
consequently, the bigger is the support of ht on the manifold.
Since the Laplace-Beltrami operator is an intrinsic geomet-
ric quantity, its eigenfunctions and eigenvalues as well as the
heat kernel are invariant under isometric transformations of
the manifold.

The value of the heat kernel ht (x, x′) can be interpreted
as the transition probability density of a random walk of
length t from the point x to the point x′. This allows to
construct a family of intrinsic metrics known as diffusion
metrics,

d2
t

(
x, x′) =

∫ (
ht (x, ·) − ht

(
x′, ·

))2
da

=
∑

i>0

e−2λi t
(
φi (x) − φi

(
x′))2

, (13)

which measure the diffusion distance of the two points for a
given time t .

The parameter t can be given the meaning of scale, and
the family {dt } can be thought of as a scale-space of met-
rics. It appears that by integrating d2

t over all scales, a scale-
invariant version of (13) is obtained,

d2
CT

(
x, x′) =

∫ ∞

0
d2
t

(
x, x′)dt

=
∑

i>0

1
2λi

(
φi (x) − φi

(
x′))2

. (14)

This metric is referred to as the commute-time distance [46]
and can be interpreted as the connectivity rate by paths of
any length.

The quantity

ht (x, x) =
∑

i≥0

exp(−λi t)φ
2
i (x), (15)

sometimes referred to as the autodiffusivity function, de-
scribes the amount of heat remaining at point x after time t .
Furthermore, for small values of t is it related to the mani-
fold curvature according to

ht (x, x) = 1
4π t

+ K(x)

12π
+ O(t), (16)

where K(x) denotes the Gaussian (in general, sectional) cur-
vature at point x.

In [65], Sun et al. showed that under mild technical con-
ditions, the sequence {ht (x, x)}t>0 contains full informa-
tion about the metric of the manifold. The authors proposed
to associate each point x on the manifold with a vector
HKS(x) = (ht1(x, x), . . . , htn(x, x)) of the autodiffusivity
functions sampled at some finite set of times t1, . . . , tn. The
authors dubbed such a feature descriptor as the heat kernel
signature (HKS).

Several follow-ups extended these concepts and include
scale-invariance [1, 18], geometric-photometric relation
[34], and volumetric analysis [49], to say a few.

3.3 Isometries and Symmetries

The metric model allows casting the problem of shape simi-
larity as similarity of metric structures. Two metric spaces
(X,dX) and (Y, dY ) are said isometric if there exists bi-
jection g : X → Y such that dY ◦ (g × g) = dX . Such a
distance-preserving map is called an isometry. Isometries
form a group with the function composition operation, de-
noted by Iso(d).

Clearly, the notion of isometry is metric-dependent. Con-
sidering X and Y equipped with the extrinsic metric, we will
that they are isometric if they are congruent, i.e., are related
by a rigid motion X = i(Y ), i ∈ Iso(dE). When an intrinsic
metric dX on X is considered, the resulting isometry group
is usually richer, as a congruence is, naturally, also a dX-
isometry (in other words, the group of congruences of X

is a subgroup of the group of its dX-isometries). However,
for some objects these two classes coincide, meaning that
they have no incongruent isometries. Such shapes are called
rigid, and their extrinsic geometry is completely defined by
the intrinsic one.
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True isometries are merely a mathematical idealization
not existing in practice due to imperfections in measure-
ment, representation, and deviations from the perfectly in-
elastic model. A generalization of the notion of isometry can
be obtained by first defining a correspondence C ⊂ X×Y as
a set of pairs of points from X and Y satisfying: 1) for every
x ∈ X, there exists (at least one) y ∈ Y such that (x, y) ∈ C;
and, vice versa, 2) for every y ∈ Y , there exists x ∈ X such
that (x, y) ∈ C. This notion generalizes the notion of a bi-
jective map between the space.

Suppose two pairs of points (x, y) and (x′, y′) are in cor-
respondence. Then, we can quantify the quality of the cor-
respondence by measuring to which extent the distance be-
tween x and x′ measured on X using dX matches the dis-
tance between the corresponding points y and y′ measured
on Y using dY ,

ϵ
(
x, y, x′, y′) =

∣∣dX

(
x, x′) − dY

(
y, y′)∣∣. (17)

This allows assigning a correspondence C the distortion

dis(C) = ∥ϵ∥Lp(C×C), (18)

where, for example, the L∞ norm

∥ϵ∥L∞(C×C) = sup
(x,y),(x′,y′)∈C

ϵ
(
x, y, x′, y′) (19)

can be used.
Minimizing the distortion over all possible correspon-

dences between X and Y yields a distance

D(X,Y ) = 1
2

inf
C

dis(C) (20)

between X and Y called the Gromov-Hausdorff distance. If
the infimum is realized by some C∗, the latter is called a
minimum distortion correspondence (note that more than
one minimum distortion correspondence might exist if
the shape possesses intrinsic symmetries). Bronstein et al.
[12] showed that the above distance can be efficiently ap-
proximated using a generalized multidimensional scaling
(GMDS) algorithm.

