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Abstract—Spine shape can be reconstructed from stereora-
diography, but often requires specialized infrastructure or
fails to account for subject posture. In this paper a protocol is
presented for stereo reconstructions that integrates surface
recordings with radiography and naturally accounts for
variations in patient posture. Low cost depth cameras are
added to an existing radiographic system to capture patient
pose. A statistical model of human body shape is learned
from public datasets and registered to depth scans, providing
3D correspondence across images for stereo reconstruction
of radiographic landmarks. A radiographic phantom was
used to validate these methods in vitro with RMS 3D
landmark reconstruction error of 2.0 mm. Surfaces were
automatically and reliably registered, with SD 12 mm trans-
lation disparity and SD .5� rotation. The proposed method is
suitable for 3D radiographic reconstructions and may be
beneficial in compensating for involuntary patient motion.

Keywords—Depth camera, SCAPE, Cobb angle, Stereo

calibration, Stereoradiography.

INTRODUCTION

Assessment and treatment of scoliosis benefits from
three dimensional spine reconstructions, as several
relevant clinical indices can only be evaluated in three
dimensions. Such reconstructions can be generated
from Computed Tomography or Magnetic Resonance
Imaging, but these scanning technologies require the
patient to be supine, while clinical assessment of scol-
iosis is performed in load-bearing posture.21 As such,
methods for reconstructing 3D spine models from bi-
planar radiographs have been under development for

several decades with a particular focus on posterior–
anterior (PA) and lateral (LAT) imaging planes.3

Several stereoradiography protocols have been
developed over the years to reconstruct 3D structures
from planar radiographs. In all cases, stereo calibra-
tion is required to reconstruct corresponding points.
Historically, this has been accomplished by including a
calibration target in the radiographic field of view from
which calibration parameters can be deduced. The di-
rect linear transform (DLT) has been a popular means
of calibration, as parameters are abstract and can be
found with simple closed-form optimization.15,27

However, DLT suffers from extrapolation errors
requiring that the patient be surrounded by the cali-
bration target.36 In practice, this necessitates either a
bulky cage structure11 or a rigid vest with radiopaque
markers that obscure parts of patient anatomy12 or
both. An advantage of these external structures is that
they mitigate changes in pose between images; the cage
can serve to stabilize the patient and the vest moves
with the torso, allowing direct measurement of patient
position.

An alternative to DLT calibration is explicit com-
putation of geometric parameters, treating the radio-
graphic system as a pinhole camera. For this approach
extrinsic parameters have been initialized with a cali-
bration target before optimization via reprojection er-
ror of landmarks on the spine itself.22 More recently, it
has been demonstrated that most parameters can be
either measured or estimated a priori, potentially
making online calibration unnecessary.28,29 However,
these results have only been demonstrated on synthetic
data or with elaborate support structures
(turntable and rigid vest). Furthermore, such statistical
methods are inherently incapable of correcting for pose
deformations, i.e., articulated changes in spine shape
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between radiographs. Nota bene: in the interest of
clarity, changes in ‘‘position’’ shall indicate rigid body
transformations while ‘‘pose’’ refers to subject posture,
e.g. bending/twisting.

To address this issue, hybrid scan protocols have
been developed incorporating an optical scanner using
Moiré photography9 in tandem with radiography. This
system has been demonstrated to reduce reconstruc-
tion error in vitro based on optical measurements of a
phantom back surface.24 However, the system is based
on a simple topographic reconstruction that relies
heavily on a single projected curve to correct for
position, and may be perturbed by local topographic
features.

Meanwhile, the last decade has seen explosive
developments in computer vision and geometric mod-
eling. The SCAPE model,4 introduced in 2005, has
become the foundation of an increasingly sophisticated
array of body models.10,31,35 This paper seeks to im-
prove on the hybrid scan strategy by leveraging these
recently developed computer vision methods.

