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Abstract Symmetry and self-similarity are the cornerstone
of Nature, exhibiting themselves through the shapes of nat-
ural creations and ubiquitous laws of physics. Since many
natural objects are symmetric, the absence of symmetry can
often be an indication of some anomaly or abnormal be-
havior. Therefore, detection of asymmetries is important in
numerous practical applications, including crystallography,
medical imaging, and face recognition, to mention a few.
Conversely, the assumption of underlying shape symme-
try can facilitate solutions to many problems in shape re-
construction and analysis. Traditionally, symmetries are de-
scribed as extrinsic geometric properties of the shape. While
being adequate for rigid shapes, such a description is in-
appropriate for non-rigid ones: extrinsic symmetry can be
broken as a result of shape deformations, while its intrinsic
symmetry is preserved. In this paper, we present a general-
ization of symmetries for non-rigid shapes and a numerical
framework for their analysis, addressing the problems of full
and partial exact and approximate symmetry detection and
classification.
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1 Introduction

“Symmetry, as wide or as narrow as you may define its
meaning, is one idea by which man through the ages has
tried to comprehend the created order, beauty, and perfec-
tion” (Weyl 1983). These words of Hermann Weyl, one of
the greatest twentieth century mathematicians, reflect the
importance symmetry has in all aspects of our life. Symme-
try, referred to in some contexts as self-similarity or invari-
ance is the cornerstone of Nature, exhibiting itself through
the shapes of natural creations we see every day as well as
through less evident yet omnipresent laws of physics.

The interest in symmetries of shapes dates back to the
dawn of the human civilization. Early evidences that our
predecessors attributed importance to symmetries can be
found in many cultural heritages, ranging from monumen-
tal architecture of the Egyptian pyramids to traditional an-
cient Greek decorations. Johannes Kepler was among the
first who attempted to give a geometric formulation to sym-
metries in his treatise On the six-cornered snowflake (Kepler
1611) in as early as 1611 (Fig. 1). A few centuries later, the
study of symmetric shapes became a cornerstone of crystal-
lography. Finally, symmetries of more complicated higher-
dimensional objects underlie modern physics theories about
the nature of matter, space and time.

Since many natural objects are symmetric, symmetry
breaking can often be an indication of some anomaly or ab-
normal behavior. Therefore, detection of asymmetries arises
in numerous practical problems, among which medical ap-
plications are probably the first to come in mind. For exam-
ple, detection of tumors in medical images can be based on
deviations from otherwise symmetric body organs and tis-
sues (Mancas et al. 2005). Facial symmetry is important in
craniofacial plastic surgery (Huisinga-Fischer et al. 2004),
since symmetric facial features are often associated with
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Fig. 1 Hexagonal symmetry of ice crystals was one of the fist shape symmetries to be rigorously studied (snowflake images taken by Wilson
Bentley in 1902)

Fig. 2 Symmetric or not?
Visualization of the difference
between extrinsic and intrinsic
symmetry: an extrinsically
symmetric shape is also
intrinsically symmetric (left),
however, an isometry of the
shape is intrinsically symmetric
but extrinsically asymmetric
(center). The shape on the right,
on the other hand, is partially
intrinsically symmetric (the part
obtained by removing the leg is
symmetric)

beauty and aesthetics (Mealey et al. 1999). Furthermore, fa-
cial asymmetry can also be an indication of various syn-
dromes and disorders (Haraguchi et al. 2001). Conversely,
the assumption of symmetry can be used as a prior knowl-
edge in many problems. It may facilitate, for example, the
reconstruction of surfaces (Shimshoni et al. 2000), face de-
tection, recognition and feature extraction (De Natale et al.
1997; Reisfeld and Yeshurun 1992).

In pattern recognition and computer vision literature,
there exists a significant number of papers dedicated to find-
ing symmetries in images (Marola 1989; Riklin-Raviv et al.
2009), two-dimensional (Wolter et al. 1985; Atallah 1985;
Alt et al. 1988) and three-dimensional shapes (Sun and Sher-
rah 1997; Kazhdan et al. 2003; Mitra et al. 2006). A wide
spectrum of methods employed for this purpose includes ap-
proaches based on dual spaces (Derrode and Ghorbel 2004),
genetic algorithms (Gofman and Kiryati 1996), moments
calculation (Cheung and Ip 1998), pair matching (Loy and
Eklundth 2006; Cornelius and Loy 2006), and local shape
descriptors (Zabrodsky et al. 1995).

Traditionally, symmetries are considered as extrinsic
geometric properties of shapes that are related to the way
the shape is represented in the Euclidean space. Though ad-

equate for rigid shapes, such a point of view is inappropriate
for non-rigid ones. Due to the deformations such shapes can
undergo, the extrinsic symmetries may be lost, while in-
trinsically the shape still remains symmetric. Consider the
human body example in Fig. 2 (left). Extrinsic bilateral sym-
metry of the body is broken when the body assumes different
postures (Fig. 2, center). Yet, from the point of view of in-
trinsic geometry, the new shape remains almost identical, as
such a deformation does not significantly change its metric
structure. In this sense, intrinsic symmetries are a superset
of the extrinsic ones.

An even more challenging problem is the detection of
partial symmetries, shown in Fig. 2 (right). In this example,
the human figure is missing part of the left leg, which makes
only part of it symmetric. Detecting symmetric parts of gen-
erally asymmetric objects is a difficult problem in the rigid
case (Mitra et al. 2006), and significantly more difficult in
the case of non-rigid shapes.

Recent works on deformable shape analysis studied many
shape properties and characteristics remaining invariant un-
der deformations in applications to shape similarity and cor-
respondence. Anguelov et al. (2005) addressed the problem
of non-rigid shape correspondence based on local extrin-
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sic properties. Fully intrinsic approaches were considered
by Elad and Kimmel (2003), Mémoli and Sapiro (2005),
and Bronstein et al. (2006), who used the distortion of geo-
desic distances as a criterion of shape similarity. Reuter et
al. (2006) used the eigenvalues of the Laplace-Beltrami op-
erator as shape descriptors, referred to as Shape DNA. Rus-
tamov (2007) modeled and compared shapes as distribu-
tions of commute time distances; a similar approach based
on distributions of diffusion distances was presented by
Mahmoudi and Sapiro (2009). Lévy (2006) and Mateus et
al. (2008) used eigenmaps obtained by the first eigenfunc-
tions of the Laplace-Beltrami operator as low-dimensional
Euclidean representations of non-rigid shapes.1

Bronstein et al. (2008b, 2009a) and Bronstein and Bron-
stein (2008) presented a framework for the computation of
partial intrinsic similarity, where the similar parts are un-
known in advance. The authors formulated a multi-criterion
optimization problem in which the part “significance” and
similarity are maximized at the same time; most similar and
most significant parts are Pareto optima of the problem.

In Raviv et al. (2007), we introduced the notion of in-
trinsic symmetries for non-rigid shapes. Formulating non-
rigid symmetries as intrinsic self-similarity allowed exploit-
ing methods proposed for representation and comparison of
non-rigid shapes. We used methods based on geodesic dis-
tances and motivated by Bronstein et al. (2006), and pre-
sented several numerical tools for symmetry detection. In
a parallel work, Ovsjanikov et al. (2008) showed a spec-
tral approach for intrinsic symmetry detection. The authors
showed how reflection intrinsic symmetries are transformed
into Euclidean ones in the space defined by the eigenfunc-
tions of the Laplace-Beltrami operator. This approach is lim-
ited only to coping with reflection symmetries and cannot
detect rotation and continuous symmetries. In addition, the
method may be sensitive to geometric noise and, finally, it
cannot be straightforwardly extended to dealing with partial
symmetries. Yang et al. (2008) showed an approach for the
detection of reflection symmetries in 2D non-rigid shapes by
finding axes maximizing the shape self-similarity.