A particular case of shape similarity is the similarity of a
shape to itself. The collection of self-isometries or symme-
tries of (X,d) also forms a group under function composi-
tion. A metric space (X,d) is self-similar if there exists a
self-isometry on (X,d) (an isometry from (X,d) to itself).
Since this definition depends on the choice of the metric,
we distinguish between the group of extrinsic symmetries
Sym(X,dE) and that of intrinsic symmetries Sym(X,dX),
where dX is an intrinsic metric on X [48].

4 Affine Invariance

In this section, we develop an equi-affine invariant metric
on arbitrary surfaces with positive Gaussian curvature. We

arrive at this result by first briefly reminding the classical
construction of the equi-affine arclength for planar curves,
and developing an equi-affine arclength on convex surfaces
in R3, as first shown by Blaschke [8].

4.1 Planar Curves

An affine transformation of the plane can be expressed by
six parameters as

Ax + b =
(

a b

c d

)(
x

y

)
+

(
c

d

)
, (21)

where det A > 0. The area preserving affine group (also
called special or equi-affine) is defined by demanding
det A = 1, which leaves five degrees of freedom.

Let C : I ⊂ R → R2 be a curve parameterized by a pa-
rameter p over some interval I . One way to construct an
equi-affine arclength p is by asserting the conservation of
the area of the parallelogram formed by the velocity and ac-
celeration vectors of C(p),

|Cp × Cpp| = det(Cp,Cpp) = const. (22)

We construct the arclength as f (det(Cp,Cpp))dp, where
the function f is determined by demanding reparametriza-
tion invariance of p. For that goal, let ξ be a reparametriza-
tion of p such that p = ξ(q). We require

f
(
det(Cp,Cpp)

)
dp = f

(
det(Cq,Cqq)

)
dq. (23)

Using the chain rule,

Cq = Cp ξ̇

Cqq = Cpp ξ̇2 + Cp ξ̈ .
(24)

Hence,

det(Cq,Cqq) = det
((

ξ̇

ξ̈ ξ̇2

)
(Cp,Cpp)

)

= det
(

ξ̇

ξ̈ ξ̇2

)
· det(Cp,Cpp)

= ξ̇3 · det(Cp,Cpp). (25)

Combining (23) with dp = ξ̇dq yields

f
(
det(Cp,Cpp)

)
dp = f

(
det(Cp,Cpp)ξ̇3)dp

ξ̇
, (26)

from where the equi-affine arclength is defined by

dv = det(Cp,Cpp)
1
3 dp. (27)
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Fig. 2 An equi-affine local measurement for curves’ length is the area
of the parallelogram (left). For surfaces (right) we obtain the metric
elements as the volume of the parallelepiped constructed by x1 and x2,
and the corresponding second derivatives. hij = det(x1,x2,x12)

4.2 Quadratic Form for Curved Surfaces

Let us now be given a two-dimensional surface X embed-
ded into R3 by a regular embedding x : U ⊆ R2 → R3. We
repeat the construction of the equi-affine arclength on the
surface [64]. Let C(p) be a curve on X; by the chain rule,

Cp = x1
du1

dp
+ x2

du2

dp

Cpp = x1
d2u1

dp2 + x2
d2u2

dp2 + x11

(
du1

dp

)2

+ 2x12
du1

dp

du2

dp
+ x22

(
du2

dp

)2

,

(28)

where, for brevity, we denote xi = ∂x
∂ui

and xij = ∂2x
∂ui∂uj

.
Once again, we assert the conservation of the volume of

the parallelepiped formed by the vectors x1, x2 on the sur-
face and the acceleration vector Cpp (Fig. 2),

Cpp · (x1 × x2) = det (x1,x2,Cpp) = const. (29)

Plugging (28) and using the fact that det(xi ,xj,xi) = 0,
yields the squared arclength

det (x1,x2,Cpp)dp2

= det
(
x1,x2,x11du2

1 + 2x12du1du2 + x22du2
2
)

=
(
h11du2

1 + 2h12du1u2 + h22du2
2
)

= duTHdu, (30)

where hij = det(x1,x2,xij ).
We again assert reparametrization invariance, this time

to a reparametrization of the surface. Let V ⊂ R2 be some
other parametrization domain, so that u = ξ (v), where ξ :
V → U , ξ (v) = (ξ(v),η(v))T, is a reparametrization of the
surface. Using the chain rule, we obtain

yi = ∂x
∂vi

= x1ξi + x2ηi , (31)

where ξi = ∂u1
∂vi

and ηi = ∂u2
∂vi

. Similarly,

yij = ∂2x
∂vi∂vj

= x1ξij + x2ηij + x11ξiξj

+ x12(ξiηj + ξjηi ) + x22ηiηj , (32)

where ξij = ∂2u1
∂vi∂vj

and ηij = ∂2u2
∂vi∂vj

. Substituting the latter
into the squared arclength (30) yields

det (y1,y2,Cpp)dp2 = dvTH′dv

= duTJ−TH′J−1du, (33)

where J is the Jacobian of ξ and the elements of H′ are given
by h′

ij = det(y1,y2,yij ). In order to achieve reparametriza-
tion arclength invariance we introduce a function f operat-
ing on the determinant, for which Q = Hf (det H), and con-
sequently

det Q = det H · f 2(det H) = det H′ · f 2(det H′)
det2J

= det
(
J−TQ′J−1). (34)

