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Near Field Photometric Stereo with Point Light Sources∗

Roberto Mecca†, Aaron Wetzler‡, Alfred M. Bruckstein‡, and Ron Kimmel‡

Abstract. Shape recovery of an object based on shading variations resulting from different light sources has
recently been reconsidered. Improvements have been made that allow for the photometric stereo
approach to serve as a competitive alternative to other shape reconstruction methods. However, most
photometric stereo methods tend to ignore factors that are relevant in practical applications. The
setup considered in this paper tackles photometric stereo reconstruction in the case of a specific near-
field imaging. This means that both the camera and the light sources are close to the imaged object,
where close can be loosely considered as a setup having similar distances between lights, camera, and
object. The known challenges that characterize the problem involve perspective viewing geometry,
point light sources, and images that may include shadowed regions. Here, we pay special attention
to the question of how to faithfully model these aspects and at the same time design an efficient
and robust numerical solver. We present a mathematical formulation that integrates the above
assumptions into a single coherent model based on quasi-linear PDEs. The well-posedness is proved
showing uniqueness of a weak (i.e., Lipschitz continuous) solution. The surface reconstruction in
our near-field scenario can then be executed efficiently in linear time. The merging strategy of the
irradiance equations provided for each light source allows us to consider a characteristic expansion
model which enables the direct computation of the surface. We evaluate several types of light
attenuation models with a nonuniform albedo and noise on synthetic data. We also demonstrate the
proposed method on surface reconstruction of real data using three images, each one taken with a
different light source by a working prototype. We demonstrate the accuracy of the proposed method
compared to other methods that ignore the near-field setup and assume distant, parallel beam light
sources.
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tenuations, upwind scheme, semi-Lagrangian scheme

AMS subject classifications. 68T45, 35A02, 65N21, 65N12, 65M25

DOI. 10.1137/140968100

1. Perspective Shape from Shading and photometric stereo techniques. Since the sem-
inal Shape from Shading (SfS) paper by Horn [15], new models have been introduced in
order to extend the range of shape recovery problems that can be solved by SfS methods
[28, 42, 12, 23, 43, 29, 22]. A particularly important direction of research has been the tran-
sition from the assumption of orthographic viewing geometry [21, 20, 17, 18, 4, 16, 19] to
perspective cameras [39, 33, 32, 13].

Several papers reported using Perspective SfS (PSfS) methods applied to endoscopic image
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analysis [43, 42, 28]. Okatani and Deguchi [28] introduced the perspective viewing shape
estimation for objects located close to the camera, taking into account a realistic endoscopic
model based on PDEs for close light source illumination (i.e., ideally attached to the optical
center). Later, Prados and Faugeras [33], considering the same setup, studied a different
parametrization, concluding that their formulation for the endoscopic perspective shape from
the shading problem is well-posed. A recent paper by Breuß et al. [3] shows that there might
be ambiguity in the Prados–Faugeras model. In fact, near-field endoscopic perspective shape
reconstruction remains an open problem if only a single image is considered.

In this paper we deal with the case of calibrated photometric stereo, where multiple im-
ages of the same scene are taken under different illumination conditions (with known light
positions) for which the camera, lights, and object are close to one another with comparable
distances. For a recent overview on calibrated (and uncalibrated) photometric stereo methods,
see [38] (and [30]). In our particular framework, the endoscopic perspective, Wu, Narasimhan,
and Jaramaz [42] studied the multi-image endoscopic perspective problem by considering two
light sources placed off the optical center. They develop a model based on the radiance in-
formation obtained by simultaneously illuminating an object with two different light sources.
They then recover the surface by considering a single irradiance equation for the sum of Lam-
bertian reflectance functions of the two different light sources. The use of this reflectance
function results in a loss of information. In order to avoid this problem and issues related to
an unknown albedo, they use a photometric calibration. Surface recovery is performed within
a variational framework that involves high computational complexity compared to alternative
direct methods [24]. The shape from an endoscopic perspective problem solved via a photo-
metric stereo technique using n images (EPPSn) was first addressed by Collins and Bartoli [7].
They solve the close-range photometric stereo with weak considerations on the parametriza-
tion of variables such as unknown surface height, light sources, and solving the problem of
the light attenuation with an a priori light calibration procedure. Furthermore, they use a
prior for a reflectance model learning, adding physical markers on the inspected object even
when the surface is assumed to be Lambertian. In particular, their mathematical formulation
is based on the usual double step procedure where an energy functional is minimized (which
allows the computation of the surface derivatives), and only later is the surface recovered
[10, 36, 1]. Moreover, their energy is based on the sum of Lambertian irradiance equations
rather than using photometric ratios [41, 24, 5, 40] that lead to more suitable problems. For
example, the most important feature of photometric ratios is to obtain independence from the
albedo.

Recently, Parot et al. [31] studied the EPPSn problem by using a straightforward heuristic
approach to photometric stereo. In their work, even if camera and lights are close to the
inspected object, they assume orthographic viewing geometry, with uniform and unattenuated
light directions calibrated by assuming reasonable distance between the object and the camera.
The discrepancy with respect to the real physics they are working with is faced by filtering
the directional gradients depending on the frequencies. The authors heuristically handle this
by removing the lower frequencies and the DC components. Then, the resulting depth map is
computed using a multigrid Poisson solver. The work describes purely qualitative results in
the sense that they do not represent accurate reconstructions of the environment and instead
are used as a qualitative tool for detecting lesions.
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Here, we present a new mathematical formulation for the EPPSn by considering the en-
doscopic perspective presented in [28] and using the perspective parametrization used in [25]
based on nonlinear PDEs from photometric ratios. This extension introduces several realistic
properties which result in a practical and mathematically interesting model. We formulate
the model based on quasi-linear PDEs and develop an efficient finite difference upwind scheme
and a semi-Lagrangian numerical scheme for the direct approximation of the surface, extend-
ing previous results obtained by Mecca et al. [26, 27]. This scheme is simple to implement, is
parallelizable, and converges efficiently. The new model can also successfully handle images
with missing data such as the case of shadows and occlusions. In this paper we do not focus
on the problem of how to accurately detect occlusions or shadows [35], but instead show that
our model successfully reconstructs surfaces in the presence of missing data. A significant
advantage of our model is the direct computation of the three-dimensional (3D) surface with-
out first explicitly computing surface normals and then performing integration. Nonlinearities
resulting from our realistic lighting model yield a normal field that depends on the depth of
the surface as well as the direction of the light source. However, this does not pose a problem
in our framework because we avoid directly computing the surface normals and we do not use
them in the numerical scheme.

In section 2 we recall a well-known parametrization for the surface under close camera
observation. The new mathematical model is introduced in section 3, where we show the
differential model, including two sources of nonlinear light attenuation. In section 4 we prove
the well-posedness (unique weak solution) of the new differential formulation for the EPPS2
that consists of a quasi-linear PDE. Section 5 introduces the upwind and semi-Lagrangian
numerical schemes, and in section 6 we prove the convergence of the semi-Lagrangian scheme.
Section 7 describes the theoretical formulation of the new differential approach for three images
which can be easily extended to n ≥ 3. Next, in section 8 experimental results on synthetic
and real data are presented.

2. The endoscopic perspective setup and photometric stereo. In order to provide the
necessary ingredients to understand the geometry behind the model, we start by considering
the parametrization of the surface Σ (see Figure 1) up to an unknown function z from the
image domain Ωp = Ωp ∪ ∂Ωp to R, such that

(2.1) M(x, y) = [ξ(x, y), η(x, y), ζ(x, y)] :=

[
− x

z(x, y)

f
,−y

z(x, y)

f
, z(x, y)

]
.

Here, f > 0 is the focal length of the camera, ζ < −f < 0, and the triple [ξ(x, y), η(x, y), ζ(x, y)]
= [ξ, η, ζ] comprises the real world coordinates (with respect to the image coordinates). This
parametrization is based on the pinhole camera model and is due to the perspective viewing
geometry, as seen in Figure 1, where the camera is placed at the origin (optical center) C of
the coordinate system Cξηζ [33].

We recall that the unnormalized outgoing normal vector to the surface Σ is given by

(2.2) n(x, y) =
z

f2

[
f∇z(x, y), z(x, y) + (x, y) · ∇z(x, y)

]
,

and since the irradiance equation depends on the unit normal, we take into account the
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Figure 1. On the left is a diagram of the perspective view geometry. In the perspective world (i.e., the image
coordinate system given by Oxyz) the light observed at image point (x, y) comes from the real point [ξ, η, ζ] on
the surface. On the right is a schematic section of the geometry on the left illustrating the positions of the lights
placed on the optical plane. Clearly the light rays from nearby point light sources are not parallel.

following unit normal vector:

(2.3) n(x, y) =
n(x, y)

|n(x, y)| .

We consider the well-known irradiance equation for Lambertian surfaces, given by the
cosine law by the following inner product:

(2.4) I(x, y) = ρ(x, y)(n(x, y) · l(x, y, . . .)),
where I : Ωp → [0, 1] is the image function, ρ(x, y) is the unknown albedo, and l(x, y, . . .) is
the light source direction. Let us emphasize that the light direction l incident to the surface
depends explicitly on the image points (x, y) and on other factors that we shall specify in the
next section. The endoscopic formulation assumes close light source illumination, a property
that will be considered in our model construction.

3. A new photometric stereo model for nearby light sources. In most papers dealing
with PSfS, such as [33, 28], a single light source is placed at the optical center. This model is
difficult to realize when considering a camera close to the inspected object. Since photometric
stereo uses several light sources, we consider more realistic placements (ξj , ηj) on the optical
plane, that is, ζ = 0. We therefore define the light directions as

(3.1) lj(x, y, z) =

[− ξjf
z − x,−ηjf

z − y, f
]√(

x+
ξjf
z

)2
+
(
y +

ηjf
z

)2
+ f2

=
lj(x, y, z)

qj(x, y, z)
,
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where

(3.2) qj(x, y, z) =

√(
x+

ξjf

z

)2

+

(
y +

ηjf

z

)2

+ f2.

Let us emphasize that for this model, the light directions depend not only on the point
(x, y), but since they are displaced from the optical center, they also depend on z. This
introduces a nonlinearity regardless of the derivatives of z. Now, in order to make the mathe-
matical model more consistent to the actual physical aspects, we define the light attenuation
function specifically set for two kinds of light attenuations. However, theoretically speaking
the attenuation can be generalized to any behavior of light propagation.

