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Multi-region active contours
with a single level set function

Anastasia Dubrovina, Guy Rosman, and Ron Kimmel, Fellow, IEEE

Abstract—Segmenting an image into an arbitrary number of coherent regions is at the core of image understanding. Many
formulations of the segmentation problem have been suggested over the past years. These formulations include, among others,
axiomatic functionals, which are hard to implement and analyze, and graph-based alternatives, which impose a non-geometric
metric on the problem.
We propose a novel method for segmenting an image into an arbitrary number of regions using an axiomatic variational approach.
The proposed method allows to incorporate various generic region appearance models, while avoiding metrication errors. In the
suggested framework, the segmentation is performed by level set evolution. Yet, contrarily to most existing methods, here, multiple
regions are represented by a single non-negative level set function. The level set function evolution is efficiently executed through
the Voronoi Implicit Interface Method for multi-phase interface evolution. The proposed approach is shown to obtain accurate
segmentation results for various natural 2D and 3D images, comparable to state-of-the-art image segmentation algorithms.

Index Terms—Segmentation, multi-region, active contours, level sets
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Fig. 1. Multi-region image segmentation.

1 INTRODUCTION

IMAGE segmentation plays an important role in
various areas of image processing, such as object

detection and classification, action classification, scene
understanding, and other visual information analysis
processes. Existing algorithms for image segmentation
may be broadly divided into several groups according
to the following criteria: automatic segmentation vs.
user-assisted approaches, object and background seg-
mentation vs. multi-region segmentation, types of seg-
mentation criteria, usage of prior data, such as various
segment statistics or known shape priors, algorithms
using a discrete optimization vs. a continuous one,
etc.

In this paper we consider the active contours ap-
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proach to image segmentation, which may be traced
back to the snake model of [1]. In the active con-
tours approach, region boundaries are modelled by
a (parametric) curve, which minimizes the chosen
type of segmentation criterion modelled as an energy
functional. Important advantage of the active contours
approach is the ability to minimize arbitrary energy
functionals, while allowing for accurate region bound-
ary detection with subpixel precision. The active con-
tours approaches may be loosely classified into edge-
based methods [1], [2], [3], [4], region-based methods
[5], [6], [7], and combined approaches [8], [9], [10], to
mention just a few.

Other common approaches to multi-region image
segmentation either use a discrete labeling problem
formulation and solve it using graph-cuts [13], [14],
[15], or minimize the segmentation functional using
convex relaxation techniques [16], [17], [18], [19], [20].
Contrary to the active contours method, such ap-
proaches require more effort to adapt for arbitrary
segmentation functionals, in terms of both data and
geometry priors, and usually require knowing the
number of regions a priori, with the notable exception
of [11], [12]. Other methods for multi-region image
segmentation include mean-shift clustering [21], spec-
tral segmentation [22], greedy algorithms [23], learn-
ing approaches [24], [25], and a combination of the
above [26].

Compared to the above methods, the level set
framework provides a significant amount of flexibil-
ity in the design of the segmentation criterion, and
can be naturally extended to accommodate various
assumptions about the image and its structure. These
assumptions include different appearance models [7],
[27], [28], [29], and shape priors [30], [31], [32].
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The active contour evolution is commonly per-
formed using the level set approach of [33], as in [2],
[34], [35], [4]. The conventional level set framework
is geared towards two-region image segmentation.
Various methods were developed to alleviate this
limitation; most of them require managing multiple
level set functions. Some methods associate a level
set function with each image region, and evolve these
functions in a coupled manner, so that the resulting re-
gions do not develop gaps or overlaps [36], [37], [38].
Other method perform hierarchical segmentation, by
iteratively splitting previously obtained regions using
the conventional level set framework [39], [40]. A
different method was suggested by [41], where a
smaller number of n level set functions were used to
segment an image into 2n regions.

Several approached were suggested, where a single
level set function is used to perform the level set
evolution, similar to the method introduced in the
present paper. One such approach was recently sug-
gested in [42]. While using a single level set function
to represent image regions, it still requires managing
multiple auxiliary level set functions when evolving
the contour, so that no gaps/overlaps are created.
In [16], [43], partitioning an image into multiple re-
gions was modelled by a single, piecewise constant
level set function, which was obtained using either
augmented lagrangian optimization, or graph-cuts.
However, these methods were designed to minimize
the piecewise constant Mumford-Shah functional [5]
only, though they may possibly be extended for more
elaborated image appearance models.