Using the fact that (y1,y2) = J(x1,x2), and the identities

det
(
J(x1,x2),xij

)
= det J · det(x1,x2,xij )

det(x1,x2, ax + by) = (x1 × x2) · (ax + by)

= a(x1 × x2) · x + b(x1 × x2) · y)

= a det(x1,x2,x) + b det(x1,x2,y),

(35)

we have

h′
ij = det J

(
ξiξj det (x1,x2,x11)

+ (ξiηj + ξjηi )det (x1,x2,x12)

+ ηiηj det (x1,x2,x22)
)

= det J · ξT
i Hξ j , (36)

where ξT
i = (ξi ,ηi ). Hence,

det H′ = det2J ·
(
ξT

1 Hξ1ξ
T
2 Hξ2 − ξT

1 Hξ2ξ
T
1 Hξ2

)

= det2J ·
(
ξT

1 H
(
ξ1ξ

T
2 − ξ2ξ

T
1
)
Hξ2

)

= det3J · ξT
1 H

(
1

−1

)
Hξ2

= det3J · det (Hξ1,Hξ2)

= det4J · det H. (37)
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Fig. 3 Heat diffusion originated from one source on a sphere. On the
left we used the standard intrinsic metric induced by the Euclidean
metric of the embedding space, while on the right the equi-affine metric
was used. Heat propagation is shown on the original mesh and after an
affine transformation. For convenience of visualization, heat kernels
are overlaid onto the untransformed shape

Substituting the latter into (34) yields

det H · f 2(det H) · det2J

= det4J · det H · f 2(det4J · det H
)
, (38)

which reduces to

f (det H) = det J · f
(
det4J · det H

)
(39)

yielding an optional solution f (t) = t−1/4. We conclude that
the equi-affine arclength is given by the quadratic fundamen-
tal form [61, 64]

Q = H · det−1/4H, (40)

To avoid complex normalization, Su [64] suggested to define
f (t) = |t |−1/4, for which

Q = H · |det H|−1/4, (41)

and normalize the form by −1 if det H < 0, which leads to
an invariance in case the new parameters have a different ori-
entation. In Fig. 3, we depict a heat signature measured on
a sphere originated from a single source point, using the in-
duced Euclidean metric and the one created using Q defined
above.

4.3 Equi-affine Metric

In order to construct a metric we propose to project the
quadratic form (40) onto the space of positive definite matri-
ces. A valid (pseudo-)metric is obtained in all cases except
where the surface has a positive Gaussian curvature.

From the eigendecomposition of

H · |det H|−1/4 = UΓ UT, (42)

Fig. 4 Three surfaces with similar equi-affine metrics

where U is orthonormal and Γ = diag{γ1,γ2}, we compose
a new metric Q̄, such that

Q̄ = U|Γ |UT, (43)

is positive semi-definite and equi-affine invariant, where
|Γ | = diag{|γ1|, |γ2|}. Note that Γ can be complex. One can
think of this projection as a change of orientation.

For points with negative curvature the local metric has
one positive and one negative eigenvalues. In this case we
set the metric tensor to be zero. That is, such regions would
practically be ignored by the proposed geometry. In the next
section we elaborate on regularization of hyperbolic and
parabolic points.

Under the proposed approach, non-isometric surfaces can
now be intrinsically indistinguishable, and considered iso-
metric. Let us provide a simple example for clarity. We de-
note by Xa , Xb and Xc, three surfaces

Xa(u, v) =
(
u,v,u2 + v2)

Xb(u, v) =
(
u,v,−u2 − v2) (44)

Xc(u, v) =
(
2u,v,u2 + v2),

depicted in Fig. 4.
A simple calculation reveals that the Euclidean metrics

of the three surfaces are

Ga =
[

1 + 4u2 4uv

4uv 1 + 4v2

]
,

Gb =
[

1 + 4u2 4uv

4uv 1 + 4v2

]
,

Gc =
[

4 + 4u2 4uv

4uv 1 + 4v2

]
,

respectively. Not surprising Xa and Xb have similar met-
rics, and consequently they are isometric in a conventional
manner, while Xc is not isometric to the rest. Evaluating the
equi-affine quadratic forms involves the following normal-
ization

Qa =
[√

2 0
0

√
2

]
,

Qb =
[−

√
2 0

0 −
√

2

]
,



J Math Imaging Vis

Qc =
[√

2 0
0

√
2

]
.

Since we wish all three to be valid metrics while main-
taining meaningful geometric features, we project the met-
rics onto semi-positive space, which yields

Q̄a = Q̄b = Q̄c =
[√

2 0
0

√
2

]
. (45)

We conclude the section by summarizing the main result:
For surfaces with positive Gaussian curvature, Ḡ is equi-

affine invariant, positive-definite, and parameterization in-
variant metric.