3.1. Two types of light attenuation. We now consider two different kinds of light at-
tenuation. The first factor is due to the reduction of light energy proportional to the inverse
squared distance between the light source and object. The second factor of attenuation we
describe is a result of a realistic directional lighting model of a real surface mount LED light.
However, in principle, we could choose among many different continuous attenuation models
to suit our needs.

3.1.1. Light attenuation due to distance. The standard way to model attenuation of
the light intensity is to compute the distance between the light source and the surface explic-
itly. For this purpose, let us consider the functions r1(x, y, z) and r2(x, y, z) as the distances
between the point of the surface (ξ(x, y), η(x, y), ζ(x, y)) and the respective light source; see
Figure 2.

C

O x, y

(x, y)

Σ

f

z, ζ

(ξ1, η1) (ξ2, η2)

ξ, η

(ξ, η, ζ)

r1(x, y, z)

r2(x, y, z)

Figure 2. The distances (r1 and r2) between the light sources and the surface Σ are taken into account as
a dissipative factor of the light intensity.

In this case, since the light sources are shifted with respect to the origin, the distance
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functions are given by

(3.3) rj(x, y, z) = dist

(
(ξj, ηj , 0),

(
− x

z

f
,−y

z

f
, z

))

=
z

f

√(
x+

ξjf

z

)2

+

(
y +

ηjf

z

)2

+ f2 =
z

f
qj(x, y, z).

The attenuation factor can then be written as r−2
j .

3.1.2. Radial attenuation of the light. Many existing light sources are directional. That
is to say, they are bright along a principle direction and become dimmer at angles further from
the main direction. This behavior can be observed in Figure 3 and can be effectively modeled
by multiplication with cos(θ)μ, where μ is the attenuation coefficient and is reminiscent of the
specular model for surface reflectance.

−π

2

π

2

0

−2π

6

2π

6

π

6−π

6

0.25 0.5 0.75 1(ξj , ηj)

Figure 3. The intensity of light for a directional light source pointing downwards.

The attenuation factor is easily computable since

(3.4) cos(θ)μ(x, y, z) = (lj(x, y, z) · (0, 0, 1))μ =
fμ

qμj (x, y, z)
,

where lj(x, y, z) is the ith light source placed at (ξj , ηj).

Resuming, both attenuation effects can be expressed by multiplication of the following
factor:

(3.5) aj(x, y, z) =
fμ

r2j (x, y, z)q
μ
j (x, y, z)

=
fμ+2

z2qμ+2
j (x, y, z)

.

3.2. EPPS2 model. Our model for the SfEPPS2 problem considers the following set of
irradiance equations:

(3.6) Ij(x, y) = ρ(x, y)
lj(x, y, z) · n(x, y)

r2j (x, y, z)q
μ+1
j (x, y, z)

fμ = ρ(x, y)
lj(x, y, z) · n(x, y)fμ+2

z2qμ+3
j (x, y, z)|n(x, y)| ,
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where

(3.7) lj(x, y, z) · n(x, y)

=
z

f2

(
fzx

(
− ξjf

z
− x

)
+ fzy

(
− ηjf

z
− y

)
+ f(z + xzx + yzy)

)
= −ξjzx − ηjzy +

z2

f
.

Now, solving the SfEPPS2 from a mathematical point of view consists of solving the fol-
lowing system of nonlinear PDEs of Hamilton–Jacobi type (with Dirichlet boundary condition
g(x, y)):

(3.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I1(x, y) = ρ(x, y)

l1(x, y, z) · n(x, y)fμ+2

z2qμ+3
1 (x, y, z)|n(x, y)| , (x, y) ∈ Ωp,

I2(x, y) = ρ(x, y)
l2(x, y, z) · n(x, y)fμ+2

z2qμ+3
2 (x, y, z)|n(x, y)| , (x, y) ∈ Ωp,

z(x, y) = g(x, y), (x, y) ∈ ∂Ωp.

Our strategy to solve such a problem is to merge the irradiance equations (3.8) by not-

ing that the nonvanishing quantity ρ(x,y)fμ+2

|n(x,y)|z2 is present in both equations. We merge such

equations as follows:

second equation of (3.8)︷ ︸︸ ︷
I1(x, y)q

μ+3
1 (x, y, z)

l1(x, y, z) · n(x, y)
=

ρ(x, y)fμ+2

|n(x, y)|z2︸ ︷︷ ︸
first equation of (3.8)

=
I2(x, y)q

μ+3
2 (x, y, z)

l2(x, y, z) · n(x, y)
,

getting

(3.9)
I1(x, y)q

μ+3
1 (x, y, z)

−ξ1zx − η1zy +
z2

f

=
I2(x, y)q

μ+3
2 (x, y, z)

−ξ2zx − η2zy +
z2

f

.

Merging the irradiance equations allowed us to eliminate the nonlinearity with respect to
the partial derivatives of z contained in |n(x, y)|. It makes the resulting problem completely
independent of the albedo.

After some algebra, we obtain the following first-order quasi-linear PDE:

(3.10)
(
I1(x, y)q

μ+3
1 (x, y, z)ξ2 − I2(x, y)q

μ+3
2 (x, y, z)ξ1

)
zx

+
(
I1(x, y)q

μ+3
1 (x, y, z)η2 − I2(x, y)q

μ+3
2 (x, y, z)η1

)
zy

=
(
I1(x, y)q

μ+3
1 (x, y, z) − I2(x, y)q

μ+3
2 (x, y, z)

)z2
f
,

resumed as follows:

(3.11)

{
b(x, y, z) · ∇z(x, y) = s(x, y, z), (x, y) ∈ Ωp,
z(x, y) = g(x, y), (x, y) ∈ ∂Ωp,
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where

b(x, y, z) =
[
I1(x, y)q

μ+3
1 (x, y, z)ξ2 − I2(x, y)q

μ+3
2 (x, y, z)ξ1,(3.12)

I1(x, y)q
μ+3
1 (x, y, z)η2 − I2(x, y)q

μ+3
2 (x, y, z)η1

]
,(3.13)

and

(3.14) s(x, y, z) =
(
I1(x, y)q

μ+3
1 (x, y, z) − I2(x, y)q

μ+3
2 (x, y, z)

)z2
f
.

3.3. Handling light attenuations. In this section we emphasize the ability of our model
to handle any type of light attenuation. That is, instead of considering the light attenuation
terms

1

r2j (x, y, z)
attenuation by distance,(3.15)

fμ

qμj (x, y, z)
radial attenuation(3.16)

previously introduced, let us consider the function aj(x, y, z) as a general attenuation function
of the ith light source that multiplies the irradiance equation as follows:

(3.17) Ij(x, y) = ρ(x, y)aj(x, y, z)lj(x, y, z) · n(x, y) = ρ(x, y)aj(x, y, z)
lj(x, y, z) · n(x, y)
qj(x, y, z)|n(x, y)| .

By merging the two irradiance equations in (3.6) and by noting that ρ(x,y)
|n(x,y)| is present in

both of them, we get

I1(x, y)
q1(x,y,z)
a1(x,y,z)

−fξ1
zx
z − fη1

zy
z + z

=
I2(x, y)

q2(x,y,z)
a2(x,y,z)

−fξ2
zx
z − fη2

zy
z + z

.(3.18)

After some algebra we get the following first-order quasi-linear PDE:

(3.19)

(
I1(x, y)

q1(x, y, z)

a1(x, y, z)
ξ2 − I2(x, y)

q2(x, y, z)

a2(x, y, z)
ξ1

)
zx

+

(
I1(x, y)

q1(x, y, z)

a1(x, y, z)
η2 − I2(x, y)

q2(x, y, z)

a2(x, y, z)
η1

)
zy

=

(
I1(x, y)

q1(x, y, z)

a1(x, y, z)
− I2(x, y)

q2(x, y, z)

a2(x, y, z)

)
z2

f
.

The well-posedness results of the EPPS2 model will apply to the most general light atten-
uation models.
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4. Well-posedness of the new model. The first-order quasi-linear PDEs with the Dirich-
let boundary condition (3.11) can generally be solved by characteristic strip expansion [24].
Focusing on this particular method, we prove the well-posedness of (3.11) by proving some
nice properties of the vector field b(x, y, z) = [b1(x, y, z), b2(x, y, z)]. In fact, this field de-
scribes the projected characteristic field since the complete characteristic system is usually
formulated by

(4.1)

⎧⎨⎩
(a) ẋc(t) = b1(xc(t), yc(t), z(t)),
(b) ẏc(t) = b2(xc(t), yc(t), z(t)),
(c) ż(t) = s(xc(t), yc(t), z(t)),

where t is the parameterization variable and z(t) is the value of z on the projected character-
istic, that is, z(t) = z(xc(t), yc(t)).

The initial condition to integrate this system of ODEs is taken from the values of the
function z known on the boundary Γin := {(x, y) ∈ ∂Ωp : b · ν ≤ 0}, where ν is the outgoing
normal vector to the curve ∂Ωp. Then,⎧⎨⎩

(a0) xc(0) = x0,
(b0) yc(0) = y0,
(c0) z(xc(0), yc(0)) = g(x0, y0),

with (x0, y0) ∈ ∂Ωp.
Now, since singular points prevent the proper information propagation of the characteristic

method, first we prove the following lemma, ensuring that such points do not exist for the
differential problem (3.11). Let us start with the following property.

Lemma 4.1. The vector field b(x, y, z) does not vanish in Ωp, that is,

(4.2) |b(x, y, z)| �= 0 ∀(x, y) ∈ Ωp, ∀z ∈ C1(Ωp).