Several generalizations of Raviv et al. (2007) for partial
symmetries were proposed. Lasowski et al. (2009) used a
Markov random field model to obtain a probability distrib-
ution over all possible intrinsic matches of a shape to itself
in order to reveal the symmetry structure. Xu et al. (2009)
used a voting procedure to find partial reflection symmetry
axes and showed how the knowledge of symmetry can be
exploited in shape segmentation and computer graphics ap-
plications.

1For additional methods, the reader is referred to Gal et al. (2007),
Hamza and Krim (2005).

1.1 Contributions

In this paper we elaborate on and expand the concepts put
forward in Raviv et al. (2007). Specifically, we classify
and efficiently compute symmetries and partial symmetries,
while using properties of symmetry groups in order to ex-
plore the symmetry space. Secondly, we generalize the no-
tion of intrinsic symmetries to partial symmetries in the
spirit of Bronstein and Bronstein (2008) and Bronstein et
al. (2008b) and show how partial symmetries can be found
as a trade-off between self-similarity and partiality.

Compared to Ovsjanikov et al. (2008), Yang et al. (2008)
the main advantage of our approach for the detection of full
symmetries are its ability to handle generic symmetries (not
only reflections). In partial symmetry detection, compared
to Xu et al. (2009), our approach has a significantly lower
computational complexity. Finally, using a generic metric
framework, we have the possibility to use different metrics
instead of the geodesic one.

The rest of this paper is organized as follows. In Sect. 2,
we define intrinsic and extrinsic symmetries. In Sect. 3, we
introduce the space of approximate symmetries. Section 4
presents the relation between intrinsic and extrinsic symme-
tries and Sect. 5 deals with partial symmetries. Section 6 is
devoted to a numerical framework for computation and visu-
alization. Experimental results are presented in Sect. 7, and
Sect. 8 concludes the paper.

2 Mathematical Background

When dealing with nonrigid shapes, different geometric
tools are invoked when the same shape is considered as a
standalone rigid object or an instance (deformation) of a
nonrigid object. A unifying framework allowing to capture
both points of view is possible by considering shapes from
the perspective of metric geometry (Elad and Kimmel 2003;
Bronstein et al. 2006, 2008b).

A geometric shape is modeled as a metric space (X,d),
where X is a two-dimensional smooth compact connected
manifold (possibly with boundary) embedded into the
Euclidean space E (equal to R3 in case of three-dimensional
objects and R2 in case of two-dimensional shapes), and
d : X × X → R+ ∪ {0} is some metric measuring the dis-
tances on X. For the brevity of notation, we will write
shortly X instead of (X,d) when the metric d is implied
or not important.

There exist two most natural ways to define the metric d

on X. One is to consider X as a subset of E and measure
the distances between points x, x′ on X using the restricted
Euclidean metric,

dE(x, x′) = dE|X×X(x, x′). (1)
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The Euclidean metric regards the “external” properties of
the shape, having to do with the way it is laid out in E. We
broadly refer to properties described by dE as the extrinsic
geometry of X.

Another way is to define the distance between x and x′

as the length of the shortest path (geodesic) on the surface X

connecting x and x′. We call the metric defined this way the
geodesic metric and denote it by dX . Properties defined by
dX are part of the intrinsic geometry of X. Broadly speak-
ing, intrinsic geometry describes the properties of the shape
which are invariant to inelastic deformations, that is trans-
formations that do not stretch or tear the surface, while ex-
trinsic geometry is associated with a specific rigid deforma-
tion. The same shape can be regarded both from the intrinsic
and extrinsic point of view by selecting d to be either the
geodesic or the Euclidean metric, respectively (Bronstein et
al. 2007; Mémoli 2008).

2.1 Intrinsic and Extrinsic Similarity

In order to say whether two shapes are similar, we com-
pare them as metric spaces. From the point of view of met-
ric geometry, two metric spaces are equivalent if their cor-
responding metric structures are equal. Such metric spaces
are said to be isometric. More formally, given two metric
spaces (X,d) and (Y, δ), a bijective map g : (X,d)→ (Y, δ)

is called an isometry if

δ ◦ (g × g) = d. (2)

In other words, an isometry is a metric-preserving map be-
tween two metric spaces, such that

d(x1, x2) = δ(g(x1), g(x2)) ∀x1, x2 ∈X. (3)

We call such (X,d) and (Y, δ) isometric and denote this by
(X,d)∼ (Y, δ).

The definition of isometry obviously depends on the
choice of the metric. Here, we consider two specific exam-
ples, the Euclidean metric dE and the geodesic metric dX .
A bijection g : (X,dX)→ (Y, dY ) satisfying dY ◦ (g× g) =
dX is called an intrinsic isometry. Saying that (X,dX) and
(Y, dY ) are isometric is equivalent to saying that X and Y

are intrinsically similar.
On the other hand, if we consider the extrinsic geom-

etry of the shapes (i.e., look at the shapes endowed with
the Euclidean rather than geodesic metric), we notice that
(X,dE) and (Y, dE) are subsets of the same metric space,
(E,dE). As a result, an extrinsic isometry is a bijection be-
tween subsets of the Euclidean space rather than between
two different metric spaces. In Euclidean geometry, the only
possible isometries are rigid motions, which include rota-
tion, translation and reflection transformations; we denote
the family of such transformations by Iso(E, dE). Thus, X

and Y are extrinsically isometric if there exists g ∈ Iso(E)

such that dE(X×X) = dE◦(g×g)(X×X). This means that
two shapes are extrinsically isometric if one can be obtained
by a rigid transformation of the other, which is sometimes
expressed by saying that X and Y are congruent.

In the following, we will say that X and Y are isomet-
ric implying intrinsic isometry, and that X and Y are con-
gruent when referring to an extrinsic isometry. The class
of intrinsic isometries is usually richer than that of congru-
ences, since any congruence is by definition also an intrinsic
isometry. However, for some objects these two classes co-
incide, meaning that they have no incongruent isometries.
Such shapes are called rigid, and their extrinsic geome-
try is completely defined by the intrinsic one.2 In partic-
ular, two-dimensional shapes realized as two-dimensional
Euclidean sub-manifolds are always rigid,3 unless they have
point joints around which parts of the shapes can rotate
(Bronstein et al. 2008b; Ling and Jacobs 2007). However,
the assumption that the shape is a manifold rules out such
singularities.

2.2 Symmetries

As mentioned in the Introduction, symmetries are self-
similarities of shapes. So far, we have defined the rigorous
meaning of similarity, using the notions of metric geometry.
Self-similarity is a particular case, in which we compare a
metric space to itself. A metric space (X,d) is self-similar
if there exists a self-isometry on (X,d) (an isometry from
(X,d) to itself).

However, just knowing that a shape is self-similar is not
enough in order to understand how symmetric it is. For ex-
ample, a sphere and a torus are self-similar, however, it is
obvious that the sphere is “more symmetric” than the torus.
We can actually claim that any shape is self-similar, since
there always exists a trivial self-similarity, the identity trans-
formation, which is an isometry by definition in any metric
space.