4.4 Surfaces with Parabolic and Hyperbolic Points

Projecting the metric onto a positive semi-definite subspace,
as shown in (43), is insufficient for parabolic and hyperbolic
points, as we consider the metric to be zero for both. At such
points, the metric (43) should be redefined. Numerically, we
assign (q̄ij ) = ϵI = ϵ

( 1 0
0 1

)
metric, where ϵ is a small con-

stant.
In order to justify this regularization, let us examine the

area measurement (determinant) of the proposed metric near
parabolic points. Since the surface normal is

n̄ = x1 × x2

∥x1 × x2∥
, (46)

and the second fundamental form coefficients are

bij = ⟨xij , n̄⟩ = det(x1,x2,xij )√
detg

, (47)

we can write the equi-affine quadratic form as

Q =
(

detg
detb

) 1
4

b. (48)

This explains the problematic metric definition once the
Gaussian curvature vanishes, as indeed

K = detb
detg

= 0. (49)

The local area of the equi-affine quadratic form can be
written as

det Q =
((

detg
detb

) 1
4
)2

detb =
√

detg detb, (50)

and consequently the determinant of the equi-affine pseudo-
metric becomes

det Q̄ =
√

detg|detb|. (51)

Fig. 5 The three neighboring triangles together with the central one
are unfolded onto the plane. The central triangle is canonized into a
right unit isosceles triangle while the rest of its three neighboring trian-
gles follow the same planar affine transformation. Finally, the six sur-
face coordinate values at the vertices are used to interpolate a quadratic
surface patch from which the metric tensor is computed

We infer that assuming b and g are bounded, the local area is
bounded and is well defined near points with zero Gaussian
curvature. Thus, regularization would solve the degenerate
cases introducing numerical inaccuracy at the order of ϵ.

5 Numerical Computation

5.1 Affine Invariant Metric

We represent the surface X as a triangular mesh, and con-
sider each triangular face with the three neighboring faces.
The four triangles are unfolded to the plane and transformed
so that the central triangle becomes the canonical simplex
in the plane. This constructs a local system of coordinates
(Fig. 5), in which three quadratic functions describing a
second-order patch are fitted to the R3 coordinates of the
six triangle vertices, and evaluated at the barycenter of the
central triangle (Algorithm 1). From the coefficients of these

Algorithm 1: Equi-affine invariant metric discretiza-
tion

Input: 3 × 6 matrix P of triangle vertex coordinates in
R3 (each column Pi represents the coordinates
of a vertex, the first three columns belonging to
the central triangle).

Output: 6 × 3 matrix of coefficients D
1 Flatten the triangles to a plane, such that each vertex Pi

becomes Qi ∈ R2, and (i) the first vertex becomes the
origin, C1 = [0 0]T ; (ii) edge lengths are preserved,
d(Ci ,Cj ) = d(Pi ,Pj ) for all i and j ; and (iii) the
orientation is unchanged, sign(CT

i Cj ) = sign(PT
i Pj ).

2 Construct a new parameterization Ĉi = MCi , where
M = [C2 C3]−1.

3 Calculate the coefficients D = N−1PT of each
coordinate polynomial, where u = Ĉi1, v = Ĉi2, and N
is a 6 × 6 matrix with each row defined as
Ni = [1 u v uv u2 v2].
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Algorithm 2: Equi-affine pre-metric coefficients evalu-
ation

Input: Coefficient matrix D = (d1, . . . ,d6)
T from

Algorithm 1.

Output: 2 × 2 matrix Q with the equi-affine quadratic
form value at the barycenter of the central
triangle.

1 Construct

x1 = (d2,2d5,d4)(1, u, v)T

x2 = (d3,2d6,d4)(1, u, v)T

x11 = 2d5

x22 = 2d6

x12 = d4.

2 Evaluate the pre-metric tensor at (u, v) = (0.5,0.5)

hij = det(x1,x2,xij )

3 Calculate the equi-affine pre-metric tensor as

Q = |h11h22 − h2
12|−

1
4 · H.

second-order polynomials, the coefficients of the equi-affine
quadratic form are computed (Algorithm 2), and projected
onto the positive semi-definite cone.

5.2 Geodesics and Fast Marching

The computation of geodesic distances on a surface is used
by discretizing the viscosity solution to the eikonal equation
(9). Here, we adopt the family of fast marching algorithms
simulating the propagation of a wavefront on the surface and
recording its time of arrival at different vertices. Fast march-
ing methods resemble in structure and properties the Dijk-
stra shortest path algorithm, with the important difference
that unlike in graphs, the path is not restricted to the edges
and can pass anywhere on the triangular faces of the mesh
[33]. The numerical core of fast marching is the update step
by which the values of the distance map known at two ver-
tices of a triangle are propagated to the third one.

Typically, the geometry of the triangle itself is used to
simulate propagation of the wavefront with unit speed. In
our case, in order to enforce a different metric, we mod-
ify the geometry of the triangle being updated such that the
Euclidean metric defined on it represents our equi-affine in-
variant metric at that point.

Since the equi-affine invariant arclength is given by
dp2 = duTQdu, we can evaluate the equi-affine edges
length of each triangle with respect to the local coordinates

(0,0), (1,0) and (0,1), yielding L2
1 = g11,L

2
2 = g22, and

L2
3 = g11 − 2g12 + g22.

5.3 Laplace-Beltrami Operator Discretization

Many approaches to the discretization of the Laplace-
Beltrami operators have been proposed in the literature [67].
Here, we adopt the finite elements method (FEM) discretiza-
tion proposed in [25]. Given N points and their triangula-
tion we translate the eigendecomposition of the Laplace-
Beltrami operator (5) into a weak form
∫

ψk"φ da = λ

∫
ψkφ da, (52)

with respect to some basis {ψk} spanning a (sufficiently
smooth) subspace of L2(X). Though, the basis functions can
be of any order, here we limit our attention to linear ψk’s ob-
taining a zero value in k’s 1-ring and one at k itself.