Proof. Let us prove the lemma by contradiction, assuming that there exist a point (x̃, ỹ) ∈
Ωp and a function z ∈ C1(Ωp) such that

(4.3)

{
b1(x̃, ỹ, z̃) = 0,
b2(x̃, ỹ, z̃) = 0,

where z̃ = z(x̃, ỹ). According to the irradiance equations (3.17), by omitting the dependence
on (x̃, ỹ, z̃) for readability, we get

(4.4)

⎧⎪⎪⎨⎪⎪⎩
ρ̃ã1

l1 · n
q̃1|n|

q̃1
ã1

ξ2 − ρ̃ã2
l2 · n
q̃2|n|

q̃2
ã2

ξ1 = 0,

ρ̃ã1
l1 · n
q̃1|n|

q̃1
ã1

η2 − ρ̃ã2
l2 · n
q̃2|n|

q̃2
ã2

η1 = 0,

which can be simplified in the following equation:

(4.5)

{
l1 · nξ2 − l2 · nξ1 = 0,

l1 · nη2 − l2 · nη1 = 0,
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that is,

(4.6)

{
n · (l1ξ2 − l2ξ1

)
= 0,

n · (l1η2 − l2η1
)
= 0,

which means that the vectors

(4.7) u(x̃, ỹ, z̃) = l1(x̃, ỹ, z̃)ξ2 − l2(x̃, ỹ, z̃)ξ1

and

(4.8) v(x̃, ỹ, z̃) = l1(x̃, ỹ, z̃)η2 − l2(x̃, ỹ, z̃)η1

have to be simultaneously orthogonal to the normal n(x̃, ỹ). That is, u and v belong to the
tangent plane of the surface. Let us write the system (4.6) explicitly; using (3.1) and (2.2) we
have

(4.9)

{
(ξ2 − ξ1)z

2 + f(ξ1η2 − ξ2η1)zy = 0,

(η1 − η2)z
2 + f(ξ1η2 − ξ2η1)zx = 0.

Let us span all the possible cases starting with the possibility of computing the partial deriva-
tives as follows:

zy =
(ξ1 − ξ2)z

2

(ξ1η2 − ξ2η1)f
,(4.10)

zx =
(η1 − η2)z

2

(ξ2η1 − ξ1η2)f
,(4.11)

assuming ξ1η2 − ξ2η1 �= 0. If we substitute such derivatives in (3.7), we find that the image
functions I1 and I2 both take zero value, which means that the image data at point (x̃, ỹ)
vanishes in both images, which is obviously a contradiction since no information is available
from the image data. On the other hand, considering ξ1η2−ξ2η1 = 0, it follows from (4.9) that
(ξ1, η1) ≡ (ξ2, η2) (since z < 0), in contradiction to the photometric stereo definition.

This guarantees that the solution can be integrated along the characteristics from the
system of ODEs (4.1) without being prevented by singular points.

4.1. Well-posedness for Lipschitz surfaces. In order to complete the theoretical analysis
we extend the uniqueness results of the differential problem (3.19) in the case of a Lipschitz
solution. We assume the points where it is not differentiable as the family of regular curves
(γ1(t), . . . , γk(t)), where t is the argument of the parametric representation.

It is clear that these curves on the surface reflect their presence on the images, making the
functions I1(x, y) and I2(x, y) discontinuous along the same curves (γ1(t), . . . , γk(t)). Now,
since b(x, y, z) and s(x, y, z) contain the image functions, if we consider our differential prob-
lem as an inverse problem of SfEP with the photometric stereo technique, searching for a
weak solution (i.e., defined almost everywhere) implies a study of the quasi-linear PDE with
discontinuous coefficients.

Our purpose is to prove the uniqueness of solution of (3.19) in the Lipschitz function
space via the method of characteristics. The meaning of weak solution here is intended as a
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combination of classical solutions, each defined on a different domain. The following theorem
shows that these domains are then going to be patched together in such a way that, across the
boundaries γ between domains on which there are discontinuities in some derivatives, (3.19)
is satisfied.

Theorem 4.2. Let γ(t) ∈ Ωp be a regular curve of discontinuity for the function b(x, y, z)
(and s(x, y, z)). Let (x̃, ỹ) ∈ γ(t), and let nγ(x̃, ỹ) be the outgoing normal with respect to the
set Ω+

p (see Figure 4); then we have

(4.12)

(
lim

(x,y)→(x̃,ỹ)

(x,y)∈Ω+
p

b(x, y, z(x, y)) · nγ(x̃, ỹ)

)(
lim

(x,y)→(x̃,ỹ)

(x,y)∈Ω−
p

b(x, y, z(x, y)) · nγ(x̃, ỹ)

)
≥ 0.

tγ
nγ

(x̃, ỹ)

Ω+
p

Ω−
p

γ(t)

Figure 4. The curve of discontinuity γ(t) separates the image domain in two subsets Ω+
p and Ω−

p where the
classical solution is well defined. The vectors nγ and tγ are, respectively, the normal and the tangent vectors
of γ(t).

Proof. Let us define the following quantities for the discontinuous images:

I+1 := lim
(x,y)→(x̃,ỹ)

(x,y)∈Ω+
p

I1(x, y), I−1 := lim
(x,y)→(x̃,ỹ)

(x,y)∈Ω−
p

I1(x, y),

I+2 := lim
(x,y)→(x̃,ỹ)

(x,y)∈Ω+
p

I2(x, y), I−2 := lim
(x,y)→(x̃,ỹ)

(x,y)∈Ω−
p

I2(x, y),

and these other quantities considering that z is a continuous function (i.e., z̃ = z(x̃, ỹ))

q̃1 := q1(x̃, ỹ, z̃), q̃2 := q2(x̃, ỹ, z̃),

ã1 := a1(x̃, ỹ, z̃), ã2:= a2(x̃, ỹ, z̃),

in order to work with the vector field b(x, y, z) in the neighborhood of (x̃, ỹ) considering

lim
(x,y)→(x̃,ỹ)

(x,y)∈Ω+
p

b(x, y, z(x, y)) = [b+1 , b
+
2 ] =

[
I+1

q̃1
ã1

ξ2 − I+2
q̃2
ã2

ξ1, I
+
1

q̃1
ã1

η2 − I+2
q̃2
ã2

η1

]
,

lim
(x,y)→(x̃,ỹ)

(x,y)∈Ω−
p

b(x, y, z(x, y)) = [b−1 , b
−
2 ] =

[
I−1

q̃1
ã1

ξ2 − I−2
q̃2
ã2

ξ1, I
−
1

q̃1
ã1

η2 − I−2
q̃2
ã2

η1

]
.

(4.13)
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Calling [nγ
1 , n

γ
2 ] = [nγ

1(x̃, ỹ), n
γ
2(x̃, ỹ)] the two coordinates of nγ(x̃, ỹ) and replacing (4.13) in

inequality (4.12), we obtain

(4.14) b+1 b
−
1 (n

γ
1)

2 + b+2 b
−
2 (n

γ
2)

2 + (b+1 b
−
2 + b+2 b

−
1 )n

γ
1n

γ
2 ≥ 0.

By substitution of (4.13) into (4.14) and replacing the image functions with the respective
reflectance functions (3.17), we have

(4.15)

(
ρ̃ã1

l1 · n+

q̃21 |n+|
q̃1
ã1

ξ2 − ρ̃ã2
l2 · n+

q̃22 |n+|
q̃2
ã2

ξ1

)(
ρ̃ã1

l1 · n−

q̃21 |n−|
q̃1
ã1

ξ2 − ρ̃ã2
l2 · n−

q̃22 |n−|
q̃1
ã1

ξ1

)
(nγ

1 )
2

+

(
ρ̃ã1

l1 · n+

q̃21 |n+|
q̃1
ã1

η2 − ρ̃ã2
l2 · n+

q̃22 |n+|
q̃2
ã2

η1

)(
ρ̃ã1

l1 · n−

q̃21 |n−|
q̃1
ã1

η2 − ρ̃ã2
l2 · n−

q̃22 |n−|
q̃2
ã2

η1

)
(nγ

2 )
2

+

[(
ρ̃ã1

l1 · n+

q̃21 |n+|
q̃1
ã1

ξ2 − ρ̃ã2
l2 · n+

q̃22 |n+|
q̃2
ã2

ξ1

)(
ρ̃ã1

l1 · n−

q̃21 |n−|
q̃1
ã1

η2 − ρ̃ã2
l2 · n−

q̃22 |n−|
q̃2
ã2

η1

)

+

(
ρ̃ã1

l1 · n−

q̃21 |n−|
q̃1
ã1

ξ2 − ρ̃ã2
l2 · n−

q̃22 |n−|
q̃2
ã2

ξ1

)(
ρ̃ã1

l1 · n+

q̃21 |n+|
q̃1
ã1

η2 − ρ̃ã2
l2 · n+

q̃22 |n+|
q̃2
ã2

η1

)]
nγ
1n

γ
2 ≥ 0.

Finally, we can write (4.15) as follows:

(4.16) (i+1 ξ2 − i+2 ξ2)(i
−
1 ξ2 − i−2 ξ1)(n

γ
1)

2 + (i+1 η2 − i+2 η1)(i
−
1 η2 − i−2 η1)(n

γ
2)

2

+
(
(i+1 ξ2 − i+2 ξ1)(i

−
1 η2 − i−2 η1) + (i−1 ξ2 − i−2 ξ1)(i

+
1 η2 − i+2 η1)

)
nγ
1n

γ
2 ≥ 0,

where

i+j = lj · n+ =
z̃

f

(
− z+x

ξjf

z̃
− z+y

ηjf

z̃
+ z̃

)
,(4.17)

i−j = lj · n− =
z̃

f

(
− z−x

ξjf

z̃
− z−y

ηjf

z̃
+ z̃

)
,(4.18)

with j = 1, 2. We have

(4.19) i+j = i−j −Δ · [ξj, ηj ],

where Δ ≡ [δx, δy ] = [z+x − z−x , z+y − z−y ]. We can write (4.16) as

(4.20)

[(
i−1 −Δ · (ξ1, η1)

)
ξ2 −

(
i−2 −Δ · (ξ2, η2)

)
ξ1

]
(i−1 ξ2 − i−2 ξ1)(n

γ
1)

2

+

[(
i−1 −Δ · (ξ1, η1)

)
η2 −

(
i−2 −Δ · (ξ2, η2)

)
η1

]
(i−1 η2 − i−2 η1)(n

γ
2)

2

+

{[(
i−1 −Δ · (ξ1, η1)

)
ξ2 −

(
i−2 −Δ · (ξ2, η2)

)
ξ1

]
(i−1 η2 − i−2 η1)

+ (i−1 ξ2 − i−2 ξ1)
[(

i−1 −Δ · (ξ1, η1)
)
η2 −

(
i−2 −Δ · (ξ2, η2)

)
η1

]}
nγ
1n

γ
2 ≥ 0.
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After some algebra we get the following inequality:

(4.21)
[
i−2
(
nγ
1ξ1 + nγ

2η1
)− i−1

(
nγ
1ξ2 + nγ

2η2
)][

i−2
(
nγ
1ξ1 + nγ

2η1
)− i−1 (n

γ
1ξ2 + nγ

2η2) +
(
δyn

γ
1 − δxn

γ
2

)(
ξ2η1 − ξ1η2

)] ≥ 0.