A common and convenient way to model symmetries is
by using the group theory, which describes operations be-
tween symmetries. A group, denoted by (G,∗) is a set with
the associative binary operation ∗, satisfying:

(G1) Associativity: (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for all
g1, g2, g3 ∈G.

(G2) Identity: There exists a unique identity element in G

denoted by id, such that g ∗ id = g for all g in G.

2More rigorously, the first fundamental form of a rigid shape defines
(up to a congruence) its embedding into R3.
3Two-dimensional shapes are manifolds restricted to the plane and
therefore have a trivial second fundamental form. Isometries of a pla-
nar shape also have identical first fundamental forms, which by the
fundamental theorem of the theory of shapes implies their congruence.
This, in turn, implies rigidity of two-dimensional shapes.
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Fig. 3 Extrinsic versus intrinsic
symmetry. Here, g ∈"(X) is a
permutation on X (a bijective
map on X)

(G3) Inverse: For all g in G, there exists a unique inverse
denoted by g−1 such that g ∗ g−1 = g−1 ∗ g = id.

A simple example is the group (R,+) of real numbers with
the addition operation, in which the identity element is 0
and the inverse of a number is its negative. A subset of a
group (G′ ⊂G,∗) with the operation ∗ restricted to G′ and
satisfying g−1 ∗h ∈G′ for all g,h ∈G′ is called a subgroup
of (G,∗).

In our case, we are interested in groups as a concise de-
scription of classes of transformations acting on shapes. For
this purpose, we consider the group ("(X),◦) of all bijec-

tions "(X) = {g : X 1:1→X} on the shape X with the function
composition operator ◦. In this context, bijections from X to
itself are referred to as permutations (even if X is continu-
ous), as they can be thought of different ways to “permute”
the points of the shape X. The identity element of the group
is the identity map id(x) = x, and the inverse element is the
inverse map g−1.

Next, we recall that X is actually a metric space (X,d)

equipped with the metric d and consider a subset of permu-
tations "(X) which are also isometries,

Iso(X,d) = {g ∈"(X) : d ◦ (g × g) = d}. (4)

It can be easily shown that g−1h ∈ Iso(X,d) for all g,h ∈
Iso(X,d), which means that (Iso(X,d),◦) is a subgroup of
("(X),◦). We refer to this subgroup as the symmetry group
of (X,d) and use the notation

Sym(X,d) = (Iso(X,d),◦), (5)

omitting the operator ◦ for notation brevity. Since this def-
inition depends on the choice of the metric, we distinguish
between the group of extrinsic symmetries Sym(X,dE) and

that of intrinsic symmetries Sym(X,dX) as can be seen in
Fig. 3. Such a notation finally draws a formal distinction be-
tween these two notions.

It should be noted that in the case of rigid objects, these
two notions coincide. Hence, in the 2D examples we show
in the following, we refer to symmetries as both intrinsic and
extrinsic ones.

The use of symmetry groups also allows to conveniently
classify different types of symmetries. In many cases, the
group describing the symmetries of a shape is isomorphic
to a finite group, which can be thought of as a represen-
tation of the symmetry group. For example, the symme-
tries of an equilateral triangle (three rotations by 120 de-
grees and three reflections, see Fig. 4) can be represented
by the elements of the dihedral group D3, consisting of six
elements R0,R1,R2 (representing rotations) and S0, S1, S2

(representing reflections), with the following composition
rule (arranged as Cayley table),

◦ R0 R1 R2 S0 S1 S2

R0 R0 R1 R2 S0 S1 S2
R1 R1 R2 R0 S1 S2 S0
R2 R2 R0 R1 S2 S0 S1
S0 S0 S2 S1 R0 R2 R1
S1 S1 S0 S2 R1 R0 R2
S2 S2 S1 S0 R2 R1 R0

(6)

which can be thought of as a “multiplication table” of the
group.

Triskelion (Fig. 5, right), a three-legged shape fre-
quently occurring in ancient Greek ornaments and in mod-
ern heraldry, has three rotational symmetries described by
the cyclic group C3, consisting of the cyclic permutations
of the vector (1,2,3). The Star of David (Fig. 5, middle) is



Int J Comput Vis (2010) 89: 18–39 23

Fig. 4 Equilateral triangle has
six symmetries (rotations and
reflections), described by the
dihedral group D3

Fig. 5 Symmetries of different shapes can be described using group
theory. Shown left-to-right: circle with continuous rotational symme-
tries and one reflective symmetry (C2 × SO(2,R)), star of David with
dihedral symmetry (D6, including six rotations and six reflections) and
triskelion with three rotational symmetries (described by the cyclic
group C3)

described by the dihedral group D6 (six rotations and six re-
flections). A circle (Fig. 5, left) has continuous symmetries,
represented by the special orthogonal group SO(2,R) (con-
taining all the rotation transformations around a fixed point
in a plane), and one reflective symmetry represented by C2
(the only group of order two). Combining them both creates
C2 × SO(2,R), which is the circle’s symmetry group. Note
that the latter group is infinite—any infinitesimal rotation of
the circle is a symmetry.

Another interesting symmetry groups worth mention-
ing are the frieze groups (Liu et al. 2004), defining one-
parametric repetitive structures. There exist seven distinct
frieze groups, generated by translation along one axis and a
combination of rotations and reflections along another axis.
In this paper, we do not distinguish between the different
groups, yet one able to detect the repeating structure they
produce.

The structure of the symmetry group (or a group isomor-
phic to it used as a representation) tells us how symmetric

the shape is. If the group is trivial, that is, consists only of the
identity element, the shape is said to be asymmetric. In gen-
eral, when looking for symmetries we usually rule out the
identity element. The symmetry analysis problem can there-
fore be split into two problems: finding the self-isometries
of a shape (symmetry detection) and finding the group struc-
ture or the multiplication table (symmetry classification).

2.3 Symmetry Generators

Given a group (G,∗) and a subset G′ ∈ G, we denote by
〈G′〉 the subgroup generated by G′, defined as the small-
est subgroup of G containing all the elements of G′. If
G = 〈G′〉, i.e., every element of G can be expressed as the
product of finitely many elements of G′ and their inverses,

G = {g±1
i1
∗ · · · ∗ g±1

iK
: gi1, . . . , giK ∈G′}, (7)

we call G′ the generating set of G and its elements the gen-
erators of G. If G′ is finite, G is said to be finitely generated.

Applying this notion to symmetry group Sym(X,d), we
can find out that in many cases a few self-isometries can de-
scribe the entire symmetry structure of the shape. For exam-
ple, the dihedral group D3 visualized in Fig. 4 has two gen-
erators: rotation by 120 degrees and reflection; other sym-
metries can be represented as finite compositions of these
two. We call such generators of symmetry groups symmetry
generators.

2.4 Approximate Symmetries

The notion of the symmetry group allowed us to classify dif-
ferent shape symmetries and, in particular, answer the ques-
tion whether one shape is more symmetric than another. Yet,
perfect symmetry is a mathematical abstraction that never
or rarely exists in natural shapes. Even the snowflakes we
hailed as an example of symmetric shapes are never per-
fectly symmetric. In fact, according to our definition, the
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Fig. 6 Visualization of the
difference between perfect and
approximate symmetries. The
intrinsic symmetry group of the
torus consists of all maps
rotating the points “along the
tube” (left), and two reflections
(vertical and horizontal).
Approximate symmetries of the
torus also include rotations
“across the tube” (right)

snowflakes from Fig. 1 are asymmetric. Yet, with minor
modifications, these shapes can be symmetrized.