Here, we propose a new level set method for
multi-region image segmentation, where the regions
are represented by a single non-negative level set
function, such that the zero level set of this function
corresponds to the region boundaries. The proposed
method allows segmenting images with arbitrary
number of regions using various image appearance
models. To perform the level set evolution, the sug-
gested method utilizes a novel level set framework for
multi-phase interface evolution - the Voronoi Implicit
Interface Method (VIIM), which was introduced by
Saye and Sethian in [44], [45], for numerical sim-
ulations of fluid dynamics. During the evolution,
performed using the foremention non-negative level
set function, the VIIM implicitly deals with regions
merging and splitting, and naturally handles complex
topological structures such as triple junctions.

The main contributions of the present paper can be
summarized as follows: first, we review the axiomatic
formulation of the multi-region image segmentation
problem as an energy functional minimization. We
consider the region competition model of [8] and the
pairwise dissimilarity-based models of [46], [47], aug-
mented with the geodesic active contour regulariza-
tion term [4], as our energy functionals. We then show
the derivation of the steepest descent minimization for

the proposed functionals for multi-region segmenta-
tion. We formulate the active contour evolution equa-
tion as a multi-region level set evolution problem, and
solve it by utilizing the VIIM level set framework. In
the proposed method, neither the number of regions,
nor the region statistics are required to be known a
priory, and good segmentation results are produced
for various initial conditions, extending the method
presented in [48].

The structure of the paper is as follows: in Section 2
we describe the multi-region segmentation model,
and the prominent segmentation priors that fit within
the suggested framework. In Section 3 we review the
level set approach for active contour evolution, and
the Voronoi Implicit Interface Method, which is the
numerical basis for our approach. In Section 4 we
describe the main ideas that underlie the proposed
method, derive the corresponding level set evolu-
tion equation in terms of the VIIM framework, and
discuss implementation considerations. In Section 5
we present segmentation results and qualitative eval-
uation of the proposed approach, and compare it
to state-of-the-art methods. Section 6 concludes the
paper.

2 PROBLEM DEFINITION

Given an image I(x) defined over a domain Ω ∈ R2,
the active contour model finds a contour C(s) =
(x1(s), x2(s)) ∈ Ω that minimizes an energy functional
of the type

E(C) = Edata(C) + µEreg(C). (1)

The data term Edata(C) is determined by the region-
based image intensity model, for instance, piecewise
smooth or piecewise constant model [5] and [6], pair-
wise region interaction model [7], [27], [49], [46], etc.
The regularization term Ereg(C) is determined by the
segmenting contour properties. It may depend on the
contour length alone [1], [5], [6], or incorporate image
information, as is the case for the geodesic active
contour model [34], [4].

The above energy functional is typically minimized
by steepest descent with respect to the virtual arbi-
trary time parameter t, to obtain the optimal partition
of the image

Ct = −δE(C)

δC
= −

[
δEdata(C)

δC
+ µ

δEreg(C)

δC

]
. (2)

In this paper we demonstrate region-based terms
that rely on two specific image models - variants
of the region-competition model of [8], namely the
piecewise-constant model of [5], [6] and a more gen-
eral Gaussian mixture model (GMM), and the pairwise
dissimilarity model suggested in [49], [46]. Below we
describe in details both models, formulated for multi-
region segmentation, and the corresponding curve
evolution rules.
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In the case of volumetric image segmentation, the
image I(x) is defined over a domain Ω ⊂ R3, and
the segmentation is performed using the active sur-
face model (see, for instance, [35], [50]), with similar
problem formulation. To keep the notations simple,
we first proceed by discussing the 2D problem, and
describe the 3D case in more detail in Section 4.2.

2.1 Region-competition model

The energy functional In this paper we consider the
region competition model of Zhu and Yuille [8], which
we augment with geodesic active contour (GAC) [4]
regularization term

E(C, {αi}) =

M∑
i=1

∫
Ωi

− logP (I(x)|αi) dx

+
µ

2

∑
i

∮
Ci

g(Ci(s))ds, (3)

where x ∈ Ω denotes a point in the image domain.
The model attempts to divide the domain Ω into a
series of M non-overlapping regions {Ωi}Mi=1, such
that Ω =

{
∪Mi=1Ωi

}
, with homogeneous intensities.

Image intensity homogeneity is measured by the data
term, where P (z|αi) is the probability distribution
function describing the image intensity values in the
region Ωi, having corresponding parameters αi. The
curve Ci(s), parameterized by the arclength s, denotes
the boundary of the region Ωi, and can also be defined
as Ci = ∂Ωi. Each boundary Ci(s) is parameterized to
have a counter-clockwise direction with respect to its
corresponding region Ωi. The contour C is given by
union of all Ci, C =

⋃
i

Ci.