In order to conclude the proof, let us recall that

(4.22) δyn
γ
1 − δxn

γ
2 ≡ 0.

That is,

(4.23) δyn
γ
1 − δxn

γ
2 = nγ

1

(
z+y − z−y

)− nγ
2

(
z+x − z−x

)
= −z+x n

γ
2 + z+y n

γ
1 −

(− z−x n
γ
2 + z−y n

γ
1

)
= lim

(x,y)→(x̃,ỹ)

(x,y)∈Ω+
p

∇[−nγ
2 ,n

γ
1 ]
z(x, t) − lim

(x,y)→(x̃,ỹ)

(x,y)∈Ω−
p

∇[−nγ
2 ,n

γ
1 ]
z(x, y) = ∇+

tγz −∇−
tγz = 0,

where we used the orthogonality of [−nγ
2 , n

γ
1 ] = tγ with respect to the normal vector [nγ

1 , n
γ
2 ]

of the discontinuity curve γ(t); see Figure 4. This means that we have to consider the gradient
in the tangential direction with respect to γ(t) for both sides Ω+

p and Ω−
p . Now, since we are

assuming Lipschitz continuity for the surface z, we have that these two derivatives are equal
for all points (x, y) ∈ γ(t).

Finally, we arrive from (4.21) to(
i−1 (n

γ
1ξ2 + nγ

2η2)− i−2
(
nγ
1ξ1 + nγ

2η1
))2 ≥ 0,

which concludes the proof.

5. Numerical schemes. Next, we consider numerical methods that implement the pro-
posed model. Some of the ideas behind the schemes we consider were proposed [24] for the
SfPS problem where finite difference upwind schemes and semi-Lagrangian schemes are used
for the forward (and backward in the appendix) approximation of the differential problem
(3.11).

Let us start by considering a square domain Ω like the set [a, b]2 (in particular considering
in the numerical tests [−1, 1]2) and with a uniform discretization space step Δ = (b − a)/n,
where n is the number of intervals that divide each side of the square (that is, xi = −1+ iΔx,

yj = −1 + jΔy, with i, j = 0, . . . , n). We will denote by Ω
d
p all the points of the lattice

belonging to Ωp, by Ωd
p all the internal points, and by ∂Ωd

p all the boundary points.

5.1. Forward numerical schemes. We recall the numerical schemes used for the forward
approximation of (3.11) where the propagation of the information is considered as starting
from the inflow part of the boundary Γin. We formulate the differential problem solved by
the forward schemes as follows:

(5.1)

{
b(x, y, z) · ∇z(x, y) = s(x, y, z) a.e. (x, y) ∈ Ωp,
z(x, y) = g(x, y) ∀(x, y) ∈ Γin.

In order to simplify the notation, we shall denote b(xi, yj , zi,j) by bi,j = [b1i,j, b
2
i,j ] and

s(xi, yj) by si,j.
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5.1.1. Forward upwind scheme. Let us consider the following implicit upwind scheme,
obtained by adding vanishing viscosity:

(5.2) b1i,j
Zi+1,j − Zi−1,j

2Δx
+ b2i,j

Zi,j+1 − Zi,j−1

2Δy

= |b1i,j|
Δx

2

Zi+1,j − 2Zi,j + Zi−1,j

Δ2
x

+ |b2i,j|
Δy

2

Zi,j+1 − 2Zi,j + Zi,j−1

Δ2
y

+ si,j

for i, j = 1, . . . , n− 1. The artificial diffusion introduced in the right-hand side of (5.2) allows
us to follow the vector field b by considering the most appropriate discretization for the first
derivative in order to track the characteristic lines [34, 37]. In particular, it is a consistent
numerical scheme of order equal to one with respect to both Δx and Δy.

All possible simplifications can easily be seen by writing the scheme (5.2) as
(5.3)

(UWF ) Z
(k+1)
i,j =

|b1i,j(Z(k)
i,j )|Z(k)

i−sgn (b1i,j(Z
(k)
i,j )),j

+ |b2i,j(Z(k)
i,j )|Z(k)

i,j−sgn (b2i,j(Z
(k)
i,j ))

+Δsi,j(Z
(k)
i,j )

|b1i,j(Z(k)
i,j )|+ |b2i,j(Z(k)

i,j )|
,

where Δx = Δy = Δ, and emphasizing the dependence of the functions b and s on z.

That is, bi,j(Z
(k)
i,j ) = [b1i,j(Z

(k)
i,j ), b

2
i,j(Z

(k)
i,j )] = [b1(xi, yj, Z

(k)(xi, yj)), b2(xi, yj, Z
(k)(xi, yj))] and

si,j(Z
(k)
i,j ) = s(xi, yj, Z

(k)(xi, yj)). The well-posedness of (5.3) is ensured by Lemma 4.1 since

it guarantees that division by |b1i,j(Z(k)
i,j )|+ |b2i,j(Z(k)

i,j )| does not pose any difficulty.

5.1.2. Forward semi-Lagrangian scheme. A second type of numerical approach to solve
problem (5.1) is presented in [24]. We derive it considering the following equivalent equation
obtained by dividing both sides of (5.1) by the norm of b(x, y, z):

(5.4) ∇Λz(x, y) =
s(x, y, z)

|b(x, y, z)| ∀(x, y) ∈ Ωp,

with Λ(x, y, z) = (Λ1(x, y, z),Λ2(x, y, z)) =
b(x,y,z)
|b(x,y,z)| and Λi,j(Z

(k)
i,j ) = [Λ1

i,j(Z
(k)
i,j ),Λ

2
i,j(Z

(k)
i,j )] =

[Λ1(xi, yj, Z
(k)(xi, yj)),Λ2(xi, yj , Z

(k)(xi, yj))] in the discrete domain.

Considering a regular-uniform discretization Ω
d
p, as in the previous section, we can finally

write the semi-Lagrangian scheme as

(5.5) (sLF ) Z
(k+1)
i,j = Z(k)(xi − hΛ1

i,j(Z
(k)
i,j ), yj − hΛ2

i,j(Z
(k)
i,j )) +

si,j(Z
(k)
i,j )

|bi,j(Z
(k)
i,j )|

h,

where the parameter h is greater than zero and assumed to be equal to the grid size Δ, in
order to reach the best convergence rate [24].

Let us complete the dissertation concerning the numerical schemes solving (3.11) by con-
sidering the backward schemes derived in the appendix.
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6. Convergence of the semi-Lagrangian schemes. In this section, we prove the con-
vergence of the semi-Lagrangian numerical schemes giving, as known results, the order of
consistency [9]. In fact, for both schemes (backward and forward) we have the following order
of consistency:

(6.1) O(h) +O
(
Δ2

h

)
,

where the first part depends on the approximation of the directional derivative (stopped at
order one using the Taylor expansion) and the second has in the numerator the order of the
bilinear interpolation. We can obtain a global first-order consistency for h = Δ as repeated
in [24].

In order to prove the convergence of the previous semi-Lagrangian schemes, let us write
them using the fixed point operator formulation

(6.2) z(k+1) = Th(z
(k))(x, y)

as follows:

T b
h(z)(x, y) = z((x, y) + hΛ(x, y, z(x, y))) − h

s(x, y, z(x, y))

|b(x, y, z(x, y))| ,

T f
h (z)(x, y) = z((x, y)− hΛ(x, y, z(x, y))) + h

s(x, y, z(x, y))

|b(x, y, z(x, y))| ,
(6.3)

where the superscript letters (b and f) indicate the backward and the forward numerical
schemes, respectively. Our aim is to prove the existence of a unique fixed point for our semi-
Lagrangian schemes by solving that they belong to the asymptotically nonexpansive map
family of differential operators.

Definition 6.1. Let K be a subset of a Banach space X. A transformation T : K → K is
said to be asymptotically nonexpansive if for each u, v ∈ K,

(6.4) |T i(u)− T i(v)| ≤ ki|u− v|,

where {ki} is a sequence of real numbers such that limi→∞ ki = 1.
Furthermore, for asymptotically nonexpansive mapping it may be assumed that ki ≥ 1

and that ki+1 ≤ ki for i = 1, 2, . . ..
Our next goal is to prove the convergence of (6.3), for which we want to exploit the

following main result of [11].
Theorem 6.2. Let K be a nonempty, closed, convex, and bounded subset of a uniformly

convex Banach space X, and let F : K → K be asymptotically nonexpansive. Then F has a
fixed point.

We are now able to prove the following.
Theorem 6.3. The numerical schemes defined by the operators (6.3) converge.
Proof. Without loss of generality, we start by restricting the image domain to Ωp = [0, 1]2.

Let us focus the attention on the first operator T b
h introducing some sets which will permit us

to understand that this operator is not contractive but asymptotically nonexpansive. For the
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moment, let us consider the case where the image functions are smooth in order to use the
characteristic strip expansion method. The case where Ωp is divided by (γ1(t), . . . , γk(t)) in
a finite number of regions is a trivial extension of the regular one we explain now. We start
with the following sets:

Ω̃h
out = {(x∗, y∗) ∈ R

2\Ωp : (x
∗, y∗) = (x, y) + hΛ(x, y)∀(x, y) ∈ Ωp}

and
Ωh
out = Ω̃h

out ∪ Ωp,

represented in Figure 5.

Ω̃h
out

Γout

Ωp

Figure 5. In green is one part of the set Ωp. The set ˜Ωh
out is emphasized in orange. The arrows represent

the vector field hΛ(x, y, z) belonging to the outgoing side of ∂Ωp, that is, Γout (marked with a darker color).

By definition the length of the arrows is h, so the measure of ˜Ωh
out tends to zero when h goes to zero.

In order to exploit Theorem 6.2, let us consider as uniformly convex Banach space the
L2 space with respect to appropriate and smooth functions. We proceed by considering the
following set of functions:

(6.5) L
2
(Ωh

out) = {f ∈ L2(Ωh
out) : f |˜Ωh

out
= g}.