To this end, we introduce the notion of approximate sym-
metry: if we define a symmetry as the existence of a self-
isometry on the metric space (X,d), an approximate sym-
metry is the existence of an approximate self-isometry on
(X,d). If a bijection g : X → X was said to be a self-
isometry when d ◦ (g × g) = d held, an approximate self-
isometry should satisfy d ◦ (g × g)≈ d . Quantitatively, we
measure how far g is from being an isometry by defining the
distortion

dis(g, d) = ‖d ◦ (g × g)− d‖∞
= sup

x,x′∈X

|d(x, x′)− d(g(x), g(x′))|. (8)

Since we assume compact spaces, the supremum is always
achieved. In the following, we will be using maxima instead
of suprema.

A map g with distortion dis(g, d)≤ ε is called an ε-self-
isometry. As a particular case, we have a self-isometry de-
fined as a zero-self-isometry. We denote the family of all
ε-self-isometries of (X,d) by

Isoε(X,d) = {g ∈"(X) : dis(g, d)≤ ε}. (9)

As before, we can distinguish between extrinsic and intrin-
sic ε-self-isometries of (X,d) by defining the metric d to be
dE or dX . Obviously, Iso(X,d) ⊂ Isoε(X,d). The proper-
ties of approximate self-isometries are substantially differ-
ent from those of exact self-isometries. If a composition of
two self-isometries is still a self-isometry, composing two
ε-self-isometries we get a 2ε-self-isometry. Consequently,
Isoε(X,d) is not closed under the function composition op-
eration and thus does not form a group.

As a visualization of the consequences of the above dif-
ferences, consider the torus shape depicted in Fig. 6. The in-
trinsic symmetry group Sym(X,dX), consisting of all maps
shifting the points along the tube (6, left), is isomorphic to
SO(2) and can be therefore parametrized by a single pa-
rameter (rotation angle). Since the torus has two reflective

planes, and each reflection is isomorphic to C2, the intrin-
sic symmetry group is isomorphic to C2 × C2 × SO(2). In
this case the intrinsic symmetry group is isomorphic to the
extrinsic one.

On the other hand, if some distortion is allowed, rota-
tions across the tube can be considered as approximate sym-
metries. In this case, Isoε(X,dX) contains a two-parametric
family of maps (6, right), in addition to the reflective ones.

2.5 Local and Global Asymmetry

We can calculate the shape’s asymmetry both locally and
globally. Usually, extrinsic asymmetry is calculated accord-
ing to a reflective plane or a rotating vector. Another method
to define asymmetry is based on the distortion of the sym-
metry as a function. Such a method is adequate for intrinsic
symmetries as well.

In order to quantify how a point on X contributes to the
asymmetry of the shape, we define the local shape asymme-
try,

asym(X,x) = max
x′∈X

|dX(x, x′)− dX(g∗(x), g∗(x′))| (10)

quantifying the distortion of g∗ at a point x. Points with
large local asymmetry are responsible for symmetry break-
ing. The global assymetry,with respect to g∗, can then be
written as,

asym(X) = max
x∈X

asym(X,x). (11)

Using local asymmetry we can find local abnormality in
intrinsically symmetric shapes.

3 Symmetry Space

Though we cannot use group structures to represent approxi-
mate symmetry, we think of the space of permutation "(X),
where each function has its distortion dis(g, d). Approxi-
mate symmetries appear in this space as local minima of
the distortion. The space of functions "(X) can also be en-
dowed with a metric that measures the distance between two
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permutations of points on X. We define the metric between
f,g ∈"(X) as

d"(X)(f, g) = max
x∈X

d(f (x), g(x)) = d(f (X),g(X)), (12)

which, in turn, depends on the choice of the metric d . We
refer to the set

B"(X)(g, r) = {f ∈"(X) : d"(x)(g, f ) < r} (13)

as the metric ball (intrinsic or extrinsic, according to the
choice of the metric in the definition of d"(X)) of radius r

centered at g (we will omit r referring to a ball of some
unspecified radius). A ball forms an open neighborhood of
g. Since perfect symmetries have zero distortion, they are
the global minimizers of the distortion on "(X). More-
over, they are also local minimizers of the distortion, in
the sense that for every g ∈ Isoε(X,d), there exists a suf-
ficiently small neighborhood B"(X)(g) ⊂ "(X), such that
any f ∈ B"(X)(g) has dis(f ) ≥ dis(g). We can therefore
define approximate symmetries as

Symε(X,d) = {g ∈ Isoε(X,d) : dis(g, d)

≤ dis(f, d) ∀f ∈ B"(X)(g)}. (14)

The exploration of the symmetry space consists of find-
ing such local minima and composition relations between
them. For increasingly large ε, we are likely to find more
approximate symmetries, and for ε = 0 only perfect sym-
metries should be detected.

Though in the case of approximate symmetries there is no
formal notion of generators (as there is no group structure),
this idea can still be used for efficient exploration of the sym-
metry space. Given an initial set of possible approximate
symmetries, we can search for a symmetry which is com-
posed from two known symmetries. Each possible candidate
is then compared to the known set to check if a new one was
found, iterating until no more symmetries are added.

4 Intrinsic Symmetries as Extrinsic Symmetries

Let (Z, dZ) be some homogenous metric space endowed
with a simple metric (ideally, there should exist a closed
form expression for dZ; we require homogeneity to ob-
tain a simple isometry group Iso(X)). For a moment, let
us also assume that there exists an isometric embedding
ϕ : (X,dX)→ (Z, dZ such that dX = dZ ◦ (ϕ× ϕ). We refer
to the image ϕ(X) as a canonical form of X in Z (Elad and
Kimmel 2003). Clearly, canonical forms are defined up to an
isometry in Z, since dZ ◦ (ϕ × ϕ) = dZ ◦ ((ϕ ◦ i)× (ϕ ◦ i))

for any i ∈ Iso(Z). The canonical form Z = ϕ(X) represents
the intrinsic geometry of X in the sense that the two met-
ric spaces (X,dX) and (Z,dZ|Z) are isometric and, conse-
quently, have isomorphic intrinsic symmetry groups.

Moreover, since the intrinsic geometry of Z coincides
with its extrinsic counterpart, the analysis of the intrinsic
symmetry group of the shape reduces to the analysis of the
extrinsic symmetry group of its canonical form. Therefore,
if the embedding space Z has a reasonably simple isome-
try group (preferably with a convenient parametrization), the
search for intrinsic symmetries is greatly simplified. For ex-
ample, if Z = R3, conventional extrinsic (Euclidean) sym-
metry detection algorithms can be employed (Mitra et al.
2006).

This approach assumes the existence of an isometric em-
bedding ϕ : (X,dX) → (Z, dZ). Unfortunately, a perfectly
isometric embedding does not exist in most cases. However,
we can find the minimum distortion embedding of X into Z,

ϕ = arg min
ϕ:X→Z

‖dX − dZ ◦ (ϕ × ϕ)‖∞

= arg min
ϕ:X→Z

max
x,x′∈X

|dX(x, x′)− dZ(ϕ(x),ϕ(x′))|, (15)

and repeat our reasoning replacing the assumption dX =
dZ ◦ (ϕ × ϕ) with

sup
x,x′∈X

|dX(x, x′)− dZ(ϕ(x),ϕ(x′))| ≤ δ. (16)

Proposition 1 Let X be a shape, and let Z be its canonical
form created by the embedding ϕ : (X,dX)→(Z, dZ) with
distortion δ. Then, for every f ∈ Isoε(X,dX), ϕ ◦ f ◦ ϕ−1 ∈
Isoε+2δ(Z, dZ); and for every g ∈ Isoε(Z, dZ), ϕ−1 ◦ g ◦ϕ ∈
Isoε+2δ(X,dX).