The regularization term is defined using an inverse
edge indicator function g(x). Here, we used g(x) =(

1 + |∇(G ∗ I)|2
)−1

, as suggested in [4], though other
indicator functions may be considered. For color or
vector valued images, one may use the edge indicator
functions suggested in [10] or [51]. [10] treats the
image as a 5-dimensional manifold (for color images)
with metric gµν(x), and define g = det (gµν(x))

−1,
while [51] uses the largest eigenvalue of the metric
tensor, λ, and define g = (1+λ2)−1. The regularization
term is multiplied by a factor 1/2 as every bound-
ary segment appears in Eq. (3) twice. Note that the
proposed formulation is general and may be applied
with various image intensity probability distribution
models, as will be demonstrated in Sect. 2.2.

Optimization The energy functional E(C, {αi}) de-
pends on both the contour C and the probability
distribution parameters {αi}. To minimize the energy
with respect to these two sets of variables, an alternat-
ing minimization approach is commonly used. First,
for a fixed contour C and the partition {Ωi}, minimize
the energy with respect to the parameters {αi}. Or,

equivalently, compute the optimal parameters maxi-
mizing the image probability in each region

α∗i = argmax
αi

∏
x∈Ωi

P (αi|I(x)) , ∀i. (4)

Next, for fixed parameters {αi}, do a steepest de-
scent step to compute the new contour C

Ct = −δE
δC

=
∑

i∈N(x)

[
− logP (I(x)|αi) +

µ

2
(κig − 〈∇g,ni〉)

]
ni.

(5)

In the above equation, consider some x ∈ C. The set
N(x) is comprised of the indices of the regions Ωj
adjacent to C at x. The curvature κi and the normals
ni correspond to the region boundaries Ωi, when the
normal ni is defined such that it points inwards the
region Ωi. For a point x lying on a contour segment
defining a boundary between two regions Ωi and Ωj ,
we have |N(x)| = 2, while for a triple junction point
we have |N(x)| = 3.

The minimizing flow (5) is obtained by differen-
tiating the energy functional E(C) with respect to
the active contour C. The first term was derived in
[8], while the second term is the explicit geodesic
active contour flow [4], obtained by differentiating the
regularization term in Eq. (3).

2.2 Region competition model: examples
A piecewise constant model [5], [6] is a special case of
the region competition model. Assuming Gaussian
probability distributions, given by I ∼ N (ci, σ

2
i ) in

a region Ωi, with identical variances σi = σj ,∀i, j, the
data term of the energy functional E(C) becomes

Edata(C, {ci}) =

M∑
i=1

∫
Ωi

(I(x)− ci)2
dx. (6)

The above equation describes the piecewise con-
stant variant of the Mumford-Shah energy functional
[5]. For M = 2 and g = 1, (6) is known as Chan-Vese
model [6].

For the piecewise constant model, the contour evo-
lution rule becomes

Ct =
∑

i∈N(x)

[
(I(x)− ci)2

+
µ

2
(κig − 〈∇g,ni〉)

]
ni. (7)

For a given contour C, the optimal distribution pa-
rameters are obtained according (4), by least squares
minimization

c∗i =

∫
Ωi
I(x)dx∫
Ωi
dx

. (8)

General intensity distribution model In most natural
scenarios, image intensity values in regions Ωi cannot
be modelled by a single Gaussian distribution, as in
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the piecewise constant model above. To address a
broader class of images in our segmentation frame-
work, we can model the intensity distribution in each
region using, for example, kernel density estimation
[52], [53], Gaussian mixture model [54], etc. Here, we
estimated these discrete densities using sums of Dirac
delta distributions, as follows

P (z|αi) =
1

|Ωi|
∑
x∈Ωi

δz=I(x), z ∈ [0, 1]d, (9)

where d = 1 for grayscale images and d = 3 for images
given in RGB or CIE-Lab color spaces. Specifically,
we found that modelling image intensities using 32d

intensity histograms produced satisfactory segmenta-
tion results, as shown in Sect. 5.

Gaussian mixture model The Gaussian mixture model
can be integrated into our framework, to model the in-
tensity value distributions, as follows. In that setting,
the intensity probability distribution in region Ωi is
given by a weighted sum of K Gaussians

P (z|αi) =

K∑
j=1

λ
(j)
i N

(
z | c(j)i , σ

(j)
i

)
, (10)

where N
(
z | c(j)i , σ

(j)
i

)
is the jth component of the

Gaussian mixture in the region Ωi, with mean c
(j)
i

and covariance matrix σ
(j)
i I . Different components

are mixed with weights λ(j)
i , such that

K∑
j=1

λ
(j)
i = 1.

In this case, the curve evolution rule is obtained by
substituting the probability density in Eq. (5) with the
Gaussian mixture above.