Once we take z, v ∈ L
2
(Ωh

out) the following relations hold:

|T b
h(z)(x, y) − T b

h(v)(x, y)|L2(Ωp)

=

∣∣∣∣∣z((x, y) + hΛ(x, y, z(x, y))) − h
s(x, y, z(x, y))

|b(x, y, z(x, y))|

− v((x, y) + hΛ(x, y, v(x, y))) + h
s(x, y, v(x, y))

|b(x, y, v(x, y))|

∣∣∣∣∣
L2(Ωp)

(6.6) ≤
∣∣∣∣∣z((x, y) + hΛ(x, y, z(x, y))) − v((x, y) + hΛ(x, y, v(x, y)))

∣∣∣∣∣
L2(Ωp)

+ h

∣∣∣∣∣ s(x, y, v(x, y))

|b(x, y, v(x, y))| −
s(x, y, z(x, y))

|b(x, y, z(x, y))|

∣∣∣∣∣
L2(Ωp)

.



2748 R. MECCA, A. WETZLER, A. M. BRUCKSTEIN, AND R. KIMMEL

Let us consider the previous two addends separately. The first can be manipulated to

(6.7)

∫
Ωp

(
z((x, y) + hΛ(x, y)) − v((x, y) + hΛ(x, y))

)2

dxdy

≤
∫
Ωh

out

(
z(x, y)− v(x, y)

)2

dxdy

=

∫
˜Ωh
out

(
z(x, y)− v(x, y)

)2

dxdy +

∫
Ωp

(
z(x, y)− v(x, y)

)2

dxdy

=

∫
Ωp

(
z(x, y) − v(x, y)

)2

dxdy

since z|
˜Ωh
out

= v|
˜Ωh
out

= g. As for the second term, once we denote

(6.8) k(x, y, z(x, y)) =
s(x, y, z(x, y))

|b(x, y, z(x, y))|
we exploit the regularity of the functions s and b in order to consider k with kl as a Lipschitz
constant. We obtain

(6.9) h|l(x, y, z(x, y)) − k(x, y, v(x, y))|L2(Ωp)
≤ hkl|z(x, y)− v(x, y)|L2(Ωp)

.

Then, we can continue the main inequality as follows:

(6.10) (6.6) ≤ (1 + hkl)|z(x, y) − v(x, y)|L2(Ωp)
,

where clearly

(6.11) lim
h→0

1 + hkl = 1,

which allows us to use the result in [11]. Since Theorem 6.2 does not ensure the existence of a
unique fixed point, the convergence to the right (and unique) solution of (A.2) is guaranteed
by the consistency of (A.5).

The proof can be repeated with respect to T f
h following the same steps as before since

(6.12) T f
h (z)(x, y) = T b

−h(z)(x, y).

The computational cost for every iteration of both schemes is considerable, taking into
account that for every internal point of the grid we have to solve a linear system whose
dimension is small and constant at that point. In the numerical tests we consider a bilinear
interpolation for every pixel, and thus each linear system is of dimension 4.

The stopping criterion is based on the convergence of the sequence zk through the Cauchy
criterion with the infinity norm; that is, since zk → z, then the algorithm will stop when

(6.13) |zk − zk+1|Δ∞ = max
(xi,yj)∈Ωd

p

|zk(xi, yj)− zk+1(xi, yj)| < ε,

with ε chosen conveniently small. Even if it is not consistent with the proof of the convergence
(where the L2 norm was used), the discrete L∞ norm allows us to achieve good results when
used as a stopping criterion.
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7. EPPSn with initial point condition. The small distance between the camera, light
sources, and the object increase the likelihood of acquiring images with shadows. This requires
that a model is constructed in order to naturally handle such occlusions. Clearly, the presence
of shadows in the images represents a loss of information that could compromise the shape
recovery. The strategy we consider extends [25], where n images (with n > 2) are taken into
account in order to compensate for a loss of information where shadows and occlusions occur.

If we have three images, then we can consider the set of unique image pairs and construct
the system comprised of the following quasi-linear PDEs:

(7.1) b(m,l)(x, y, z) · ∇z(x, y) = s(m,l)(x, y, z) in Ωp,

of the same type as (3.11), where

b(x, y, z) =

[
Im(x, y)

qm(x, y, z)

am(x, y, z)
ξl − Il(x, y)

ql(x, y, z)

al(x, y, z)
ξm,(7.2)

Im(x, y)
qm(x, y, z)

am(x, y, z)
ηl − Il(x, y)

ql(x, y, z)

al(x, y, z)
ηm

]
,(7.3)

and

(7.4) s(x, y, z) =
z2

f

(
Im(x, y)

qm(x, y, z)

am(x, y, z)
− Il(x, y)

ql(x, y, z)

al(x, y, z)

)
.

Remark 1. Since the well-posedness of (3.11) is guaranteed by the boundary condition,
the system of quasi-linear PDEs (7.1) is also well-posed only if the same boundary condition
z(x, y) = g(x, y) is given.

We can now describe our novel contribution, which is to ensure the well-posedness of the
EPPSn problem by exploiting the linearity of the basic differential formulation (3.11) and
reducing it to a single PDE which can handle shadowed regions in a natural fashion. Since
(3.11) does not lose the well-posedness if we multiply the equations by a function w(x, y) on
both sides (i.e., b(x, y, z) and s(x, y, z)), we are able to define the ingredients of a weighted
EPPSn model (W-EPPSn) by considering the functions

(7.5) bw
n (x, y, z) =

∑
t∈([n]

2 )

wt(x, y)bt(x, y, z)

and

(7.6) swn (x, y, z) =
∑

t∈([n]
2 )

wt(x, y)st(x, y, z),

where
([n]
2

)
is the set of pairs of integer indices with no repetition. For example, if n = 3, we

have
(
[3]
2

)
= {(1, 2), (1, 3), (2, 3)}.
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The complete construction of the W-EPPSn formulation is therefore

(7.7)

{
bw
n (x, y, z) · ∇z(x, y) = swn (x, y, z) a.e. (x, y) ∈ Ωp,

z(x, y) = g(x, y) ∀(x, y) ∈ ∂Ωp.

We next explain how shadows influence the definition of the weights (hence of bw
n and swn ).

For the sake of clarity we denote W-EPPSn as simply EPPSn, where it implies that weights are
used for controlling lights. A key observation is that it is possible to use weight-functions wt

that are vanishing while preserving the well-posedness of the problem. We are not concerned
by the signs of the functions wt; instead we focus on the set of points where they vanish.

Let us observe that the well-posedness of the differential formulation is guaranteed for
image pixels lit in at least two images and preserved if the same condition holds in the multi-
image, weighted case. Since we want to exploit the photometric stereo technique, we assume
that each pixel is illuminated in at least two images, thereby avoiding reduction to an EPPS1
problem. Our goal is to consider the weights as switches able to locally nullify the involvement
of an image pair in the summations (7.5) and (7.6) when the functions bt and st for that pair
do not contain relevant information due to the presence of shadows in the images involved.
Since no ambient light is assumed in our setup, we consider the point (x, y) ∈ Ωp shadowed in
the ith image when Ii(x, y) = 0. Now, by using the Heaviside function, we can easily define
the weights as

(7.8) w(m,l) = H(Im(x, y))H(Il(x, y)).

7.1. Removing the boundary condition almost completely. In this section we focus on
the applicability of our model extending the EPPSn model by assuming given data along the
boundary g(x, y). Clearly, such a hypothesis compromises the use of that model for many
real applications. It is therefore important to find a way to solve the EPPSn problem while
removing the requirement for a priori knowledge of the boundary condition.

Researchers facing the SfS, PSfS, or the EPPS problems often adopt a two stage strategy
where surface normals are computed over the domain and then are integrated in order to
achieve surface recovery. Usually, the normal computation is realized by considering simplified
assumptions where the light propagation is considered uniform [1, 31, 8] and by neglecting the
realistic behavior of point light sources. For those cases, the model often consists of a linear
system of irradiance equations. Let us emphasize that when close light sources are taken into
account the usual linearity of the Lambertian reflectance equation is lost. In this particular
case, since the light sources are not placed in the optical center, the normalization of the light
direction and the further light attenuations introduce a nonlinearity with respect to z. In
other words, given n images, it is very hard to compute the unknown zx, zy, and z just by
solving the following system of irradiance equations:

(7.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 = ρ(x, y)a1(x, y, z)
l1(x, y, z) · n(x, y)

q1(x, y, z)
,

I2 = ρ(x, y)a2(x, y, z)
l2(x, y, z) · n(x, y)

q2(x, y, z)
,

...

In = ρ(x, y)an(x, y, z)
ln(x, y, z) · n(x, y)

qn(x, y, z)
.
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The approach in this paper is to compute z without completely eliminating the nonlinearity.
In fact, the quasi-linear PDE of (3.11) still contains a nonlinear component, but the problem
of recovering z can be successfully achieved directly by solving a quasi-linear PDE.

Furthermore, partial images clearly represent a loss of information in the image set, and
several authors have approached the problem of surface recovery with occlusions [14, 6]. How-
ever, we are not aware of attempts to overcome the problem of missing parts within the
framework of the endoscopic problem.

We take the above issues into consideration and use them to help design a numerical
strategy for reconstructing the surface using our model. The strategy involves selecting a
single arbitrarily valued initial seed point within the reconstruction domain and robustly
manipulating the path of the characteristics spreading from this point. We do this in order to
numerically integrate the linear differential problem (7.7) so as to let the information travel
in the most convenient directions for the whole domain. Our method allows us to use more
than one source point if other known points are available within the domain.

7.2. Steering the characteristic field. A numerical strategy will depend on the direction
in which information flows. Intuitively it is clear that if we have multiple light directions,
then we should also be able to choose image pairs that have vector fields which allow different
flow directions. Somewhat unintuitively, however, it turns out that we can use our unique
formulation to linearly combine vector fields to choose the most convenient flow direction
provided the fields are not parallel to each other. This allows us to manipulate the path along
which the information travels. To formalize the idea we present the following result.

Theorem 7.1. Let bt(x, y, z) be the vector field of (7.2), where t ∈ ([n]
2

)
. Then, ∀t1, t2 ∈(

[n]
2

)
, ∀(x, y) ∈ Ωp, and ∀z ∈ Lip(Ωp), we have

(7.10) bt1(x, y, z) · bt2(x, y, z) �= ±|bt1(x, y, z)||bt2 (x, y, z)|.

Proof. In order to avoid too many parameters, let us fix the indices t1 and t2 as (1, 2) and
(1, 3), respectively. In order to prove that b(1,2) and b(1,3) are never parallel, we consider the
contradiction, assuming that there exist a point (x̃, ỹ) ∈ Ωp and a Lipschitz function z̃ such
that

(7.11) b(1,2)(x̃, ỹ, z̃) · b(1,3)(x̃, ỹ, z̃) = ±|b(1,2)(x̃, ỹ, z̃)||b(1,3)(x̃, ỹ, z̃)|.