Substituting these functions into (52) and performing
derivation by parts yields [23]
∫

∂X
ψk

∂φ

∂n
ds −

∫
ψk"φ da =

∫
⟨∇ψk,∇φ⟩x da, (53)

where n is the direction of the exterior normal. Inserting a
vanishing Neumann boundary condition ∂φ(x)

∂n = 0, ∀x ∈ ∂X

into (53) yields the well known formulation
∫

ψk"φ da = −
∫

gij (∂iφ)(∂jψk) da = λ

∫
ψkφ da.

Note, that ψk is no longer required to satisfy the bound-
ary condition, since it has become a part of the weak for-
mulation. For that reason, the Neumann boundary condi-
tion is called a natural boundary condition, in contrast to
the Dirichlet counterpart which is refereed to as an essential
boundary condition.

Next, we approximate the eigenfunction φ as a combina-
tion of the ψl’s,

φ =
∑

l=1

αlψl , (54)

which yields

∫
gij

(
∂i

∑

l

αlψl

)
(∂jψk) da = −λ

∫
ψk

∑

l

αlψl da,

(55)

or due to compactness,

∑

l

αl

∫
gij (∂iψl)(∂jψk) da = −λ

∑

l

αl

∫
ψkψl da. (56)

Note that the latter integrals depend only on the basis func-
tions ψk and the surface and can be therefore precomputed.
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Fig. 6 Three eigenfunctions (2nd, 3rd, and 5th) of the standard (first
two rows) and the proposed equi-affine invariant (last two rows)
Laplace-Beltrami operators. The first and the third rows relate to the

original shape, while the second and forth rows to its equi-affine trans-
formation. For convenience of visualization, eigenfunctions are over-
laid onto the untransformed shape

The last equation can be rewritten in a matrix form as the
generalized eigendecomposition Aα = λBα solved for the
coefficients αl [54], where

akl =
∫

gij (∂iψl)(∂jψk) da,

bkl = −
∫

ψkψl da,

(57)

are the elements of the matrices A and B, respectively. A
visualization of several eigenfunctions can be seen in Fig. 6.

6 Synthetic Data

In this section, we show a few applications of our construc-
tion in non-rigid shape retrieval, correspondence, and par-
titioning. In all the applications, we compare the proposed
equi-affine-invariant metric and the standard Riemannian
metric induced by the Euclidean embedding.

6.1 Shape Retrieval

The bag of features approach for shape retrieval (dubbed as
Shape Google) was shown in [43]. In this approach, local

shape descriptors (HKS) were quantized into a “geometric
vocabulary”, creating for each shape a distribution of words
from the vocabulary (bag of features). Comparing two bags
of features allows to measure the similarity of the underlying
shapes.

Here, we compared how Shape Google performs with
HKS descriptors obtained using different metrics. The
SHREC 2010 large-scale shape retrieval benchmark method-
ology [9] was used for evaluation. The dataset in the bench-
mark consisted of two parts: 793 shapes from 13 shape
classes with simulated transformation of different types
(Fig. 8) and strengths (total 60 transformations per shape,
used as queries) and the remaining 521 shapes used as the
queried corpus. Transformations classes affine and isome-
try+affine were added to the original SHREC query set, rep-
resenting, respectively, equi-affine transformations of differ-
ent strengths of the null shape and its approximate isome-
tries.

Retrieval was performed by matching 780 transformed
queries to the null shapes. Each query had one correct cor-
responding null shape in the dataset. Scale-space was sam-
pled at six scales t = 1024, 1351, 1783, 2353, 3104, 4096.
Bags of features were computed using soft vector quantiza-
tion with variance taken as twice the median of all distances
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Fig. 7 Heat kernel signature ht (x, x) and diffusion metric ball around
a point on the head obtained using the standard (second and third
columns, respectively) and the equi-affine invariant (fourth and fifth
columns, respectively) metrics. Two rows show a shape and its
equi-affine transformation. For convenience of visualization, the heat
kernels are overlaid onto the untransformed shape. Plots below the fig-
ure show the corresponding metric distributions before and after the
transformation

between cluster centers in a vocabulary of 64 entries. Both
the standard and the affine-invariant Laplace-Beltrami op-
erator discretization were computed using finite elements,
Heat kernels were approximated using the first smallest 100
eigenvectors and eigenvalues. Examples of heat kernel sig-
natures obtained using two different metrics are shown in
Fig. 7.

Performance was evaluated using precision/recall char-
acteristic. Precision P(r) is defined as the percentage of rel-
evant shapes in the first r top-ranked retrieved shapes. Mean
average precision (mAP), defined as mAP = ∑

r P(r) ·
rel(r), where rel(r) is the relevance of a given rank, was
used as a single measure of performance. Intuitively, mAP
is interpreted as the area below the precision-recall curve.
Ideal retrieval performance (mAP = 100 %) is achieved
when all queries return relevant first matches. Performance
results were broken down according to transformation class
and strength.