The optimal model parameters α∗i , where

αi =
{
λ

(j)
i , c

(j)
i , σ

(j)
i

}K
j=1

, (11)

are calculated as suggested in Eq. (4), using the Ex-
pectation Maximization (EM) algorithm [54].

Finally, note that though the above problem for-
mulations are given in terms of the image intensity
values, different image representations, for instance,
Gabor filter responses or textons for texture segmen-
tation, can be easily utilized in the suggested frame-
work.

2.3 Pairwise dissimilarity model

Pairwise dissimilarity models were previously sug-
gested in [49], [46], [47]. For two-region segmentation
problem, with Ω = Ωin ∪ Ωout, the energy functional
data is given by

Edata(C) =

∫∫
Ωin×Ωin

w(x, y)dxdy

+

∫∫
Ωout×Ωout

w(x, y)dxdy, (12)

where w(x1, x2) is the measure of dissimilarity be-
tween pixels x1 and x2 in Ωin or in Ωout. The two
terms of the above model measure the total dissim-
ilarity of the image inside the two regions Ωin and
Ωout.

Extension of the above model for the multi-region
case is straightforward

Edata(C) =
∑
i

∫∫
Ωi×Ωi

w(x, y)dxdy, (13)

where as before Ω = {∪iΩi} [46], [47].
Proposition 2.1: Steepest descent step minimizing

the data term Edata(C) in Eq. (13) is given by

Ct = −
∑

i∈N(C)

[∫
Ωi

(w(y, x) + w(x, y)) dy

]
ni, (14)

where x ∈ C, and ni is the normal to C at x.
The proof of the proposition is given in Appendix A.

The regularized contour evolution equation for the
pairwise dissimilarity model is then given by

Ct =
∑

i∈N(x)

[∫
Ωi

(w(y, x) + w(x, y)) dy

+
µ

2
(κig − 〈∇g,ni〉)

]
ni. (15)

2.4 Pairwise dissimilarity model: examples

We tested the proposed approach with two dissimi-
larity models suggested in [46] and [47]. The former
model measures pairwise pixel dissimilarity by com-
paring the corresponding image values, in CIE-Lab
color space, as follows

w(x, y) =
∥∥ILab(x)− ILab(y)

∥∥
2

=

 ∑
l=L,a,b

(l(x)− l(y))2

 1
2

. (16)

In the latter paper [47], the authors used a patch-
based pixel dissimilarity measure. Define a patch of
size r × r centred at a pixel x ∈ Ω by

px(v) = I(x+ v), ∀v ∈ [−r/2, r/2]2. (17)

Then, the patch-based pairwise pixel dissimilarity is
given by

w(x, y) = Gσ(x, y)dp(px, py), (18)

where dp(px, py) denotes a distance measure between
two patches px and py . This patch distance may be
defined, for instance, as

dp(px, py) =

∫
Ga(v)‖px(v)− py(v)‖2dv. (19)
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3 LEVEL SET FRAMEWORK

According to the active contours model, the contour
evolution rule, obtained using the first variation of the
energy functional E(C) with respect to C, is

Ct = −δE(C)

δC
= Fn, (20)

where F denotes the evolution force applied to the
evolving contour in the normal direction n.

The contour evolution can be re-formulated ([2],
[34], [4], [6]) in the level set framework of [33]. A level
set function φ(x) is defined such that the contour C
is given by its zero level set

C = {x | φ(x) = 0} , (21)

φ is negative inside the region defined by C, and
positive outside. Note that C consists of one or more
simple, possibly closed, curves, each of which can
be parameterized as a mapping from R to R2. Thus,
except for the junction points, this definition of C is
consistent with the definition as a mapping from R to
R2, given at the beginning of Section 2.

As was shown in [33], evolving the curve according
to Eq. (20) is equivalent to evolving the level set
function according to

φt = Fext |∇φ| , (22)

where Fext is a smooth extension of the force F to
the entire domain Ω, or, alternatively, to a narrow
band around the evolving contour [55], and subject to
Fext(C) = F . For efficient techniques for constructing
extension velocities see [56].

This conventional framework is well suited for
two-region segmentation, where C divides the image
into an object and a background, but it cannot be
trivially extended for multi-region segmentation. Pre-
vious methods for multi-region segmentation, based
on the level set framework, require either managing
multiple level set functions to execute the multi-region
active contour evolution [36], [38], [41], or exploit level
functions specifically designed to describe multiple
evolving regions [16], [43].

Here, we present a new method for multi-region
active contour evolution, using a single level set
function and exploiting the Voronoi Implicit Interface
Method [44], [45], [48], that we describe in the next
section.