To improve readability we omit the dependence on (x̃, ỹ, z̃). Now, by squaring both sides we
have

(7.12)
(
b1(1,2)b

1
(1,3) + b2(1,2)b

2
(1,3)

)2
=
((
b1(1,2)

)2
+
(
b2(1,2)

)2)((
b1(1,3)

)2
+
(
b2(1,3)

)2)
.

Using the terms from (7.2) and eliminating the not null quantity ρ
|n| , this can be rewritten as

follows:

(7.13)
[(
l1 · nξ2 − l2 · nξ1

)(
l1 · nξ3 − l3 · nξ1

)
+
(
l1 · nη2 − l2 · nη1

)(
l1 · nη3 − l3 · nη1

)]2
=
[(
l1 · nξ2 − l2 · nξ1

)2
+
(
l1 · nη2 − l2 · nη1

)2][(
l1 · nξ3 − l3 · nξ1

)2
+
(
l1 · nη3 − l3 · nη1

)2]
.
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After some algebra, we arrive at

(7.14)
(
ξ3(η2 − η1) + ξ2(η1 − η3) + ξ1(η3 − η2)

)2
l1 · n = 0,

and assuming that I1 has no missing parts in (x̃, ỹ) (i.e., l1 · n > 0) we have that (7.14) is
verified only when

(7.15) ξ3(η2 − η1) + ξ2(η1 − η3) + ξ1(η3 − η2) = 0.

This brings us to the final contradiction since it means that the light source has to be placed
at collinear points in the optical plane, which is not our case.

In other words, this theorem states that two different vector fields bt1 and bt2 cannot be
parallel. By using this theorem and adopting a similar fast marching strategy of [21, 27, 26]
we steer the direction of the characteristics for the case when n = 3.

We perform the following steps:

1. Fix the exact depth value z for a point. In our case it shall usually be towards the
center of the image domain, adding all of that point’s neighbors to a list of pixels to
be visited.

2. Traverse the list of pixels to be visited, and update the value of z for each one by the
scheme (5.5) (or (5.3)) derived in section 5.

3. For each newly visited pixel, add its unvisited neighbors to the list of pixels to be
visited.

4. In the case of shadow set regions of the scene which are illuminated by only two or
less lights, we can change the wavefront propagation direction in order to surround
the shadow sets (i.e., computing the boundary condition changed the images). If there
are exactly two lights, we can solve the appropriate equation in (7.1) provided that
the characteristics enable the flow of information from a direction in which it already
exists.

5. The above steps are repeated until the L∞ discrete norm of the difference between the
last two elements of the approximating sequence is smaller than a stopping threshold.

For the case where n > 3 we iterate over unique triplets of images for each pixel until one
of the triplets results in characteristics that permit information flow in the correct direction;
otherwise the pixel is skipped.

We remark that in this near-field setup, the convergence of the previous algorithm is not
as straightforward as for [27, 26] because here the vector field b(m,l)(x, y, z) depends on z; i.e.,
they are unknown. However, this does not impede the convergence of the scheme.

8. Experimental results. The method we describe has a number of factors that influence
the speed and quality of the reconstruction. We now describe the full experimental procedure
we followed while investigating the properties of the new model. The numerical schemes
were all implemented in MATLAB MEX files in unoptimized C++ using OpenMP for the
parallelization and executed in MATLAB using a 2013 Dell Precision M6700 with an Intel i7
CPU clocked at 3GHz and 32GB of RAM.
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8.1. Synthetic cases: Eve.

8.1.1. Setup. Synthetic images are useful for testing and accurately quantifying the dif-
ferent properties of a photometric stereo model provided they can faithfully approximate real
world data. We therefore first consider a realistic shape obtained from a mannequin head
where real depth data has been obtained from a structured light range scanner. This is stored
as a height field over a grid with 4-neighbor connectivity. The mannequin face (known as
Eve) is approximately 70cm from the virtual camera center. The virtual camera is a per-
spective pinhole camera (see, for example, [44]) with no simulated lens distortion and has
intrinsic parameters fx = fy = 960, cx = 120, cy = 160. These values are chosen to match
the parameters of the structured light scanner that captured the depth data. All depth pixels
which are background or beyond 1m are set to NaN to indicate that they are not part of the
mesh. Each pixel is also assigned an albedo which we restrict to be between 0 and 1. For the
experiments with Eve we use either a uniform albedo of 1 or a synthetically generated albedo
based on Perlin noise. We define four virtual light sources which lie on the camera plane
z = 0 and are positioned at 90◦ intervals at a radius of either 4cm or 15cm depending on the
experiment being performed. Each light source is defined by its direction and the nonlinear
light attenuation coefficient μ, as described in section 3.1.1, which we vary between 1 and 100
for Eve. We compute the surface normals at every point on the grid and using the known
light positions and attenuation directly synthesize four radiance images using the full lighting
model in (3.6). Each of the four images is synthesized with a single light source activated. The
resulting images are then scaled to have values between 0 and 255 according to the smallest
and largest pixel values across all the images. At this point, zero mean Gaussian noise of
strength σ ranging from 0% to 5% of 255 is appended, and finally the images are converted
to unsigned 8 bit gray scale. The whole process aims to fully simulate a set of real digital
images which match the assumed lighting conditions of the proposed model and are designed
to be a better physical approximation than classical photometric stereo assumptions.

Using the above setup we performed a number of different experiments. In all the ex-
periments on Eve, the central pixel was initialized with the ground truth depth value and
the method described in section 7.2 was used together with the backward upwind scheme of
section A.1.

8.1.2. EPPS3 without nuisance factors. Figure 6 shows the three images used to solve
the EPPS3 problem in which we consider a uniform albedo and light attenuation with μ = 1.
To the right of the input images the angle error map between the ground truth normals and
those reconstructed using our proposed model is displayed with a heat map scaling (blue is low
and red is high) between 0 and 30 degrees. Areas near to fast changing surface gradients can be
seen to be more prone to error in reconstruction of surface normals. However, the effect of this
on the final result is quantitatively small because the normals are not directly integrated. The
final reconstruction can be seen on the bottom left of the figure. The same model textured with
the distance error map indicates which areas have suffered a loss in reconstruction fidelity.
The error map measures the Euclidean distance in millimeters between the ground truth
vertex locations in R3 and the reconstructed vertices where the heat map scale runs between
0mm and 6mm. This experiment involves no nuisance factors and demonstrates the simplest
reconstruction scenario with three images. This is the only experiment performed with three
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Figure 6. Solving the EPPS3 problem. The first row shows the synthetic input data I1, I2, and I3 which are
synthesized radiance images of Eve without noise and light attenuation fixed by μ = 1 and three lights placed at
150mm from the focal point. In the second row, the recovered surface is shown on the left and the same surface
is shown on the right but textured by the Euclidean error at each point with the heat map scaled from blue to
red representing 0mm to 6mm. MSE = 0.46mm2.

images. All other experiments used four images.

Although our method does not explicitly require the surface normals, we can compute
them once our scheme has converged. We show the ground truth normals compared to the
reconstructed normals in Figure 7. The most likely places for errors to occur are at points
with high variance or surface curvature. It can be seen in the figure that errors partially
propagate from the point at which they occur in the direction of the processing wavefront but
do not necessarily become worse further from the point of distortion. Figure 8 shows a similar
result.

8.1.3. EPPS4 with noise. A more informative experiment was performed that demon-
strates the effects of injecting artificial noise into the system and solving the EPPS4 problem.
Using four images improves the likelihood of having at least two images which observe any
given point in the scene. Unlike many other photometric stereo experiments in the literature
we do not inject noise into the normals because this is not realistic and we neither directly ex-
tract nor use the normals. Instead the noise is directly added to the image itself, as described
in the setup, which is a far more realistic approach to synthesis. Most digitally captured
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Ground truth normal vs. reconstructed normals Angle (deg) between ground truth and reconstructed normals

Figure 7. This figure illustrates the ground truth normals on the left, the reconstructed normals in the
middle as produced by our method after the surface has been recovered, and the angular difference between the
two with an error map scaling of between 0◦ and 30◦. The standard method of converting normal coordinates
to RGB is used to display the normals as color images.
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Figure 8. The shape reconstructions for the EPPS4 problem for Eve is displayed here showing 0%, 2%,
and 5% from left to right. The error maps are textured on to the reconstructed surfaces to help illustrate the
magnitude and locations of the errors. The MSE for each instance is 0.51mm2, 2.20mm2, and 10.1mm2 from
left to right.

images include some level of sensor noise during capture, especially in low light conditions,
which can often be assumed to be approximately Gaussian. Figure 8 shows the influence of
the noise by texture mapping the Euclidean error maps scaled between 0mm and 6mm onto
the reconstructions of image sets with 0%, 2%, and 5% additive Gaussian noise. The recon-
struction MSE is 0.50mm2, 2.19mm2, and 9.98mm2, respectively. It is clear that the more
noise in the system, the more susceptible the method becomes to propagating errors, as can
be seen from the error lines streaking outwards from the central seed point. However, despite
up to 5% noise the significant features and characteristics of Eve’s face remain intact.

8.1.4. Missing data and nonuniform albedo. As described in section 7 our proposed
method handles shadows and occlusions by switching off the information from the missing
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Figure 9. In the first row are the images for the EPPS4 problem for Eve considering light attenuation
with μ = 1, no noise, and missing parts artificially added. In the second row, the left image shows the normal
error map in the same way as Figure 7. The middle image illustrates the number of lights visible at each pixel,
and the right image is a render of the resulting 3D reconstruction with the Euclidean error map textured on.
MSE = 0.52mm2.

pixels in the affected images. We demonstrate the results of artificially deleting portions of
the four input images that have a totally nonuniform albedo. The images can be seen in
Figure 9 on the top row. Solving the EPPS4 problem in this scenario results in an MSE
of 0.53mm2 which is comparable to the previous noiseless result of 0,50mm2 without the
additional nuisance factors. The impact of the missing data is to change the path that the
numerical scheme follows. The sequence of the set of independent pixels that are processed at
each stage is a moving processing wavefront, and this can be seen in Figure 10. This illustrates
the mechanism by which the EPPS4 problem is solved. In areas where there are three or more
illuminated pixels there is no impedance to the propagation of the active wavefront. However,
for pixels with only two illumination sources the characteristic has to allow data to come
from the right direction, which has the effect of redirecting parts of the advancing processing
wavefront.