Tables 1–2 show that the equi-affine version of Shape
Google is competitive to the one using the standard (embed-
ding-induced) metric, and exhibits nearly perfect retrieval
results in the equi-affine transformations class.

6.2 Voronoi Tessellation

The second application we show is the partitioning of non-
rigid shapes. Voronoi tessellation is a partitioning of (X,g)

into disjoint open sets called Voronoi cells. A set of k points
(xi ∈ X)ki=1 on the surface defines the Voronoi cells (Vi)

k
i=1

such that the i-th cell contains all points on X closer to xi

Table 1 Performance of Shape Google with equi-affine HKS descrip-
tors

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 99.23

Affine 100.00 100.00 100.00 100.00 97.44

Iso.+Affine 100.00 100.00 100.00 100.00 100.00

Topology 96.15 94.23 91.88 89.74 86.79

Holes 100.00 100.00 100.00 100.00 100.00

Micro holes 100.00 100.00 100.00 100.00 100.00

Local scale 100.00 100.00 94.74 82.39 73.97

Sampling 100.00 100.00 100.00 96.79 86.10

Noise 100.00 100.00 89.83 78.53 69.22

Shot noise 100.00 100.00 100.00 97.76 89.63

Table 2 Performance of ShapeGoogle with Euclidean HKS descrip-
tors

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00

Affine 100.00 86.89 73.50 57.66 46.64

Iso.+Affine 94.23 86.35 76.84 70.76 65.36

Topology 100.00 100.00 98.72 98.08 97.69

Holes 100.00 96.15 92.82 88.51 82.74

Micro holes 100.00 100.00 100.00 100.00 100.00

Local scale 100.00 100.00 97.44 87.88 78.78

Sampling 100.00 100.00 100.00 96.25 91.43

Noise 100.00 100.00 100.00 99.04 99.23

Shot noise 100.00 100.00 100.00 98.46 98.77

than to any other xj in the sense of the metric g. In other
words, a point x ∈ X belongs the i’th cell if dX(x, xi) ≤
dX(x, xj ) j ≠ i, where dX : X × X → R is the distance
map induced by the Riemannian metric tensor g. Boundary
points which have a similar distance to more than one cen-
troid are considered to be in none or all the relevant cells.
Voronoi tessellations are ubiquitous in geometry process-
ing applications, and their definition is related to the metric
used.

In our experiment, we compared the standard metric with
the equi-affine metric for Voronoi tessellation generation.
For each choice of the metric, we computed the associ-
ated Laplace-Beltrami operator and used its eigenvector and
eigenvalues to compute the diffusion distance with a time
scale t = 10. Thirteen points were picked on the shape us-
ing the farthest point sampling strategy, and tessellation was
performed before and after applying an equi-affine transfor-
mation to the shape. Figure 9 clearly shows the invariance
of the resulting tessellation in the case our metric is used.
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Fig. 8 Examples of query shape transformations used in the shape retrieval experiment (left to right): null, isometry, topology, affine,
affine+isometry, sampling, local scale, holes, microholes, Gaussian noise, shot noise

Fig. 9 Voronoi cells generated by a fixed set of 13 points on a shape
undergoing an equi-affine transformation. We used diffusion distances
with t = 10. The standard (top) and the equi-affine (bottom) metrics
were used. Note that in the latter case, the tessellation commutes with
the transformation

6.3 Non-rigid Matching and Intrinsic Symmetry

As the last application, we show an archetypal problem in
shape analysis: intrinsic correspondence of two non-rigid
shapes, and its particular case of self-correspondence (sym-
metry detection).

Two non-rigid shapes X,Y can be considered similar if
there exists an isometric correspondence C ⊂ X × Y be-
tween them, such that ∀x ∈ X there exists y ∈ Y with
(x, y) ∈ C and vice-versa, and dX(x, x′) = dY (y, y′) for all
(x, y), (x′, y′) ∈ C, where dX,dY are distance metrics on
X,Y . In practice, no shapes are truly isometric, and such a
correspondence rarely exists; however, one can attempt find-
ing a correspondence minimizing the metric distortion.

We used the GMDS framework [12] to minimize (20). In
our experiment, we initialized the algorithm manually (sev-
eral heuristic algorithm can be used instead [24, 53, 69]).
As distances in the GMDS algorithm, we used the geodesic
distances computed using the standard and our equi-affine
Riemannian metric.

Figures 10 and 11 show the correspondence between dif-
ferent poses of an armadillo with and without equi-affine
stretching. It can be seen that correspondence based on the
equi-affine metric performs better than the Euclidean one in
the presence of bendings as well as equi-affine stretching.

Fig. 10 Correspondence between different poses using the standard
(first row) and the equi-affine (second row) metrics. It is clear that the
equi-affine metric performs better than the Euclidean one in the pres-
ence of bendings. See for example the enlarged red ball in the center of
the body that represents a corresponding point mapped from the origi-
nal surface. (Color figure online)

An intrinsic symmetry is a particular case of shape corre-
spondence with itself, defined as a minimum distortion self-
embedding of a shape [47]. We used the same GMDS algo-
rithm with different initialization in order to find the intrinsic
reflective symmetry of the armadillo shape (Fig. 12).