3.1 Description of the Voronoi Implicit Interface
Method

The Voronoi Implicit Interface Method (VIIM) [44]
was recently introduced for numerical solution of
interface propagation problems with arbitrary number
of phases (regions), arising in the area of computa-
tional fluid dynamics. In 2D, the interface between
the phases is a set of 1D curve segments, meeting at

tripple-junctions. Figure 2(a) demonstrates an exam-
ple of such an interface (the black solid curve), with
two triple-junctions with different intersection angles.
In 3D the interface is given by a set of 2D surface
segments.

The interface propagation is governed by the equa-
tion Ct = Fn. A single non-negative level set function
φ(x), x ∈ Rd is used to evolve C. This function is given
by an unsigned distance from the interface C. Hence,
the interface C is the zero level set of the function
φ(x), similar to the conventional level set framework

C = {x | φ(x) = 0} .

The level set function evolution is again governed by
the equation

φt = Fext |∇φ| , (23)

where Fext is the extension velocity, mentioned in the
previous section. Examples given in [44] include cur-
vature and mean curvature flows, as well as physical
simulations of the dynamics of dry foams.

For some small ε, observe the evolution of the ε-
level sets of φ

Cε =
{
x ∈ R2 | φ(x) = ε

}
. (24)

According to the comparison theorem, two evolving
ε-level sets will always encapsulate the evolving zero
level set they are adjacent to [44]. Moreover, these ε-
level sets of φ are necessarily simple curves. Thus,
their evolution is well defined in terms of the con-
ventional level set framework. The main observation
of [44] consists in the following: the evolving ε-level
sets of the function φ can be used to reconstruct the
evolving interface, which is assumed to lie at an equal
distance from the two ε-level sets adjacent to it. Thus,
the interface may be reconstructed from these new ε-
level sets Cε as follows.

1) Compute Voronoi regions of difference segments
of Cε in the narrow band {x|φ(x) < ε}.

2) Reconstruct the interface C from intersections of
these Voronoi regions.

In order to evolve the interface as described above,
the following three step-algorithm was suggested in
[44].

1) Evolve the level set function φ according to
Eq. (23), using a small time step dt.

2) Find the ε-level sets of the new function, and
reconstruct the interface C, as described above.
Update the level set function φ using the recon-
structed interface.

3) Update the propagation speed function F ; return
to Step 1.

Figure 2 illustrates different steps of the algorithms
and the contour obtained after one algorithm itera-
tion. We note that step 2 of the algorithm constrains
the regions {Ωi}Mi=1 so as to form a partition of the
domain, as is expected in segmentation models such
as the region competition model.
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Fig. 2. The VIIM contour evolution illustration, with Neumann boundary conditions. Left to right: original contour
C (shown in black) with ε-level sets (show in red); corresponding level set function φ(x, y); ε-level sets of φ(x, y)
and the evolved contour, at different stages of the evolution.

4 MULTI-REGION ACTIVE CONTOURS: THE
PROPOSED APPROACH

We propose to adapt the Voronoi Implicit Interface
Method, described above, to solve the multi-region
segmentation problem that was defined in Sect. 2. The
VIIM was formulated in terms of a general interface
velocity F ; thus, it is applicable to various interface
evolution problems which may be solved using the
level set approach. Specifically, the contour evolution
rule for both the region competition and the pairwise
dissimilarity models, discussed in Sect. (2), can be
written as

Ct =
∑

i∈N(x)

[
Fi(x) +

µ

2
F gaci (x)

]
ni. (25)

The force Fi in the above equation depends on the
chosen model: for the region competition model it is

Fi(x) = − logP (I(x)|αi) , x ∈ C, (26)

and for the pairwise dissimilarity model the force is

Fi(x) =

∫
Ωi

(w(y, x) + w(x, y)) dy, x ∈ C. (27)

The regularizing geodesic active contours force
F gaci (x) is given by

F gaci (x) = κig − 〈∇g,ni〉 , x ∈ C. (28)

To use the level set formulation, the contour ve-
locity has to be extended to the entire domain Ω (or
to a narrow band around the evolving interface) to
obtain Fext(x). Given this extension velocity, the level
set function is evolved according to the evolution rule
in Eq. (23). Extension of the regularization velocity to
the entire domain Ω is performed, for example, using
the standard definition of [4]

F gacext (x) = div
(
g(x)

∇φ
|∇φ|

)
. (29)

The suggested construction of the extension velocity
for the term

∑
i

Fi(C)ni is described in the following

section.