8.1.5. Full set of nuisance factors. In Figure 11 we solve the EPPS4 problem showing the
results of a scenario in which all nuisance factors are present. We include a nonuniform albedo,
overlapped missing data, and 2% noise. We exaggerate the directional light attenuation by
setting μ = 100. The 3D reconstruction with the error map textured on shows that attenuation
of light reduces the quality of the recovered shape due to the decreasing amount of information
toward the edges. This is also visible in the error map for the normals, with normals toward
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Figure 10. At each stage in our method a number of pixels sit in the processing queue. These pixels shown
in red are updated independently to every other pixel in the queue, and this image displays a sequence of the
set of pixels processed at different stages during one iteration of our upwind scheme. The sequence appears as
a wavefront and moves along the characteristics of the PDE in (7.7). The image used is the shadow map from
Figure 9 rendered in grayscale to help highlight the wavefront propagation.

the edges of the image being more than 30◦ different from the ground truth. Figure 12 shows
the albedo recovered under this exaggerated difficult setup and the error map of the difference
with the ground truth albedo. Although the resulting surface is somewhat deformed, both
the albedo and shape retain much of the structure of the ground truth shape.

8.2. Synthetic cases: AbsPeaks.

8.2.1. Setup. A second synthetic surface is used for testing the proposed method when
realistic synthetic shadows appear in the input images as well as performing timing tests for
different sized images. The main purpose is comparison to other methods. We generate the
surface by taking the absolute value of the well-known MATLAB function peaks, scaling it by
0.1 and offsetting it by 5 units along the z-axis of a coordinate system centered at the focal
point of a virtual camera. The virtual camera is modeled in the same way as in section 8.1 but
with intrinsic parameters fx = fy = N ,cx = N/2,cy = N/2. Here, N is the width of the image
in pixels and each synthesized image is square in size. This simulates a camera with a 90◦ field
of view in both directions. Again, a synthetic albedo is generated and light sources are defined
and placed as in section 8.1. Images are generated of size 256 × 256 pixels. Here, the radial
distance of each light source from the focal point is between 3 and 20 units, depending on
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Figure 11. Visualizing the effect of the full set of nuisance factors. In the first row are the images for
the EPPS4 problem for Eve considering light attenuation with μ = 100, 2% noise, and artificially deleted data.
In the second row, the left image shows the normal error map in the same way as Figure 7. The middle
image illustrates the number of lights visible at each pixel, and the right image is a render of the resulting 3D
reconstruction with the Euclidean error map textured on. MSE = 288mm2.

the experiment being performed. By setting the light sources at a distance of 20 units, which
is large relative to the size and position of AbsPeaks, we are actually approximating parallel
ray distant light sources that are commonly assumed in photometric stereo methods. At the
other end, by positioning the light sources close to the focal point at a radius of 3 units, we
can achieve an accurate simulation of non–parallel-ray realistic light sources and positioning.
Irradiance images will then be nonlinearly dependent on light source location and orientation
as well as surface depth and location.

8.2.2. Realistic shadows. One issue, when simulating light sources very close to a virtual
object, occurs when the normal of the surface at any point observed by the virtual camera
is at an angle of more than 90◦ from the angle of incidence of a light ray. In this case the
irradiance value from (7.7) will be negative. Double precision floating point is initially used
for the synthesized images so that negative irradiance, although physically impossible, can be
stored. The correct course of action is to set these negative values to be missing data and
convert the images to 8-bit grayscale images, as described in section 8.1. This is the case
in Figure 13, which shows the set of significantly overlapped shadows and light attenuation
where μ = 5 for light sources placed at a radial distance of 10 units. The MSE for the
reconstruction is 3.72e-2 units2. Once again this demonstrates that our formulation enables
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Albedo ground truth Recovered albedo Error map for the recovered albedo

Figure 12. The left and middle images show the ground truth synthetic albedo and the reconstructed albedo,
respectively, from the experiment in section 8.1.5. The image on the right is an error map of the difference
between the ground truth and reconstructed albedos.

endoscopic photometric stereo even for shadowed regions and non–parallel-ray light sources.
We do not explicitly simulate the case of cast shadows and instead consider them to be areas
of missing data from in one or more images.

8.2.3. Comparison to other methods. Let us compare our shape recovery approach to
other methods which have not necessarily been designed to handle shadows. We therefore
allow all irradiance values and retain the data in the double precision floating point format
without first converting to 8-bit grayscale. As a result there are no areas with missing data in
our synthesized images even though the images themselves may not be physically realizable.
The first row of Figure 14 shows the synthesized images from the AbsPeaks setup with μ = −2,
which completely turns off attenuation effects for both distance and nonuniform lighting. The
point light sources are positioned 3 units from the focal point, which, as we have mentioned,
is in contrast to the classic assumption of distant light sources. The reasoning behind this
placement is to demonstrate the deformation of the shape recovered by other methods when
the model of nearby light sources is not taken into account. We compare our approach with
the Poisson solver of [1, 8], which are surface integration methods and whose authors make
their code available. The surface normals provided to these two methods are first computed by
assuming distant parallel ray light sources where the light direction is computed by averaging
between the light source position and an approximate distance from the object (as done in
[31]). [1] requires the use of full boundary conditions, whereas [8] assumes so-called natural
boundary conditions which require no additional information. Furthermore, we remark that
[1] actually compares several methods of 3D shape recovery from the normal field, but all of
them are prevented from providing the correct shape in our scenario since the normal field
is deformed due to neglected physical effects. In the bottom row of Figure 14 from left to
right one can see the ground truth surface, our reconstruction, the reconstruction using [1],
and the reconstruction using [8]. Even in this simple scenario, the other methods produce
deformed reconstructions, whereas our method faithfully reconstructs the surface with an
MSE of 3.27e-2 units2. Figure 15 illustrates that the reconstruction by the other two methods
becomes considerably worse when we add attenuation of μ = 1, whereas our result remains
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Figure 13. In the first row are the images for the EPPS4 problem for AbsPeaks considering light attenuation
with μ = 5, no noise, and missing parts artificially added. In the second row, the left image shows the number
of lights visible at each pixel. The right image shows the direction from which the information flowed for every
pixel. So, for example, any pixel labeled SW was updated from the pixel southwest of it. If a pixel is colored
NES, then it was updated by the average of the two pixels to its northeast and southeast. The shadowed image
results in a change of direction of information flow and processing wavefront propagation, and hence the update
locations are not uniform. In the third row, the left image is a render of the resulting 3D reconstruction with
its reconstructed albedo textured on to it. The right image is the same shape but with its error map textured on.
MSE = 3.75e-4units2.

consistent with an MSE of 3.80e-2 units2. The shape recovered has a radial deformation
which increases moving far away from the projection of the optical center. This is because of
the effect of realistic light propagation that gets stronger when moving far from the center.

Finally, we want to compare our method with a modern approach aimed at getting shape,
illumination, and reflectance from shading (SIRFS) based on the machine learning procedure
[2]. By a default setting, it uses only one input image and the model is required to be ap-
propriately trained in advance. Furthermore, SIRFS has many parameters which have to be
tuned and that drastically change the final shape. Even if there are several technical aspects
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Ground truth using our method using [1] using [8]

Figure 14. In the first row are images from AbsPeaks with μ = −2 and lights positioned 3 units from
the focal point. In the second row, from left to right: ground truth shape, reconstruction using our method
MSE = 3.29e-4units2, the reconstruction using [1] MSE = 0.53units2, the reconstruction using [8] MSE =
0.94units2. All reconstructed shapes have their error maps textured on.

which differ from our approach, the goal of this comparison is to show that the scenario we
intended to face has many critical features that prevent other methods from working. Instead
of having as the main goal the 3D shape recovery in the wild, our method takes into account
a specific setup reliably obtained with the use of a prototype. Figure 16 shows the shape
reconstructed by SIRFS considering a surface with a nonuniform albedo and light attenuated.
Let us remark that we used SIRFS as it is provided1 without retraining the model or changing
parameters. With no need to compute the error with respect to the ground truth, the actual
difference is clear from the left image of Figure 7.

8.2.4. Run times and effect of image size on MSE. Using the AbsPeaks setup we can
easily vary the size of the images and observe how this affects both the resulting reconstruction
error as well as the run time. In Figure 17 the left graph was constructed by running the
reconstruction for one iteration for a set of different image sizes. The reconstruction was
performed on different numbers of Intel i7 cores to illustrate the almost linear speedup that
we obtained through straightforward multicore parallelization. The parallelization is done
by using OpenMP to schedule processing of independent pixels on the processing wavefront
to separate cores. The graph on the right of Figure 17 shows that the MSE reduces as a
function of image size in the case when there is little to no noise. This is expected behavior
because the the order of consistency of the method is one. However, as noise is introduced
the amount of noise as measured by the MSE indicates the lower bound that is reached after
convergence. By injecting noise into the synthetic images, the final reconstruction accuracy
is fundamentally limited. For both real and synthetic images the experiments were run until
convergence. It is useful to note that the actual convergence relative to the MSE stopped

1http://www.cs.berkeley.edu/∼barron/

http://www.cs.berkeley.edu/~barron/
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Ground truth using our method using [1] using [8]

Figure 15. In the first row are images from AbsPeaks with μ = 1 and lights positioned 3 units from the
focal point. In the second row, from left to right: ground truth shape, reconstruction using our method MSE =
3.82e-4units2, the reconstruction using [1] MSE = 5.19units2, the reconstruction using [8] MSE = 21.5units2.
All reconstructed shapes have their error maps textured on.

Figure 16. The image on the left is the input data with very low light attenuation and a nonuniform
albedo. The one on the right is the normal field computed by SIRFS.

improving after three iterations of our upwind scheme. This means that in a time-sensitive
use scenario the algorithm need not run to convergence and instead can be restricted to run
only for three iterations.

Finally, we resume the synthetic tests shown in Figures 9 and 11 and Figures 13 and
14, respectively, in Tables 1 and 2 performed using the semi-Lagrangian scheme. Due to the
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Figure 17. The left graphs show the speedup due to parallel implementation of the algorithm for different
image width sizes. The current implementation has overheads in setting up each iteration which have not yet
been parallelized, which is the reason that using 8 cores does not currently infer a significant advantage over 4
cores. The right graph shows the MSE convergence of the semi-Lagrangian numerical scheme for the EPPS4

problem with light attenuation μ = 1, no noise, 2% noise, and 5% noise.