7 Facial Morphometry

Facial morphometry is important in a variety of applications,
such as diagnosis of generic disorders [28], statistical mea-
surements of child growth [40], and construction of facial
masks [42]. Evaluating geometric statistics of bendable and
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Fig. 11 Correspondence between different poses after stretching us-
ing the standard (second row) and the equi-affine (third row) metrics.
Results based on the equi-affine metric are similar to Fig. 10 while
the Euclidean metric suffers decrease in accuracy. See for example the
enlarged balls that represent corresponding points in the limbs. For
clarity we depicted the correspondence on the original shape, while a
half size model of the stretched shapes appear in the first row

stretchable objects such as the face, forces us to align them
within their ambient space.

A coarse correspondence between matching parts can be
found based on local features. Usually, this alignment is per-
formed using the albedo (texture) of the facial images, as it
is easier than using geometry alone. Many models were pro-
posed to provide dense geometric correspondence between
surfaces. Most of these methods assume that the shapes, and
in our case faces, are almost isometric with respect to the
Euclidean ambient space. While this assumption could hold
when considering facial surfaces of the same subject under
various expressions [11], it would most probably fail when
trying to align faces of different subjects. To overcome this
problem, feature points are first matched, and then a smooth-
ness term compensates for the stretches while interpolating
the dense correspondence.

Fig. 12 Intrinsic symmetry of the armadillo shape using the Euclidean
(first row) and the equi-affine (second row) metrics. It is clear that the
equi-affine metric performs better than the Euclidean one in the pres-
ence of bendings. See for example the enlarged red ball in the center of
the body that should keep its location under perfect symmetry. (Color
figure online)

Fig. 13 Structured light scanner used to capture the facial geometry
of newborns in the hospital

In this section, we argue that the equi-affine metric is
more robust to local stretches, hence it is better suited for an-
alyzing intrinsic geometric properties of faces, specifically
when dense alignment is required. We further claim that dif-
fusion distances, which are widely used in the computer vi-
sion community, are also applicable in medical applications
when coupled with the equi-affine metric.

In the following experiments we scanned 50 newborn in-
fants with a structured light camera (Fig. 13) and constructed
a triangulated mesh with 5000 vertices for each child. We
manually marked different facial features (Fig. 14) and eval-
uated the eigenvalues and eigenfunctions of the facial sur-
face given the Euclidean metric and the equi-affine one.
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Fig. 14 Facial fiducials were marked by hand for evaluation of local
stretches between faces. The inner canthis (P2-3) distance is used for
global scaling

Fig. 15 Diffusion distances from the tip of the nose given three differ-
ent times: from left to right 0.10, 0.15 and 0.20. In the first row we used
the Euclidean metric and in the second row the equi-affine metric. We
can see that the equi-affine metric is much more robust to small time
shifts. Quantitative results appear in Fig. 16

We evaluated the diffusion distances from the tip of the
nose to the entire face in several time scales as can be seen
in Fig. 15. As each choice of time provides a different mea-
surement of length, it is unclear which is the best time for a
given application. The equi-affine invariant distances remain
similar for small time changes, while the Euclidean invari-
ant distances change dramatically. We provide a quantitative
assessment in Fig. 16 where we show the distance distribu-
tion for three different times. In order to validate the affine
invariant stability claim, we evaluated the distances between
six different manually marked facial features. For each pair
(50 × 49) we measured the ratio between those distances

Table 3 Mean and standard deviation of 50 × 49 distance pairs ratios
after a global affine alignment was performed

P2-3 P1-4 P6-7 P5-9 P1-6 P2-6

Mean 1.17 1.13 1.12 1.15 1.08 1.09

STD 0.39 0.65 0.23 0.21 0.19 0.10

Table 4 Time depended diffusion distances ratios between 50 × 49
pairs

Time P2-3 P1-4 P6-7 P5-9 P1-6 P2-6

Diffusion distances ratios based on the Euclidean metric

0.10 1.14 1.20 1.18 1.74 1.40 1.41

0.15 1.74 1.92 1.91 3.63 2.66 2.83

0.20 3.60 4.15 4.34 10.90 7.26 8.40

Diffusion distances ratios based on the equi-affine metric

0.10 0.98 0.97 1.05 1.19 0.99 0.97

0.15 1.03 1.03 1.12 1.25 1.05 0.99

0.20 1.15 1.16 1.30 1.38 1.19 1.06

in various times that correspond to different scales. Results
are presented in Fig. 17 and Table 4. The selected timescale
for analysis is the dynamic range for which diffusion dis-
tances represent well the facial geometry. Smaller time val-
ues provide unstable results, while larger times fail to main-
tain meaningful information about the geometric structure.
In Fig. 16 we see that in the effective dynamic range, the
equi-affine distances contain meaningful information and
are better spread than the Euclidean ones.

If the faces would have been transformed by a single
affine transformation, then a global normalization would
have been sufficient, which is rarely the case. In Table 3
we show the pairwise distortion error of straight Euclidean
distances between the facial features after we performed a
global affine alignment. We witness different distortions for
different distances. Hence, faces are difficult to align using a
single global affine transformation, while using local defor-
mations, such as those supported by the equi-affine metric,
provides a better alignment tool.