An alternative way to write Proposition 1 in terms of re-
lations between the symmetry spaces is

ϕ ◦ Isoε(X,dX) ◦ ϕ−1 ⊆ Isoε+2δ(Z,dZ|Z×Z),

ϕ−1 ◦ Isoε(Z,dZ|Z×Z) ◦ ϕ ⊆ Isoε+2δ(X,dX).
(17)

Observe that in the particular case of δ = 0, the two spaces
are equivalent; furthermore, if ε = 0, ϕ is a group isomor-
phism. We conclude that the applicability of intrinsic sym-
metry analysis based on canonical forms relies inherently
on the ability to produce a low-distortion embedding ϕ. For
example, if Z = Rn, the approach is suitable for nearly-
flat shapes with small Gaussian curvature. If this is not the
case then we cannot guarantee that intrinsic symmetries will
be translated into extrinsic ones. In general, the canonical
forms method is usually unsuitable for complicated intrinsic
geometries, which cannot be faithfully represented as sub-
sets of generic embedding spaces. For example, embedding
a human body in different poses into R2 reveals the approx-
imate reflective symmetry (Fig. 7). Yet, embedding into R3

does not provide an extrinsic symmetric structure (Fig. 8).
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Fig. 7 Embedding a human
body into R2 reveals the
reflective symmetry regardless
of the body’s pose

Fig. 8 Embedding a human
body into R3 fails to produce an
extrinsically symmetric shape.
The arms and legs are stretched
in different directions

5 Partial Symmetry

So far, our discussion assumed the existence of a bijection
with zero or near-zero distortion, which we designated as a
symmetry of the shape. In many cases, a shape does not have
symmetries as a whole, yet possess parts that are symmetric.
In order to extend our notion of intrinsic symmetries to this
case, we need a definition of partial similarity.

Let (X′ ⊆X,d|X′×X′) be a part of the shape X, modeled
as a metric sub-space of (X,d) with the restricted metric
d|X′×X′(x, x′) = d(x, x′) for all x, x′ ∈ X′. We denote by

%X the collection of all parts of X,4 and by p(X′) the par-
tiality of the part X′, a notion of the part significance with
respect to the entire shape, given e.g. by the relative area of
X \ X′,

p(X′) = 1−
∫
X′ dµ(x)∫
X dµ(x)

. (18)

Our definition of symmetry applied to the part X′ is
referred to as partial symmetry. Given a part X′ with

4Formally, %X is required to be a σ -algebra, see (Bronstein and Bron-
stein 2008; Bronstein et al. 2008b).
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p(X′) = λ, a symmetry (self-isometry) on (X′, d|X′×X′) is
a λ-partial symmetry. Since we do not know which part of
the shape is symmetric, we need to look for the largest most
symmetric part by minimizing the distortion under partial-
ity constraints, i.e., look for λ-partial ε-self-isometric part
with the smallest λ and ε. The two criteria are not com-
mensurable, e.g., it is not clear what is better: a 0.5-partial
1-self-isometry or a 1-partial 0.5-self-isometry? Moreover,
for any λ, there exists the identity map id : X′ → X′ with
zero distortion.

We can thus define the set of partial approximate symme-
tries of X as

Symλ,ε(X,d)

=





g ∈"(X′)

∣∣∣∣∣∣∣∣

dis(g, d|X′×X′)≤ ε

dis(g, d|X′×X′)≤ dis(f, d|X′×X′)

∀f ∈ B"(X′)(g)

p(X′)≤ λ






(19)

Elements in Symλ,ε(X,d) are called λ-partial ε-symmetries.
For a fixed partiality, the problem of finding the best par-

tial symmetry is a scalar-valued constrained minimization
problem,

min
X′⊂X

g∈"(X′)

dis(g, d|X′×X′) s.t. p(X′)≤ λ0, (20)

In contrast to partial matching between two shapes, in or-
der to rule out the trivial solution (identity map), we are not
searching the global minimizer of (20) as done in Bronstein
et al. (2009a). Instead, we look for local minimizers of (20),
which correspond to λ0-partial symmetries of X.

5.1 Regularization

As noted in Bronstein and Bronstein (2008), the straightfor-
ward definition of partiality (18) does not take into consid-
eration the “quality” of the part and tends to produce mul-
tiple disconnected parts of X. As a remedy, in Bronstein
and Bronstein (2008) it was proposed to add a regulariza-
tion term, penalizing for the part boundary length,

r(X′) =
∫

∂X′
d). (21)

Using this definition given partiality p(X′) = p0 for a two-
dimensional shape, the minimum is achieved by a circle. Un-
fortunately, no known extension exists for curved surfaces,
since we may find two parts with similar area and bound-
ary having an arbitrary number of disconnected components.
Bronstein and Bronstein (2008) suggested another regular-
ization based on Gauss-Bonnet theorem. Yet, we found the

results based on parts length to be satisfactory. Adding a reg-
ularization term to our problem (20) yields

min
X′⊂X

g∈"(X′)

dis(g, d|X′×X′) s.t.
{

p(X′)≤ λ0;
r(X′)≤ ρ0.

(22)

Alternatively, one can move the regularization term to the
objective function, obtaining

min
X′⊂X

g∈"(X′)

dis(g, d|X′×X′) + ηr(X′) s.t. p(X′)≤ λ0, (23)

where η is the Lagrange multiplier governing the relative
importance of the part regularity.

5.2 Fuzzy Formulation

The main computational challenge in problems (20) and (22)
is the need to perform optimization over all the subsets of
X, which has combinatorial complexity. Bronstein et al.
(2009a) proposed a relaxation of the problem based on a
fuzzy approximation of the parts. The part is represented
as a membership function u : X → [0,1], quantifying the
probability of each point to belong to a part. The function u

replaces X′ in the above definitions, in the following way.
The fuzzy distortion is defined as

dis(g, d) = max
x,x′∈X

u(x)u(x′)|d(x, x′)− (d ◦ g)(x, x′)|. (24)

Note that u acts here as weight and the map g ∈"(X) is a
permutation on the entire X.

The fuzzy partiality is defined as

p(u) =
∫

X
(1− u(x))dµ(x). (25)

The regularization term, using a relaxation in the spirit of
Mumford and Shah (1990), is given by

r(u) =
∫

X
h(u(x))‖∇Xu(x)‖dµ(x), (26)

where h(t) ≈ δ(t − 0.5) is an approximation of the Dirac
delta function, and ∇Xu is the intrinsic gradient of u.

The fuzzy version of (22) has the form

min
u:X→[0,1]
g∈"(X)

max
x,x′∈X

u(x)u(x′)|d(x, x′)− (d ◦ g)(x, x′)|

s.t.
{

p(u)≤ λ0;
r(u)≤ ρ0.

(27)

A fuzzy version of (23) is obtained in a similar way.

min
u:X→[0,1]
g∈"(X)

max
x,x′∈X

u(x)u(x′)|d(x, x′)− (d ◦ g)(x, x′)| + ηr(u)

s.t. p(u)≤ λ0. (28)
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Fig. 9 Symmetry detection pipeline: The input mesh is sub-sampled at
a sparse set of sample points and an intrinsic descriptor is computed at
each sample. Matches between similar descriptors are used to establish
a set of initial correspondences. Next, the branch-and-bound procedure

is used to prune correspondences with high distortion. The remaining
coarse correspondences are refined using GMDS, and composition is
performed to complete the group structure. The latter two stages are
iterated until no new symmetries are found

6 Numerical Framework

Even for shapes with simple intrinsic geometry, the com-
plexity of its symmetry space is likely to be tremendous. The
lack of a simple parametrization, similar to the one available
for describing extrinsic symmetries, makes the analysis of
symmetries of non-rigid shapes significantly more difficult.