Here a calibration protocol is presented using off the
shelf depth cameras and validated surface registration
techniques to better capture patient shape and pose.
To that end a BlendSCAPE20 model is trained from
publically available body scan datasets to learn statis-
tical models of human shape and pose-dependent
deformations. Training models on high quality data-
sets allows accurate interpretation of noisy and oc-
cluded surface data.4,26 The result is dense
correspondence between surface scans which can be
used to compute extrinsic geometric parameters for
stereo reconstruction. These generative models have
the potential to be robust to measurement noise and

local topographic variations between poses, which may
provide increased accuracy in 3D reconstructions.

MATERIALS AND METHODS

Experimental Setup and Materials

Radiography for this study was performed at Elisha
Hospital in Haifa, Israel on a Fuji-SCAN 3000 Com-
puted Radiography X-ray producing 1760 9 2140
pixel grayscale images. Two circular radiopaque
markers were fixed to the cassette holder at the edge of
the imaged area. All images were aligned to these
markers by affine transformation, thereby controlling
for variations in cassette placement within the housing.

The emitter position was fixed for the entire study
perpendicular to the cassette tray at a distance of about
2 m. Two Kinect for Xbox One cameras were posi-
tioned to give a clear view of a subject’s dorsal surface
in posterior–anterior (PA) and Lateral (LAT) imaging
stance respectively (Fig. 1).

Each depth camera was controlled by a separate
computer using the Kinect SDK to capture bursts of
10 frames, which were then averaged. Color, 3D
position, and infrared (IR) intensity were captured for
each frame at 512 9 424 pixel resolution with depth-
based background subtraction. To avoid interpolated
points at depth discontinuities, depth images were fil-
tered with a Canny edge detector and edge pixels dis-
carded. Color data was used only to mask out the
green pole supporting the mannequin.

The radiographic phantom used was a zinc-coated
full column spine model (C1 to sacrum) with plastic
flex-and-hold internal support made by Sawbones.

FIGURE 1. Scan room setup with two depth cameras. (a) Perspective view, rendered to scale showing X-ray emitter (gray cube)
and depth cameras (red and blue). Also shown are point clouds (down sampled for visibility) and radiograph with principal point
(up; vp). (b) Top–down view with focal distance f labeled. T1 and T2 represent rigid transformations from local camera space to 3D
radiographic coordinates.
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This flexible model was mounted in a hollow man-
nequin; sacrum and cervical spine were fastened while
thoracic and lumbar sections remained accessible and
adjustable. Five markers were placed on points of the
dorsal torso of the mannequin approximating vertebral
prominans, posterior superior iliac spines, and inferior
angle of the scapulas.

Digital surface meshes were prepared for each bone
in the radiographic phantom. The model was CT
scanned at 1 9 1 9 1 mm voxel resolution and, after
manual cleanup, meshed with the Marching Cubes
algorithm yielding meshes of approximately 250 ver-
tices per vertebra. Six landmarks were manually la-
beled on the mesh surface of each bone: superior and
inferior points on left and right pedicles as well as
vertebral endplates.

Nine distinct deformations of the Sawbones phan-
tom were imaged twice from both PA and LAT per-
spectives for a total of 36 radiographs. Kinect depth
scans were collected concurrent with each radiographic
image. Each of the nine spine curves was also pho-
togrammetrically scanned (see ‘‘Validation’’ section).

All data processing was performed in MATLAB.34

Calibration

In contrast to the DLT technique, here intrinsic and
extrinsic parameters are decomposed. Assuming a
regular, oriented grid for the digitized image the pro-
jection of a point from global 3D space to homoge-
neous radiographic image coordinates can be
expressed
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where [x y z] is the point in world coordinates, Ri and ti
are rotation and translation for camera i in world
space, f is the distance from the emitter to the imaging
screen, s is the sampling pitch of the sensor, (up; vp) is
the principal point in image coordinates, u and v are
the pixel coordinates in image space and w is a scaling
factor.22 Calibration consists of optimizing both
intrinsic and extrinsic parameters.