The advantages of the equi-affine metric are twofolds.
First, it is much more robust to the time chosen in the dif-
fusion geometry setting. Second, the ratio between the com-
puted distances of corresponding points, based on the equi-
affine invariant metric is closer to one. It means that any
alignment algorithm which minimizes intrinsic properties
will provide better results using the equi-affine metric.

Next, we compared the quality of facial alignment us-
ing the GMDS framework [13] given diffusion distances
and commute time distances based on the Euclidean and
Equi-affine metric. In Table 5 we show the distortion from
ground truth of 45 comparisons between 10 faces. We de-
fine the error as the average Euclidean intrinsic (geodesics)
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Fig. 16 Histogram of diffusion distances measured from the tip of the nose (Fig. 15) for three different times. We can see that the equi-affine
metric is more robust to time changes

Fig. 17 A pairwise average ratios of diffusion distances between facial
fiducials. We compared 6 different distances for every pair from our 50
newborns. A ratio of one means that the distances are almost the same.
Due to local stretches the ratios are different between graphs. As can

be seen, the Euclidean based distances are less robust to the choice of
time, are different from pair to pair and have a higher variance then
those measured with the equi-affine metric. We provide quantitative
results in Table 4

shifts of marked points (1 to 9 from Fig. 14). In addition,
we scaled all models such that the inner canthus distance
will be 1. In the majority of our experiments the equi-
affine metric significantly outperformed the Euclidean one.
We summarize the results in Table 6. On average, the Eu-
clidean metric showed more than 30 % distortions com-
pared to the equi-affine one using commute time distance,
and more than 120 % distortion for diffusion distances with

time 0.1. Choosing a longer time introduced even larger dis-
tortions.

8 Conclusions

A computational framework for constructing equi-affine in-
variant distances for surfaces was presented. It was shown to
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Table 5 Alignment distortion from ground truth using GMDS frame-
work for 10 different faces (45 comparisons). On the left we present
the Euclidean based distortion, and on the right the Equi-affine. The

faces were normalized such that the inner canthus distance (points 2–
3) is 1. On the top table we used diffusion distances, and on the bottom
commute time distances

Euc/EA 1 2 3 4 5 6 7 8 9 10

Diffusion distances t = 0.1

1 0/0 0.55/0.22 0.33/0.17 0.63/0.11 0.37/0.08 0.35/0.13 0.61/0.14 0.45/0.13 0.63/0.44 0.37/0.14

2 0/0 0.30/0.24 0.62/0.12 0.36/0.14 0.36/0.16 0.61/0.15 0.46/0.28 0.61/0.34 0.37/0.18

3 0/0 0.43/0.11 0.36/0.23 0.35/0.17 0.61/0.17 0.46/0.13 0.64/0.37 0.37/0.17

4 0/0 0.45/0.07 0.35/0.11 0.61/0.09 0.46/0.12 0.57/0.29 0.36/0.18

5 0/0 0.33/0.15 0.61/0.20 0.42/0.24 0.59/0.39 0.38/0.29

6 0/0 0.07/0.16 0.46/0.13 0.62/0.31 0.35/0.17

7 0/0 0.41/0.28 0.60/0.37 0.37/0.22

8 0/0 0.13/0.40 0.37/0.12

9 0/0 0.46/0.37

10 0/0

Commute time distances

1 0/0 0.20/0.14 0.26/0.16 0.27/0.18 0.24/0.17 0.25/0.21 0.21/0.14 0.19/0.13 0.43/0.37 0.26/0.18

2 0/0 0.16/0.19 0.23/0.14 0.25/0.17 0.25/0.17 0.24/0.16 0.22/0.18 0.35/0.22 0.30/0.20

3 0/0 0.24/0.18 0.26/0.17 0.26/0.26 0.36/0.18 0.31/0.17 0.37/0.34 0.22/0.20

4 0/0 0.18/0.17 0.36/0.23 0.31/0.13 0.32/0.16 0.31/0.27 0.26/0.20

5 0/0 0.22/0.21 0.20/0.17 0.20/0.20 0.26/0.36 0.26/0.18

6 0/0 0.18/0.16 0.18/0.12 0.36/0.31 0.27/0.13

7 0/0 0.17/0.17 0.41/0.38 0.31/0.16

8 0/0 0.23/0.24 0.23/0.12

9 0/0 0.22/0.26

10 0/0

Table 6 Mean/median distortions of GMDS alignment from Table 5.
The faces were normalized according to the inner canthus

Mean/median Diffusion t = 0.1 Commute time

Euclidean 0.449/0.430 0.261/0.254

Equi-affine 0.203/0.170 0.199/0.182

gracefully handle degenerate cases. The proposed method
allowed us to overcome semi-local equi-affine distortions
without the need to explicitly estimate them during the anal-
ysis of non-rigid surfaces. The equi-affine transformations
we can handle could be either semi-local or global, and act
on either rigid or non-rigid shapes. In order to prove robust-
ness we showed how to apply the equi-affine invariant metric
to various analysis methods designed for non-rigid shapes.
Finally, we explored the potential of the proposed metric in
statistical analysis of facial morphometry. A limitation of the

proposed metric is its sensitivity to scale. In a follow-up pa-
per we plan to marry the proposed metric with the scale in-
variant one [1], and construct an affine invariant metric that
can also handle scales.
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