Here, we propose an algorithm for automatic detection
of symmetries comprising the following steps (see Fig. 9):
The input shape is first sub-sampled at a sparse set of sam-
ple points and an intrinsic descriptor is computed at each
sample. Matches between similar descriptors are used to es-
tablish a set of initial correspondences, thus reducing the
complexity of the search space. Next, a branch-and-bound
procedure is used to prune correspondences with high dis-
tortion. The remaining coarse correspondences are refined
using GMDS, and composition is performed to complete
the group structure. The latter two stages are iterated until
no new symmetries are found. In what follows, we describe
each of the above steps in further detail.

6.1 Discretization and Sampling

For simplicity, we assume the shape to be given in the form
of a triangular mesh with N vertices; other discrete repre-
sentations such as point clouds can be handled as well.

Intrinsic geometry is computed using the fast march-
ing method (Kimmel and Sethian 1998), which produces a
first-order approximation for the geodesic distances between
points on the mesh.

Since the input sampling density is prohibitive for prac-
tical computation of symmetries, the mesh is sub-sampled.
An R-sampling of the surface consisting of M points such
set of points XR = {x1, . . . , xM} ⊂ X that form an R-
covering, i.e., X = ⋃M

n=1 BX(xn,R), where BX denotes a
closed metric ball on X. A good sampling strategy of the
surface can be achieved using the greedy farthest point sam-
pling algorithm (Elad and Kimmel 2003; Hochbaum and

Shmoys 1985; Moenning and Dodgson 2003; Peyré and Co-
hen 2006), which guarantees that XR is also R-separated,
i.e., dX(xi, xj )≥R for any i 5= j .

The coarse sampling XR together with the M ×M ma-
trix of geodesic distances between each pair of samples form
a discrete metric space, the set of permutations "(XR) on
which can be represented as M-tuples g = (g1, . . . , gM)

∈ {1, . . . ,M}M . Without loss of generality, we set π1 =
(1,2, . . . ,M) to be the identity map.

6.2 Detection of Coarse Symmetries

Finding all πk permutations with a distortion lower than
ε requires computing the distortion of O(M!) mappings,
which is prohibitive even for modest values of M . However,
the search space can be reduced by ruling out mappings that
are unlikely to have low distortion.

Following Gelfand et al. (2005), we observe that in order
for π to be a good candidate for an approximate symmetry,
the intrinsic properties of the surface, such as the behavior
of the metric dX around every xi should be similar to those
around xπi . In order to quantify this behavior, for each xi ∈
XR we compute the histogram hi = hist({d̂ij : d̂ij ≤ ρ}) of
the approximate geodesic distances (d̂ij ) in a ρ-ball centered
at xi . In our implementation, the parameter ρ was set to ∞.
The use of distance distributions is widely accepted in the
literature. The reader is referred to the recent paper of Liu et
al. (2009) for further discussion.

6.3 Local Refinement

Once a coarse match is found it is used as an initialization for
the second stage. We optimize over the images x′i = g(xi) of
a candidate symmetry g,

min
x′1,...,x

′
N∈X̂

max
i,j=1,...,N

∣∣∣d̂ij − d̂X(x′i , x
′
j )

∣∣∣ , (29)
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where the distance terms d̂X(x′i , x
′
j ) between arbitrary points

on the mesh are found using the interpolation technique de-
scribed in Bronstein et al. (2006). A local minimizer of (29)
is found by convex optimization detailed in Bronstein et al.
(2008a).

6.4 Partial Symmetries

Solving (28) is done similarly to the framework presented
in Bronstein and Bronstein (2008), Bronstein et al. (2008b).
We perform alternating minimization by first fixing u and
solving for g and vice versa. u is initialized by the local
asymmetry values of a candidate full symmetry and x′ is
initialized by interpolation.

For a fixed u, the minimization w.r.t. g is posed as a
weighted GMDS problem,

min
x′1,...,x

′
N∈X̂

max
i,j=1,...,N

uiuj

∣∣∣d̂ij − d̂X(x′i , x
′
j )

∣∣∣ . (30)

For a fixed g, we have the constrained problem

min
u1,...,uN

max
i,j=1,...,N

eij uiuj + η

N∑

i=1

h(ui)ai

T∑

k=1

qikgk

s.t.
{

ui ∈ [0,1] i = 1, . . . ,N;∑N
i=1(1− ui)ai ≤ λ0,

(31)

where eij = |d̂ij − d̂X(x′i , x
′
j )| are fixed distortion terms, ai

are area elements,

qik =
{ 1

3 triangle k shares the vertex xi,

0 else,
(32)

gk = (-uk(X
T
k Xk)

−1-uk)
1/2, with Xk = (xk,2−xk,1, xk,3−

xk,1) being the 3× 2 matrix with the local system of coordi-
nates of the triangle k, and -uk = (uk,2−uk,1, uk,3−uk,1).

Proposition 2 gk = |∇Xuk|2.

See proof in Appendix.

6.5 Symmetry Group Completion by Composition

The branch-and-bound procedure used for the detection of
coarse symmetries is practical if the value of the threshold ε

is relatively low. However, too low value of ε might result in
rejecting true symmetries which due to acquisition and rep-
resentation imperfections have high distortion. We observe
that if the detected set of symmetries contains all the genera-
tors of the symmetry group, the missing group structure can
be completed by their composition. If some of the genera-
tors are not detected, the completion will yield a subgroup
of the symmetry group.

The completion algorithm proceeds as follows:

1. Input: set of refined symmetries G = {gi}.
2. Compute all pair-wise compositions hij = gi ◦ gj for

every gi, gj ∈G.
3. For every hij having ming∈G d"(X)(hij , g) > δ,

3.1. Perform refinement of hij

3.2. If dishij ≤ ε, add hij to G.
4. Go to Step 2.

The procedure adds new low-distortion permutations result-
ing from a composition only if they lie at sufficient distance
(controlled by the parameter δ) away from the already de-
tected set of symmetries. It is guaranteed to stop after finite
time, as in the worst case it will create a finite δ-separated
covering of the bounded space "(X).

7 Results

In the following experiments, we show how to explore and
visualize the space of intrinsic symmetries. We used triangu-
lar meshes from the TOSCA dataset (Bronstein et al. 2008a),
each consisting of 1000–2000 points. The branch-and-
bound procedure was used in order to filter out strongly non-
isometric permutations by measuring the score of matching
between a relatively small number of local features (as fea-
tures, we used local histograms of geodesic distances). The
branch-and-bound stage yielded a relatively small number
of coarse-resolution permutations, which were considered
as candidates for intrinsic symmetries. Refinement of these
coarse mappings to establish high-resolution permutations
was achieved using the GMDS procedure with the L2 norm.
For reasonable selections of ε, the execution time of the
branch-and-bound step took a couple of seconds per surface
on a 2.5 GHz Intel CPU. The complexity of the GMDS-
based refinement was about a minute.