Rigid body transformations can be decomposed
into six degrees of freedom: a three-element rotation
vector w that can be mapped to a 3 9 3 rotation ma-
trix (using Rodrigues’ formula14) and a three-element
translation vector t. Labeling the depth cameras 1 and
2 as shown in Fig. (1) there are a total of 15 calibration
parameters: w1x, w1y, w1z, t1x, t1y, t1z, w2x, w2y, w2z, t2x,
t2y, t2z, s, up, vp. In this study these parameters were

optimized in two steps: first, by finding the transfor-
mation from camera 2 coordinates to camera 1 coor-
dinates, then solving for the remaining nine parameters
with a local optimizer.

A calibration target was constructed consisting of a
checkerboard pattern affixed to an acrylic plate with
embedded radiopaque markers at known coordinates.
Simultaneous images of the checkerboard were taken
with both depth cameras in 10 mutually visible posi-
tions. Corners were automatically detected on the IR
image with built-in MATLAB routines and the corre-
sponding 3D position obtained. Rotation and trans-
lation between cameras was established with Singular
Value Decomposition (SVD).5

Concurrently with depth imaging, ten radiographs
of the checkerboard target were collected. The 3D
locations of the radiopaque markers were projected
from camera space into radiographic image coordi-
nates using Eq. (1). Initial parameters, including the
position of camera 1 in global coordinates, were esti-
mated based on measurements of the imaging room.
The remaining nine calibration parameters were opti-
mized by minimizing marker reprojection error with
MATLAB’s nonlinear least squares solver LSQNON-
LIN.

Body Modeling

For this study a BlendSCAPE model was learned
using the published coregistration method.20 The
SCAPE model and its derivatives use a triangulated
mesh to represent human surfaces. Triangle edges are
expressed as three element vectors and deformed by a
series of transformations: articulated joint motion
R(h), body shape D for each subject p, and pose-de-
pendent deformations Q(h). For each triangle f these
edge deformations can be modeled as

Tf ¼ RfðhÞDfðpÞQfðhÞT�
f ð2Þ

where T* represents the template mesh. Posed vertex
locations are then found by solving the Procrustes
equation to minimize reconstructed edge error. Details
on SCAPE and coregistration can be found in previ-
ously published work.4,20,30 Briefly, this model allows
human surfaces to be represented with a small number
of parameters. Body shape (D) and pose (h) are
decomposed so that all subjects are modeled as
undergoing similar pose-dependent deformations (Q).
In practice this approximation is tolerable, especially
in upright posture with minimal pose variation as in
this clinical application.

To learn the model parameters, several publicly
available datasets of full-body scans were assembled:
the SCAPE dataset,4 the MPI scans published by
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Hasler et al.,19 and the FAUST dataset.8 A 5030-vertex
template mesh was generated in standard ‘‘T’’ pose,
then registered (following protocol in ‘‘Surface Regis-
tration’’ section, omitting the genetic search) to a single
scan from each dataset. This provided the initial mesh
correspondence for each dataset. Poses for scans not
provided with a registered mesh (FAUST test scans)
were manually initialized (Fig. 2).

In total 890 scans of 121 subjects were coregistered
to learn the BlendSCAPE parameters. Subjects’ shape
parameters D were used to form a low-dimensional
PCA space of human shape.4 The first five principal
components were used as a basis to compute a linear
regression2 to satisfy

M½f1 . . . fl 1�T ¼ b ð3Þ

where the linear mappingM converts semantic features
[f 1] to PCA weights b, which can then be used to
recover shape parameters D. Semantic features used in
this protocol were height, waist circumference, cube
root of volume, and sex (manually labeled). Taking
inspiration from multi-scale registration methods7 a
low resolution mesh (629 vertices) was generated in
Blender13 corresponding to the full resolution mesh,
and another BlendSCAPE model trained for this
template.