4.1 Extension velocity construction

Let us define by Cij a part of the contour C separating
two regions Ωi and Ωj . For each point x ∈ Ω, identify
the part of the contour Cij closest to x, as follows

d (x,Cij) < d (x,Ckl) , ∀k, l, (30)

where

d (x,Cik) = min
y∈Cik

‖x− y‖ (31)

is the minimal Euclidean distance between the point
x and any y ∈ Cik. Such a point x necessarily belongs
to either Ωi or Ωj . Following the notations used in
[44], [45], we denote the set of all points (x, y) ∈ Ω
satisfying Eq. (30) by the Voronoi region of the segment
Cij , Vor (Cij).

Using the above definition, the extension velocity
at x ∈ Ωi reads

Fext(x) = Fi(x)− Fj(x), x ∈ Vor (Cij) . (32)

Notice that for the two-region case, the above ex-
tension velocity produces the conventional evolution
rule, suggested, for instance, in [6] and in [49], up
to a sign change that follows from the fact that our
level set function is non-negative everywhere in the
domain Ω.

Note that in a previous paper [48], we suggested to
define this extension velocity by

Fext(x) = Fi(x), x ∈ Ωi. (33)

According to it, the level set function evolution in
each region Ωi depends on the statistics of this region
alone. In addition, Fext(x) defined as above, is smooth
within every region Ωi. The straightforward extension
of the contour velocity suggested in Eq. (32) may,
theoretically, produce velocity profile with disconti-
nuities at the boundaries of the Voronoi regions of
different contour segments. However, in practice this
new definition of extension velocity produces more
accurate region boundaries than the previous one (33),
as illustrated by the segmentation results shown in
Figure 3.
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Original image Final contour Mean intensity values Close-up view of the obtained contour

Fig. 3. Comparison of results produces using the proposed method with two extension velocities Fext described
in Sect. 4. Upper row: the original image (left), results obtained using the extension velocity suggested in this
paper. Bottom row: results obtained using the extension velocity suggested in [48].

Finally, to obtain the evolution rule for the level set
function φ(x) we combine Eq. (29) and Eq. (32)

φt(x) =

[
Fi(x)− Fj(x) + µdiv

(
g(x)

∇φ
|∇φ|

)]
|∇φ| ,

for x ∈ {Ωi ∩ Vor (Cij)} . (34)

With the above level set function evolution rule,
the proposed algorithm for multi-region segmentation
reads as follows. Define some initial contour C = C0,
and compute its corresponding unsigned distance
level set function φ(x). Repeat the following steps,
until convergence.

1) Compute the extension velocity in each region Ωi,
and evolve the level set function φ(x) according
to the evolution equation (34).

2) Extract the ε-level sets of the evolved level set
function. Extract the Voronoi regions of these ε-
level sets in the narrow band {x : φ(x) < ε}, and
reconstruct the evolved contour C as the col-
lection of the boundaries between these Voronoi
regions.

3) Perform re-distancing: re-calculate the unsigned
level set function φ(x) using the new contour C.
Return to Step 1.

4.2 Volumetric image segmentation

The above formulation can be easily extended to
segment volumetric data, such as video, medical
volumetric data (CT or MRI scans), etc. As in the
two-dimensional case, the segmentation problem is
formulated as a minimization of the energy functional

E(S) = Edata(S) + µEreg(S), (35)

where S is the set of intersecting two-dimensional
surface segments, defining boundaries of three-
dimensional regions. Different image appearance
models, discussed in Sect. 2.2, can be applied for

volume segmentation as is. The regularization energy
term is now given by

Ereg(S) =
1

2

∑
i

∮
Si

g(Si(u, v))da(u, v), (36)

where Si(u, v) : R2 → R3 is a parameterized two-
dimensional surface describing the boundary of the
region Ωi ∈ Ω, and da(u, v) = |Su×Sv|dudv is an area
element at the point Si(u, v) [35], [50]. For instance,
the 3D region competition model reads

E(S, {αi}) =
∑
i

∫
Ωi

− logP (I(x)|αi) dx

+
µ

2

∑
i

∮
Si

g(Si(u, v))da(u, v), (37)

where I(x) is now a volumetric image, defined on the
domain Ω ⊂ R3.

Here as well, we use the level set formulation to
evolve the surface towards minimum of E(S) above.
The surface S is represented implicitly as the zero
level set of the level set function φ : R3 →

{
R+ ∪ 0

}
,

S =
{
x ∈ R3 | φ(x) = 0

}
. (38)

The level set function evolution is performed using
the suggested multi-region framework, according to
the evolution rule in Eq. (34), where the forces Fi, ∀i,
are calculated as described in Eq. (26) or Eq. (27).