7.1 Symmetry Detection

Figure 10 (first row) presents the best two intrinsic symme-
tries of a human body. For this pose, the intrinsic and ex-
trinsic symmetries are identical. Next, Fig. 10 (second row)
demonstrates how breaking the extrinsic symmetry of the
body by changing its pose still preserves the intrinsic sym-
metry, as long as there is no considerable stretching of the
limbs.

The same procedure can be applied for symmetry detec-
tion in planar shapes, which can be considered as a particular
case of a flat surface with boundary. Figure 11 presents such
a shape whose intrinsic symmetry is calculated w.r.t. the in-
terior geodesic distances (Ling and Jacobs 2007; Bronstein
et al. 2008b).

Finally, Fig. 12 presents a more complex set of ten sym-
metries of a five-legged octopus-like shape (a “pentapus”),
and visualizes the symmetry composition approach for the
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Fig. 10 Symmetries of the human shape. Top row: in this pose, the ex-
trinsic and intrinsic symmetries are equivalent. The two self-isometries
are identity and reflection (color represents corresponding points on the

shape). Bottom row: in this pose, extrinsic symmetry is broken, yet the
shape is still intrinsically symmetric. The two self-isometries are again
identity and reflection

Fig. 11 Symmetry of a planar
shape w.r.t. to the interior
geodesic metric. Like in the 3D
case, the shape has two
self-isometries: identity and
reflection (color represents
corresponding points on the
shape)

exploration of the symmetry space of the shape. A perfectly
symmetric “pentapus” would have a C2 × C5 symmetry
group (also known as D5 or dihedral group of order five).
Its generators are one rotation and one reflection. Since the
deformation of the “pentapus” is not perfectly isometric, se-
lecting too small an ε yields only a subset of D5. However,
if the generators are in this subset, we can find the rest of
the symmetries by composition. This is preferable over in-
creasing the value of ε, which slows down the computation.
Since the value of ε is unknown a priori, completion of the
symmetry set by composition should always be performed
as a part of the search procedure.

7.2 Comparison to Ovsjanikov et al.

In this section, we compare our approach to the algorithm
of Ovsjanikov et al. (2008). This algorithm is based on the

representation of the shape as an eigenmap

.(x) = (λ
−1/2
1 φ1(x), . . . ,λ

−1/2
K φK(x)), (33)

where λ1, . . . ,λK are non-repeating eigenvalues of the
Laplace-Beltrami operator and φ1, . . . ,φK are the cor-
responding eigenfunctions. Ovsjanikov et al. (2008) ob-
serve that any reflection symmetry g ∈ Sym(X,dX) satisfies
φi ◦ g = ±φi for i = 1, . . . ,K . Thus, the symmetries of X

can be parameterized by the sign signature s = (s1, . . . , sK);
si ∈ {−1,1} such that φi ◦ g = siφi .

The symmetries of X are detected by testing different
sign signatures. Given a sign signature s, define .s(x) =
(s1λ

−1/2
1 φ1(x), . . . , sKλ

−1/2
K φK(x)). Then,

E(s) =
∑

x

min
x∈X

‖.s(x)−.(x′)‖2
2 (34)
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Fig. 12 Ten symmetries of the pentapus shape. A perfectly symmetric shape would have had a symmetry group C2×C5, generated by one rotation
and one reflection. For each of the two possible reflections, the five rotations are presented in a separate row

Fig. 13 The eight elements of
the square’s D4 dihedral group
appear as clusters in the space of
permutations approximately
embedded into the Euclidean
plane

will vanish for s corresponding to intrinsic symmetries. For
approximate symmetries, E is small.5 The symmetry itself
is recovered as

g(x) = argmin
x′∈X

‖.s(x)−.(x′)‖2. (35)

The pentapus shape from Fig. 12 was used for a compar-
ison of our algorithm to Ovsjanikov et al. (2008). Eigenval-
ues and eigenvectors of the Laplace-Beltrami operator were
computed as in Lévy (2006) using the cotangent weights dis-
cretization (Pinkall and Polthier 1993). We used sign signa-
tures of length K = 8.

The smallest values of E(s) were 0, obtained for the se-
quence of all pluses, and 15.7, obtained for the sequence s =
(−1,+1,+1,−1,+1,+1,−1,+1). The latter sequence en-
codes the reflection symmetry of the pentapus, while the for-
mer one encodes the identity map and all the rotation sym-
metries: they are all undistinguishable from each other (for
a more detailed analysis, see the five-corner star example in
Ovsjanikov et al. (2008)). For other sign sequences E(s) has
significantly higher values of 46.88,49.28, . . . and they do
not encode any of the desired symmetries of the shape. Thus,
the algorithm of Ovsjanikov et al. (2008) is able to find only
two of the ten existing symmetries of the pentapus.

5This straightforward symmetry detection approach has complexity ex-
ponential in d . For large d , Ovsjanikov et al. (2008) propose a fast
heuristic.

7.3 Exploring the Symmetry Space

Despite the high dimensionality of the space of permutations
"(X), its metric structure can be visualized as a configura-
tion of points in a low-dimensional Euclidean space, where
each point represents a map in "(X), and the Euclidean
distance between two points approximates d"(X). Such an
approximate representation can be constructed using multi-
dimensional scaling (Borg and Groenen 1997). An approx-
imation of the distortion function is obtained by projecting
the values of dis(g) onto its corresponding point in the rep-
resentation space.

Figure 13 presents the approximate intrinsic symmetry
set of a square with a bent corner. The square’s extrinsic
symmetry group is known to be generated by one rotation
and one reflection which creates the dihedral group D4.
Bending one corner breaks most of the extrinsic symme-
tries (actually, only the identity and one reflection survive
as extrinsic symmetries, which makes the extrinsic symme-
try group of this shape isomorphic to C2). Intrinsically, all
eight symmetries survive the bending. Figure 13 visualizes
these symmetries as clusters of low-distortion permutations
in "(X).

Choosing the right ε obviously influences the solution we
obtain. For ε ≈ 0 only the identity mapping would be ex-
tracted, while choosing ε6 1, every permutation could be
regarded as an approximate symmetry. In our experiments,
choosing ε with a similar order as that of the resolution of
the mesh produced good results for near-symmetric shapes.
Figure 14 presents the influence of the value of ε on the set
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Fig. 14 The influence of ε on
the approximate symmetry sets.
From left to right: For ε = 0 the
identity member is extracted.
For a small ε a set of
approximate identity
symmetries appear, and as ε is
increased candidates for
reflective symmetry start to
emerge. Increasing ε even more,
we obtain a semi-uniform
sampling of the space of
permutations with bounded
distortions and the nice
structures we experienced
before disappears

Fig. 15 The ten members of the
C2 ×C5 symmetry group are
shown as a clusters in the space
of permutations approximately
embedded into the Euclidean
plane

of symmetries. We varied ε from zero (left) to larger val-
ues (right) and obtained the identity member (left), the re-
flective symmetries (center) and finally a semi-uniform sam-
pling of the whole space of permutations with bounded dis-
tortion (right). Approximate rotational symmetries can also
be displayed as clusters. Figure 15 captures the ten clusters
of the octopus symmetries embedded in R2. Each cluster
corresponds to a different symmetry.

The continuous symmetry set of a knot-shaped object
is depicted in Fig. 16. As the knot possesses a continuous
family of rotation symmetries, the intrinsic symmetry group
contains an infinite number of elements. Those are visual-
ized as two two-dimensional contours of local minima (there
are two of them due to an approximate reflective symmetry).