Surface Registration

Surface registrations proceed in stages. Joint angles
h are initialized as a modified ‘‘A’’ pose (relaxed arms)
while subject shape D is initialized with semantic fea-
tures. Gross initial rigid body registration is facilitated
by automatically detected surface markers. A subset of
joint angles are then optimized with a genetic algo-
rithm to minimize

argmin
hGA

1

Sj j
X
xs2T

q min
xt2T

xs � xtk k
� �

þ 1

Vj j
X
xv2P

min
xp2P

xp � xv
�� ��2 ð4Þ

where S is the scan, T is the registered mesh, V are
vertices on the soles of the feet, and P is the plane of
the floor. hGA is an 18-element pose vector containing
global rotation and translation as well as three joint
angles for each shoulder and thigh segment. The first
error term penalizes the Geman-McClure18 distance
q(x) = x2/(x2 + g2) between scan points and the posed
mesh while the second keeps the mesh in proper posi-
tion relative to the floor. Robust distance g was set to
0.4m to include all relevant scan points. The genetic
algorithm is computationally expensive and is not run
to convergence, merely to find acceptable local optima.
Next two nonlinear optimizations are performed over
pose h and body shape b using automatically generated
gradients:

argmin
h;b
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�� ��2
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X
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X
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bt=rtk k
2

ð5Þ

Here, in addition to the scan term and floor offset
term, penalties are included for deviations from refer-
ence pose hA and Mahalanobis distance from mean
body shape. Equation (5) is optimized first using the
low resolution BlendSCAPE model; resulting param-
eters then initialize another search with the full reso-
lution model. For both search resolutions kh = 0.1,
and kb = 0.01 while the robust distance was reduced
from g = 0.2 m to g = 0.1 m. Finally, the deformed
mesh is used to initialize a nonrigid mesh registration

argmin
v

1

jSj
X
xS2S

q min
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X
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ð6Þ

FIGURE 2. Low dimensional body modeling. Sample subject
from the FAUST dataset shows how high- dimensional
surface scans can be represented with parametric models.
Far left: high resolution surface scan (about 175,000 points).
Middle left: BlendSCAPE model after coregistration (90,504
shape parameters). Middle right: PCA representation with five
principal components. Far right: semantic encoding using
four anthropomorphic parameters. Reproduced with
Permission from Ref. 8.
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Here vertex locations v are optimized using analytically
computed gradients to minimize the robust surface-to-
scan distance, the squared distance between markers L
and the corresponding points on the deformed mesh
xT, as well as squared Frobinius distance between
model edges and registered mesh edges scaled by face
area af. Constants were dynamically scaled during
registration30 converging at g = 0.03 m, kL = 2,
kC = 5. This heavy regularization towards the model
helps reduce the influence of noise from low-cost depth
cameras, and works because fine detail is not required
for this application. With regards to notation, in the
last term Tf represents two edge vectors of the face f.33

Landmark locations on the mesh Tl is also iteratively
updated to account for placement error.25

Similar to updated landmarks, adaptive landmark-
ing was used to align the center line of the mesh with
the ‘‘symmetry line’’ of the scan. For each scan an
‘‘asymmetry map’’ was prepared according to Hier-
holzer and Drerup and the 3D curve of least asym-
metry found,16 which correlates closely with vertebral
processes in scoliotic subjects.17 For each midline
vertex, the closest point on this curve was used as a
landmark, updated iteratively.

The final result of this multi-resolution search is a
registered mesh for each subject scan, regularized by
statistical body models and anchored to manual and
automatic landmarks in the region of interest. It
should be noted that manual landmarks are primarily

important for search initialization. The final registra-
tion is driven by topographical features which are ro-
bust to skin motion and minor variations in posture17

(Fig. 3).