4.3 Implementation considerations
The level set function evolution is performed on a
fixed grid of size h, in 2D or 3D. In all our experi-
ments, the narrow band level set evolution technique
of [55] was used to reduce the computation complex-
ity. Both ε-level set extraction and level set function re-
initialization were performed with subpixel precision,
to obtain an accurate contour. The level set function
was re-initalized after each evolution step. Following
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[45], we set ε to be an integer multiple of the grid size
h, to ensure numerical convergence of the proposed
method. In our experiments, we used h = 1 and
ε = 3h.

Algorithm intialization In our experiments, we used
two types of initial contours. For the first, we used
multiple equally spaced circles, or rectangular grid
boundaries, defining the initial regions (see Figure 9).
For the second, the initial regions were obtained using
k-means or mean shift clustering. Note that the latter
initialization is naturally suited for the piecewise con-
stant segmentation model.

Discrete level set function evolution When using the
explicit forward time derivative to perform the level
set function evolution according to Eq. (34), the
geodesic active contour term imposes a constraint on
the time step required for stability. In our implementa-
tion, we combined an explicit forward time derivative
to perform the evolution according to the velocity
derived from the data term, with the unconditionally
stable semi-implicit LOD scheme [57], to perform the
geodesic active contour evolution, similar to [51].

Contour reconstruction from the ε-level sets Let us de-
note by Ciε the ε-level set of the evolved function φ(x)
in the region Ωi. The new contour C is reconstructed
by taking all points in the region {x ∈ Ω |φ(x) < ε},
that are equidistant from a pair of their closest ε-level
sets

C = { x | d(x,Ciε) = d(x,Cjε) ≤ d(x,Ckε ),

for some i, j, and any k 6= i, j } . (39)

The distances d(x,Ciε) are computed for each
level set Ciε and the image pixels in the region
{x ∈ Ω |φ(x) < ε} using the fast marching method of
[58].

Finally, we recompute the unsigned distance from
the new contour C, using the fast marching method.
To compute the distances with subpixel precision,
one may initialize the fast marching method using
the distances d(x,Ciε) computed at the previous step,
and the re-initilaization technique described in [59], or
calculate the distances to the new contour explicitly
[51]. In our experiments, explicit contour extraction
was performed only to visualize boundaries of the
obtained regions.

Region creation and destruction In the course of the
level set function evolution, regions may be created, or
may disappear as a consequence of the regularization.
However, the proposed framework does not allow
two adjacent regions to merge. To overcome a similar
problem, in [8] the authors suggested to merge pairs
of adjacent regions, if the merging decreased the
energy functional. In our experiments, we adopted
this approach and performed region merging after
each redistancing step.

However, evaluating the above test for every pair
of adjacent regions at each algorithm iteration may

be computationally demanding. Alternatively, region
merging can be performed using the following simple
heuristic approach: two regions Ωi and Ωj are merged
if they have sufficiently similar intensity statistics.
For the piecewise constant model, regions Ωi and Ωj
are merged when their corresponding mean intensity
values ci and cj are closer than some predefined
threshold Tc

‖ci − cj‖2 ≤ Tc. (40)

In the case of the general region competition model,
image intensity values in regions Ωi are described
by probability density functions pi(z) = p(z|Ωi). The
merging criterion can be based on the dissimilarity
between pairs of probability density functions, and
measured using the χ-squared distance, for instance,

d(pi, pj) =
1

2

∑
z(pi(z)− pj(z))2∑
z pi(z) +

∑
z pj(z)

≤ Tp. (41)

Other distance measures between distributions may
be used as well.

The two above criterions are well suited for appli-
cations where the required region similarity is known
in advance. In more complex scenarios, the energy
minimization criterion may be applied. Since there
is no equivalent simple region similarity criterion for
the pairwise dissimilarity models, for these models
the energy minimization or the heuristic merging
criterion given in Eq. (40) can be used.

We note that a more general model is one where
the number of regions is unbounded. For this model,
other region merging and also splitting methods can
be used to define additional, non-local, optimization
steps. We leave the discussion of alternative split and
merge steps in our model for future work.

Algorithm complexity In terms of memory consump-
tion, the proposed method requires additional space
of order of the number of image pixels. The computa-
tional complexity of the proposed approach is deter-
mined by the redistancing, extension velocity compu-
tation and region merging steps. Let us denote by n
the number of pixels in the narrow band around the
evolving contour, and by m the number of different
image regions detected at some algorithm iteration.
During the redistancing step, the new contour can
be obtained from ε-level sets in O(n log n) time, and
the distance function can be recomputed in O(n log n)
time, using the fast marching method. Thus, the total
complexity of the redistancing step is O(n log n).