Table 1
The values of this table explain how (in precision and in time) the semi-Lagrangian scheme converges for

Eve and the gain obtained by parallel implementation of the algorithm.

Eve EPPS4, μ = 1 EPPS4, μ = 100
Δ Cores MSE s-L time (sec) MSE s-L time (sec)

640×480
4 0.506019 0.586100 0.530944 0.597518
8 0.506019 0.528541 0.530944 0.558816

1280×960
4 0.627532 2.519946 0.687804 2.587541
8 0.627532 2.246315 0.687804 2.103126

2
%

640×480
4 2.201825 0.533312 4.659086 0.609900
8 2.201825 0.502544 4.659086 0.451640

1280×960
4 4.383240 2.576125 7.981745 2.603389
8 4.383240 1.855340 7.981745 2.113353

5
%

640×480
4 10.090009 0.530891 23.250882 0.624731
8 10.090009 0.429353 23.250882 0.428937

1280×960
4 17.338734 2.575009 35.542887 2.589999
8 17.338734 1.891218 35.542887 1.827679

presence of occlusion regions, the parallelization does not provide a linear decreasing error
with respect to the available cores. However, this implementation is a preliminary step for
future computational advancement on a more suitable platform as GPUs. Regarding the MSE
errors, of course, as long as the noise increases, it increases as well. However, we note that
MSE increases also when the size of the input images increase since the error is mostly due
to propagation of information accumulated during the characteristic strip expansion.
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Table 2
The values of this table explain how (in precision and in time) the semi-Lagrangian scheme converges for

Peak and the gain obtained by parallel implementation of the algorithm.

Peak EPPS4, μ = −2 EPPS4, μ = 5
Δ Cores MSE s-L time (sec) MSE s-L time (sec)

512×512
4 0.000115 1.211298 0.000202 1.639071
8 0.000115 0.910084 0.000202 1.149819

1024×1024
4 0.000033 4.377678 0.000060 6.576134
8 0.000033 4.265500 0.000060 5.272947

2
%

512×512
4 0.001934 1.095136 0.551087 2.789768
8 0.001934 0.749802 0.551087 2.008740

1024×1024
4 0.002010 4.330678 0.544797 10.715179
8 0.002010 4.388909 0.544797 7.065750

5
%

512×512
4 0.010990 1.061619 1.123475 2.656035
8 0.010990 0.748017 1.123475 1.765348

1024×1024
4 0.011230 4.259067 1.109509 10.750346
8 0.011230 4.527862 1.109509 8.924932

8.3. Real cases. In the last scenario we use a low cost endoscopic camera synchronized
to four individually controlled low power white SMD light sources. The camera has an ap-
proximately 90◦ field-of-view lens. The intrinsic camera parameters are fx = fy = f = 635,
cx = 325, and cy = 244. The lights are attached to a 3D printed surface that is designed to
allow the camera to sit in the same plane as the lights. They are positioned using callipers,
and the assumption that placing them face flat side down would fix their beam orientation
to be 90◦ to the surface proved to be sufficiently robust. We capture three objects which are
approximately Lambertian, namely a set of small artificial stairs, the tip of a thumb, and the
palm of a hand. The radial positioning of the light sources was adjusted for the size of the
objects being observed, where we used 40mm, 28mm, and 12mm for the hand, stairs, and
thumb, respectively. Our experimental setup permits us to measure the distance to a point on
the surface to use as an initial seed point as required by the integration strategy. In a more
practical setup we could use a single static laser point or laser line attached to the endoscope
and calibrated to automatically provide a set of true depth coordinates for use as seed points.
The point on each object observed by the central pixel in the camera frames was measured
by hand in order to define the only required boundary condition for the method. These dis-
tances were 220mm, 120mm, and 35mm for the hand, stairs, and thumb, respectively. The
SMD light sources have a real radial attenuation parameter of approximately μ = 1. The
endoscopic camera and SMD lights can be seen in Figure 18. An TI Launchpad was used to
control the lights via serial communication in MATLAB.

The images were taken in a dark environment, and a calibration image was acquired
without any lights activated. This was then subtracted from all subsequent images to account
for ambient lighting. After this any pixels with a value less than 20 were marked as shadow.
The intrinsic camera parameters for our low cost endoscopic camera were found using the
Bouguet calibration toolbox,2 and all images had the effect of lens distortion removed using
the same toolbox. The processed images for each object can be seen in Figure 19 with a

2http://www.vision.caltech.edu/bouguetj/calib doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/
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Figure 18. These two images show photographs of the endoscopic camera with the SMD LEDs mounted
90◦ apart on a 3D printed surface at a radial distance of approximately 40mm from the camera focal point. The
TI launchpad is the red board which is visible. The simple endoscopic webcam has a field of view of around 90◦.

rendering of a novel view of the same object based on our reconstruction. It is interesting to
note that our method was able to successfully reconstruct the thumb and the ridges of the
thumb-prints are clearly visible in the 3D render. Furthermore, despite the specularity and
nonuniform albedo present in the step images, the reconstruction is unaffected and preserves
the straight lines of the edges of the steps. The hand model is also interesting because it
illustrates that our method can handle real world scenarios in which there is a level of noise
in the captured images.

Using the results from the proposed method we can also resynthesize the original captured
images to show how they would look under the conditions determined by the reconstruction
process. This could in principle be used in an additional optimization process as a data
term to drive the reconstruction to optimally match the initial images, but this has not been
implemented here and remains an open avenue for future research. The process of resynthesis
is also interesting because it allows us to reconstruct the original images in areas where data
is missing, as can be seen in the first row of Figure 20. We measure reconstruction accuracy
using PSNR = 10log10(255

2/E[(Iest − I)2]). This measures how similar an image is to a
disturbed version of the same image and is most commonly used to show the effects of image
denoising algorithms. We do not measure the discrepancy in areas where data cannot be
reconstructed. The resynthesized images shown are of a high quality according to their high
PSNR values.

9. Conclusions. An efficient model for shape reconstruction from the EPPSn problem
was proposed. The main goal of the proposed model is to define a new differential formulation
based on a quasi-linear PDE, where the well-posedness holds even in the presence of images
with missing parts. We have shown that PDEs provide a strong way of modeling near-field
photometric stereo that can be used to approximate completely general lighting scenarios.
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Figure 19. Novel views from reconstructions of real objects imaged with the experimental setup described
in section 8.3. The captured images are shown on the left of each reconstruction. They all have the same size
640× 480 and provide the relative 3D shape shown on the respective right column in less than half a second.

The model we presented overcomes the limitations of more classical approaches since the
lighting is modeled realistically as a nearby source with fully general illumination. As far as
we can tell this currently represents state of the art in physical modeling for any photometric
stereo method. We are currently investigating even more general models for nonlinearities
such as specular effects and general BRDF functions. Our current experiments demonstrate
that the model gracefully deals with nonlinear light attenuations as well as nonuniform surface
albedo and missing data. Furthermore, the suggested method handles real world surfaces and
produces quantitatively faithful surface reconstructions for nearby objects. The method is
highly parallelizable, and future work will attempt an implementation on a kilo-core GPU
to demonstrate that real time endoscopic shape from photometric stereo is possible. Current
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Ground truth image Reconstructed image ||imagegroundtrouth − imagereconstructed ||2(unit8)

Figure 20. This figure compares the ground truth images to their resynthesized counterparts. In each row
we display the first captured or synthesized image on the left. The middle image is the resynthesized image based
on the proposed method, and the error map on the right shows the difference in intensity between the ground
truth image and the resynthesized image. In the first row are Eve experiments with no noise, a nonuniform
albedo, μ = 1, lights positioned at 150mm, missing data. PSNR = 34.3dB. In the second row are AbsPeaks
experiments with 2% noise, a uniform albedo, μ = 1, lights positioned at a radius of 3 units. PSNR = 32.0dB.
In the third row is a real hand experiment as described in section 8.3. PSNR = 30.8dB.

ongoing work includes shrinking the scanning head and performing tracking so that recon-
structed depth maps can be fused into a larger surface. Another issue is that of obtaining at
least one known ground truth point (assuming a single connected surface). This has not been
implemented, but we are investigating using a laser dot or line calibrated to the camera.
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Appendix. Backward numerical schemes. The backward numerical schemes are based
on the approximation of the surface propagating the information stored on the outflowing
parts of the boundary

(A.1) Γout = ∂Ω \ Γin.

The formulation of these schemes can be obtained by considering the equivalent problem

(A.2)

{ −b(x, y, z) · ∇z(x, y) = −s(x, y, z) a.e. (x, y) ∈ Ωp,
z(x, y) = g(x, y) ∀(x, y) ∈ Γout

and repeating the arguments used for the forward cases.

A.1. Backward upwind scheme. Using the same construction of the forward upwind
scheme, we introduce an artificial diffusion that guarantees the ability to follow the orientation
of the characteristics, this time in the opposite direction. The implicit numerical scheme

(A.3) − b1i,j
Zi+1,j − Zi−1,j

2Δ
− b2i,j

Zi,j+1 − Zi,j−1

2Δ

= |b1i,j|
Zi+1,j − 2Zi,j + Zi−1,j

2Δ
+ |b2i,j|

Zi,j+1 − 2Zi,j + Zi,j−1

2Δ
− si,j

for i, j = 1, . . . , n − 1 can be rewritten as
(A.4)

(UWB) Z
(k+1)
i,j =

|b1i,j(Z(k)
i,j )|Z(k)

i+sgn (b1i,j(Z
(k)
i,j )),j

+ |b2i,j(Z(k)
i,j )|Z(k)

i,j+sgn (b2i,j(Z
(k)
i,j ))

−Δsi,j(Z
(k)
i,j )

|b1i,j(Z(k)
i,j )|+ |b2i,j(Z(k)

i,j )|
.

A.2. Backward semi-Lagrangian scheme. Once we have (A.2), we obtain the backward
scheme as in the forward one, that is,

(A.5) (sLB) Z
(k+1)
i,j = Z(k)(xi + hΛ1

i,j(Z
(k)
i,j ), yj + hΛ2

i,j(Z
(k)
i,j ))−

si,j(Z
(k)
i,j )

|bi,j(Z
(k)
i,j )|

h.
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