Spine Reconstruction

Stereocorresponding points were marked in each
radiograph from T4 to L4 inclusive (vertebrae visible
in all radiographs). Six landmarks were used for each
vertebra:6 superior and inferior points on left and right
pedicles as well as vertebral endplates.

Each point in radiographic image coordinates cor-
responds to a line in 3D space. Reconstruction of
stereocorresponding points is possible using Eq. (1) if
the transformations T1 and T2 are known for the
subject during PA and LAT scans respectively. Stereo-
reconstructions were performed using two protocols:

a. A transformation from LAT to PA position was
found for each vertebra in the reconstruction,
using the mesh registrations described in ‘‘Surface
Registration’’ section. The six landmarks on the
PA radiograph were averaged and back projected
into 3D space. Vertices on the dorsal surface of the
registered mesh within 10 cm of the projected line
were used to find a rigid registration between LAT
and PA scans.

FIGURE 3. Coarse-to-fine registration of template mesh (blue) to scan points (magenta, down sampled for visibility). (a)
Initialization with semantic shape parameters and rigid landmark alignment (b) Genetic Algorithm optimization of reduced pose
parameters hGA (c) Gradient descent pose and shape optimization using low-polygon mesh (d) Gradient descent with full-
resolution mesh (e) Nonrigid registration regularized with BlendSCAPE model.
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b. The average translation t and z-axis rotation wz

for the dorsal vertices were found across all PA
scans, and then across all LAT scans. The same
intrinsic parameters (focal point, focal distance)
were used as from method (a). This reconstruction
provided a comparison with previously published
methods that use a statistical approximation of
patient position.28

Using the mesh spine model derived from CT, full
spine reconstructions were generated from landmark
reconstructions. Each bone in the mesh was aligned to
minimize squared landmark distances. Full spine
reconstructions were used for 3D visualization and to
generate synthetic radiographs.

Validation

In order to validate spine reconstructions, a ground
truth spine registration was obtained from an optical
surface scan of the Sawbones model. For each spine
configuration, 30–40 RGB images of the phantom
were captured with a Canon T5 DSLR. Photogram-
metry software (PhotoScan1) was used to reconstruct
point clouds of the model surface. The meshed CT
model was then registered to the point cloud using
piecewise rigid transformations i.e., each bone is given
six degrees of freedom. After landmark-based initial-
ization, the registration proceeds with iterative closest
point matching to optimize translation T and rotation
R for each bone

argmin
T;R

1

Sj j
X
xS2S

q min
xm2M

xs � xmk k
� �

þ kN
XK
j¼2

Tj � Tj�1

� �
� T�

j � T�
j�1

� ����
���
2

ð7Þ

The first term is the robust distance from the scan S to
the model surface M, while the second term regularizes
the registration by penalizing deviations from the rel-
ative template pose T* (neutral spine) over K bones.
The weight term kN is brought to zero as the regis-
tration converges. Radiographic reconstructions can
then be compared against this registered model
according to various clinical indices (Fig. 4).

Point-to-point landmark error was found by rigidly
aligning all 72 reconstructed 3D landmarks with
matching landmarks from the ground truth spine be-
fore computing Euclidean distances. Synthetic PA
radiographs were also prepared by densely sampling
the registered spine mesh model and projecting points
into radiographic image space, whereon traditional
Cobb angles were measured by a clinician. Computer
Cobb angle32 was computed by interpolating a con-
tinuous curve through vertebral bodies and finding the

maximal angle between lines normal to the projected
curve. Finally, spine length was computed by summing
distances between vertebral bodies (from T4 to L4).