In Fig. 17, the symmetries of the human body were em-
bedded into R2. The symmetry space was sampled in the
vicinity of potential symmetries, and the distortion was in-
terpolated over the entire domain. The color represents the
value of asymmetry at each point. The four minima repre-
sent a reflection, half-reflection and their compositions.

Figure 18 presents the intrinsic reflection symmetry of
a human body as a self-correspondence computed using
GMDS. Given the computed symmetry g(xi) = x′i and the
groundtruth symmetry g∗(xi) = x∗i , we evaluated the accu-
racy of g comparing it to the groundtruth g∗,

dC (g, g∗) =
∑N

i=1 dX(x′i , x
∗
i )

N · Diam(X)
, (36)
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Fig. 16 The set of approximate
intrinsic symmetries of a torus
knot show up as two continuous
contours in the space of
permutations approximately
embedded into R3. Sliding the
knot along itself shows up as a
circle. One circle represent the
reflection. See color version
online

Fig. 17 The set of approximate
intrinsic symmetries of a human
body is embedded into R2.
Colors demonstrate normalized
asymmetry values, where red
represents symmetry and blue
asymmetry. The four local
minima correspond to the
identity, full reflection,
reflection of only half of the
body, and their composition.
See color version online
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Fig. 18 Reflection symmetry of
the human body depicted as a
self-correspondence

Fig. 19 Local distortion of the
intrinsic reflection symmetry
detected in a human shape
whose intrinsic symmetry
broken by deformation of one of
arms. High distortion values are
marked in red, correctly
localizing the deformation. See
color version online

where Diam(X) is the diameter of X, and N is the sample
size. We achieved dC ≈ 0.009 at three different resolutions,
N = 64, 128, and 256. The computation took about 30, 70
and 260 seconds, respectively.

The refinement stage is performed on non-linear func-
tions, which can converge to an undesired local minimum.
We did not experience any difficulties in our experiments but
one can not guarantee a successful convergence for arbitrary
initial conditions.

7.4 Local Asymmetry

In the following experiment, we computed the local shape
asymmetry of a human body with a local asymmetry that
was introduced by elongating one of the arms. Figure 19
shows the local distortion of the detected reflection symme-
try, which correctly localizes the deformed limb.

7.5 Partial Symmetry

In order to demonstrate detection of partial symmetries, we
used a female shape from the TOSCA dataset, whose ap-
proximate intrinsic symmetry was broken by removal of

parts. We detected partial reflection symmetries by solving
(28) with different values of partiality λ0 and regularization
coefficient η. The computation took about five minutes for
each selection of the parameters. The obtained results are
depicted in Fig. 20. For visualization clarity, we completed
the removed parts of the shape marking them in semitrans-
parent dark gray. Observe how the increase in the relative
contribution of the regularization term (large η) tends to
shorten the boundary of the detected part at the expense of
its symmetry, while small values of η produce more sym-
metric and less regular parts. This phenomenon is partic-
ularly visible in the last two rows of Fig. 20, where the
detected part has multiple disconnected components disap-
pearing with the increase of η. Figures 21 and 22 further vi-
sualize the shape of the selected part for different values of
λ0 and η. In all cases, the detected part appears to be more
symmetric than the original shape. In Fig. 23 and Fig. 24
we depict more examples of partial symmetry detection. In
Fig. 23 we show the influence of partiality, and in Fig. 24
the influence of regularization. As before, the detected parts
appear more symmetric then the original shape. Since dif-
ferent coefficients of regularization and partiality provide
different solutions, we can not predict, for a given shape,
the best relation between them. More than that, an approxi-
mate full symmetry can be interpreted as a partial symmetry
for different coefficients. In Fig. 25 we present such a case.
Once again, we can not determine a priori which solution
is better.

8 Discussion and Conclusions

We formulated the problem of approximate intrinsic sym-
metries detection which is specifically useful for non-rigid
articulated objects. The proposed measure of symmetry re-
lies on the intrinsic geometric structure of the shape, namely
the geodesic distances between surface points. It allowed us
to find approximate intrinsic symmetries that are insensitive
to bending of the shapes and detect and quantify asymmetric



Int J Comput Vis (2010) 89: 18–39 35

Fig. 20 Partial symmetry of a
human body with broken
intrinsic symmetry obtained by
removal of parts (marked in
semitransparent dark gray). The
detected partial symmetries are
shown as the function of the
relative part size (1− λ0) and
the regularization coefficient η.
The discarded parts of the shape
are marked in light gray. Colors
encode corresponding regions.
Note how the increase in η
results in the shortening of the
boundary at the expense of
symmetry of the part (increase
of dis(X′))

deformations. While other methods were presented recently,
our method can also handle rotational symmetries and par-
tial symmetries in sparse and dense sampling.

We presented a practical framework for the numerical
computation of intrinsic symmetries, and demonstrated its

potential by experimental results. We believe that the pro-
posed approach could be useful for the detection of mor-
phological distortions in medical imaging and we plan to
explore its potential for diagnosis and analysis of morpho-
metric deformations.
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Fig. 21 Selected part for fixed
η = 104 and part size varying
from λ0 = 0.2 (left) to 0.8
(right)

Fig. 22 Selected part for fixed
λ= 0.2 and regularization
coefficient varying from η = 0
(left) to 109 (right)

As a concluding remark, we emphasize that while the
geodesic metric was used throughout this paper, the pro-
posed framework is more general and is suitable for the
detection of symmetries with respect to any metric. One
of such possible alternatives is the diffusion metric (Coif-
man and Lafon 2006), which is known to be significantly
less sensitive to topological deformations than the geodesic
counterpart. In Bronstein et al. (2009b), the GMDS frame-
work was used to compute topologically-insensitive approx-
imate isometries between shapes equipped with the diffu-
sion geometry. In our future studies, we intend to develop
this framework for the detection of full and partial symme-
tries.

Fig. 23 Low partiality coefficient (left) versus a high one (right) in the
Pareto frontier. The symmetric surface is colored red. See color version
online
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Fig. 24 Low regularization coefficient (left) versus a high one (right)
in the Pareto frontier. The symmetric surface is colored red. See color
version online

Fig. 25 Ambiguity of partial symmetries: a shape with an asymmet-
ric deformation can be interpreted in two ways: as a shape having an
approximate full symmetry (left) or as a shape having an exact partial
symmetry (right). Both interpretations correspond to Pareto-optimal
choices of ε and λ
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Appendix

Proposition 2 gk = |∇Xuk|2.

Proof For the proof of the proposition we will omit the tri-
angle index k from X and u and use the subscript for partial
derivation.

A linear discretization of the X and u leads to the local
parameterization

X(w,v) = w · (xk,2 − xk,1) + v · (xk,3 − xk,1),

u(w,v) = w · (uk,2 − uk,1) + v · (uk,3 − uk,1),
(37)

for which the gradient in local coordinates becomes

uw = uk,2 − uk,1,

uv = uk,3 − uk,1,

Xw = xk,2 − xk,1,

Xv = xk,3 − xk,1.

(38)

Hence, we can denote the local Riemannian metric as
[
E F

F G

]
=

[
Xw · Xw Xw · Xv

Xv · Xw Xv · Xv

]
. (39)

Since the gradient of a function on a Riemannian manifold
can be written in the local base as

∇Xu = uwG− uvF

EG− F 2 Xw + uvE − uwF

EG− F 2 Xv, (40)

it follows that

|∇Xu|2 = 〈∇Xu,∇Xu〉 = G · uwuw − 2F · uwuv + E · uvuv

= gk. (41)
!
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