RESULTS

Surface registrations were visually inspected and
found to be universally good in the area of the torso.
One mesh was misaligned in the lower extremities but
did not appear to impact the area of interest. No
ground truth measure was available to evaluate mesh
registrations, but torso shape was consistent across
registrations, as expected for a semi-rigid mannequin.
Patch registrations (used in the proposed reconstruc-
tion protocol) were compared for each PA-LAT pair
of surface scans: mean Standard Deviation (SD) for
translation offset ||t|| was 12 mm and mean SD for
rotation vector ||w|| was 0.5�. Average values were
found for translation and rotation parameters in PA
and LAT position with the following SD: tPA = [16;
21; 1.2], wPA = [1.2; 0.56; 7.2], tLAT = [24; 17; 3.3],
wLAT = [1.1; 0.94; 9.0], where ti is measured in mil-
limeters and wi is in degrees (Fig. 5).

Point-to-point 3D reconstruction error had a Root
Mean Squared (RMS) error of 2.0 mm (0.8 mm SD)
across all landmarks and all trials. Repeatability was

FIGURE 4. Ground truth model registration.
Photogrammetric point cloud shown with registered spine
mesh model (red). Scan points down sampled and one half of
spine model exposed for visibility.
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measured by aligning the two reconstructions taken for
each spine curve, resulting in a landmark displacement
of RMS 1.7mm (0.8 mm SD). Corresponding values
for reconstructions using average extrinsic parameters
were RMS 3.1 mm (1.5 mm SD) displacement from
ground truth, RMS 4.3 mm (2.0 mm SD) repeatabil-
ity. These measurements are decomposed into [x; y; z]
components for presentation in Fig. 5 (Table 1).

Several spine level clinical indices were also mea-
sureradiographs due to the internal support structured
and compared with the ground truth reconstruction,
summarized in Table 1. Coronal measurements (tra-
ditional and computer Cobb) were not statistically
different from ground truth, while measurements
dependent upon sagittal markings (computer Cobb,
spine length) showed systematic bias. This bias also

appeared for mean parameter reconstructions (data
not shown), indicating the source of the error was
likely landmark selection in the LAT radiographs (see
Discussion). RMS error in traditional Cobb angles
were of similar magnitude to intra-subject variability:
repeated measurements of the same curve had a stan-
dard deviation of 5.5� for real radiographs and 6.3� for
synthetic radiographs (n = 9) (Fig. 6).

DISCUSSION

In this paper an inter-modal scanning system is
described for stereoradiographic spine reconstructions.
Rather than computing stereo parameters via a
radiographic calibration target included in the field of
view, a set of depth cameras are added to the scanning
system. At the cost of some additional infrastructure,
this surface information provides an anchor for
merging radiographs.

One attractive feature of surface-based correspon-
dences is the potential to measure and correct for
changes in subject posture between scans. The
BlendSCAPE model, while over-engineered for the
case of an immobile mannequin, naturally accounts for
variations in pose and body shape. Transformation
parameters t and w were reliably extracted from sur-
face scans, with 12 mm SD and 0.5� SD respectively.
These values can be read as the ‘‘remove and replace’’
error, as a rigid mannequin with invariant surface
topography was used in this study.

This said, this SCAPE based registration protocol
was specifically designed to be robust to human sub-
jects in a clinical environment. A minimum number of
landmarks are used, and primarily for initialization,
reducing the impact of operator error. The ‘‘symmetry
line’’ as a topographical feature helps regularize the
registration without skin-based markers that may
move relative to the underlying spine structure.

Despite the success of surface registrations in find-
ing extrinsic parameters, simply using the mean
parameters produced reconstructions that were not
dramatically inferior. Although landmark error was
significantly reduced using the proposed methods
(p < 0.05 from paired Student’s t-test), the error
dropped by only about 1mm despite the high vari-
ability in mannequin position (8� SD in z-axis rota-
tion).

Careful examination of the data revealed that using
mean parameters is remarkably robust to variations in
subject positioning, provided that rotation is strictly
limited to the z axis. This was exactly the case for the
mannequin used in this study, and is consistent with
previously published work, where patient positioning
is carefully controlled with a rotating platform and

FIGURE 5. Landmark reconstruction error after rigid
alignment. Comparisons to ground truth included all
landmarks across 18 scans (n 5 1296) while repeatability
was computed for all pairs of reconstructions for each spine
curve (n 5 648). Error was computed in PA scan position
(X 5 posterior–anterior, Y 5 left–right, Z 5 cranial–caudal).

TABLE 1. Differences between clinical indices and ground
truth values.

Clinical index

Ground truth error

RMS SD p

Cobb angle (�) 7.1 7.0 0.19

Splined cobb PA (�) 1.2 1.2 0.25

Splined cobb LAT (�) 1.0 0.8 0.003

Spine length (mm) 4.0 2.0 < 1026

Cobb Angle was manually measured on PA radiograph and

synthetic PA radiograph. Splined Cobb measurements were

performed after projecting onto coronal (PA) and sagittal (LAT)

planes. For each angular measurement, the maximal curve on the

ground truth spine was compared against, whether lumbar or

thoracic. Comparisons were performed with Student’s t test,

n = 18 for all indices.
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rigid brace.28 Synthetic experiments have showed that
even 2� off-axis rotation can significantly degrade
reconstruction accuracy.29 It would be of great interest
to know how much variation in patient posture is to be
expected without a turntable, which might be another
excellent application for the 3D scanning protocol
presented here.

It is also worth noting that while point-to-point
reconstruction error is similar to previously published
results,6,22,28 coronal metrics showed higher error and
statistical bias. One explanation could be the inter-
modal comparison to a ground truth spine model
derived from an optical scan. However, if this were the
dominant source of error it would be expected that
repeatability tests would show significantly lower
reconstruction error. In fact, only a modest reduction
in error is observed for the proposed method, and a
marked increase when using average extrinsic param-
eters. Instead, the likely source of increased baseline
error is difficulty identifying pedicle landmarks on
LAT radiographs due to the internal support structure
(visible in Fig. 6). While other studies have found
reconstruction error to be systematically lower for
pedicle landmarks,23 here repeatability was signifi-
cantly better for endplate landmarks (RMS 1.5 vs.
1.7 mm, p < 0.0001 paired Student’s t test).

Taken together, these results demonstrate the
potential for surface based stereoradiographic recon-
structions using depth cameras. However, much work
remains to confirm the utility of these methods in
clinical practice. The first step must be to validate the

protocol on nonrigid scan targets, as human subjects
will deform slightly between scans. Since the SCAPE
model was designed to model the entire range of
human motion, there is every reason to hope that these
techniques will be capable of compensating for minor
variations in patient posture–but this must be
demonstrated empirically.

It should be noted that the statistical body models
used in these algorithms were trained on healthy
adults; models trained on scoliotic subjects may be
beneficial for clinical application. However, the non-
rigid registration parameters presented here already
allow for highly plastic shape matching; although the
mannequin deviated greatly from the training data
(exaggerated neck, bloated legs) the registered surface
hewed closely to the scan (~ 2 mm point-to-surface
distance). As such, better surface registrations–and
consequently stereo parameters–are more likely to be
realized with higher quality surface scans, as accuracy
and range continue to improve rapidly in low-cost
depth cameras.

The 3D reconstructions generated using this method
can be visualized directly by a physician for qualitative
assessment or used to generate a quantitative clinical
metrics. For example, to visualize the Cobb angle in
Fig. 6 the stereocorresponding points were fitted to
vertebral surfaces and projected into image space.
Similarly, metrics such as axial rotation or spine bal-
ance can be extracted from the fitted vertebral models.
Reconstructions of the same patient from different

FIGURE 6. Splined spine line and computer Cobb angles. Measurements were performed after splining vertebral bodies in 3D and
projecting into radiographic image coordinates. (a) Real radiograph with computer Cobb angles (b) synthetic radiograph generated
from proposed reconstruction methods. These images were also used to compare manually measured Cobb angles.
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times or in different postures could be quantitatively
compared or tracked.
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