The following components of the computation time
depend on the chosen model: the model parame-
ter update time, required for the region competition
model, the extension velocity computation, and region
merging. The model parameter update step, for the
piecewise constant case, or for the general intensity
distribution modelled using KDE, can be performed
incrementally, using only the pixels inside the Voronoi
regions of ε-level sets. For the Gaussian mixture

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2385708

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. , 2014 9

model, the update step requires computation over the
entire image domain.

The extension velocity Fext computation time, in the
simplest case of the piecewise linear model, is linear
in the number of the narrow band pixels, n, while
for the more complex pairwise dissimilarity model,
computation over the entire image domain may be
required. Note that this and the previous computation
time components are not specific to the proposed
method alone, since similar computation would be
required by any algorithm minimizing the energy
functionals (3) and (13), discussed in Section 2.

Region merging based on energy minimization can
be computationally demanding, and in general may
require multiple computations over the detected im-
age regions, after each algorithm iteration. When us-
ing the region competition model, the heuristic region
merging may be applied alternatively, to facilitate
the computation. It requires calculating m(m − 1)/2
dissimilarity values, according to Eq. (40), which may
be performed in O(m2) time, or Eq. (41), for which
the required number of operations is m2 multiplied
by the time it takes to evaluate a single pdf. This
brute-force implementation can be further improved
by merging only pairs of neighbouring regions, which
can be preformed in O(m) rather than O(m2) time.
Note that here we assume that m� |Ω| (the number
of image pixels), which makes this merging procedure
very efficient.

5 RESULTS AND DISCUSSION

In this section we present the segmentation results
obtained using the proposed method, combined with
different data energy terms described above. In most
of our experiments we used the natural images from
the Berkeley Segmentation Dataset (BSDS500) [25].
The proposed method was applied to color images,
in RGB or CIELAB colorspaces, with intensity values
normalized to the range [0, 1].

5.1 Image segmentation
Figure 4 presents a comparison of the proposed
method, the convex relaxation method of Chambolle
and Pock [19], and the graph-cut based approach
of [15]. The proposed method was applied with
the piecewise constant region competition model de-
scribed in Section 2.2, Eq. (6). [19] minimizes the
same energy functional, up to the regularization term,
which is given by the total contour length, while [15]
minimizes its discrete counterpart with an additional
label cost term. To make the proposed method and
[15] comparable in terms of the minimized energy
functional, we set the weight of this additional term
to zero, effectively obtaining the algorithm described
in [13]. Figure 5 presents the results obtained using
the proposed method and the algorithm of [19], to-
gether with the manual ”groundtruth” segmentation

provided for the BSDS500 [25]. For both [19] and [15],
we used the implementation provided by the authors,
and optimized the algorithm parameters to obtain
visually optimal results. The proposed method was
initalized using k-means clustering, and the algorithm
parameters were kept constant for the three images.
From examining the images in Figures 4 and 5, we
observe that the three methods indeed produce com-
parable results.

Figure 7 presents segmentation results, obtained for
images from the BSDS500 using the proposed method
with the region competition model. The proposed
method was applied with two variants of the region
competition model, that were described in Sect. 2.2,
and with the two region merging algorithms de-
scribed in the previous section. When applied with
the heuristic region merging algorithm, with rela-
tively low region similarity thresholds, the proposed
method produces very detailed segmentation results -
see the 2nd and the 4th columns in Figure 7. The level
of details in the obtained segmentation can be further
adjusted by varying the region similarity thresholds
Tc and Tp. When applied with region merging based
on energy minimization, our method produces results
that are less fragmented, and more similar to manual
semantic region labelling - see the 3rd and the 5th
columns in Figure 7.

Figure 8 presents more results obtained for images
from the BSDS500 using the proposed method, along-
side results obtained with [19] and [15]. The proposed
method was applied in both RGB and CIELAB col-
orspaces, using the same set of parameters; [19], [15]
were applied in RGB colorspace, where they obtained
visually optimal results. For the proposed method
to be able to detect thin image regions, such as the
wickerwork in the upper example, the images were
scaled to be twice their original size, that is 642× 962
or 962× 642 pixels, prior to the segmentation.

For the three images presented in Figure 8, we
also examined the computation time of the proposed
method, and compared it to [19], [15]. The proposed
method, [15] and [19] were terminated after 50, 20
and 250 iterations, respectively (chosen so that all
the algorithms would produce similar segmentation
results), or when less than 0.01% of all image pixels
were assigned new labels at a certain iteration. All
three implementations took several minutes on a lap-
top with an Intel Core i7 processor and 16 GB RAM.
The proposed method, applied with the piecewise
constant model and heuristic region merging, was
slightly faster than [19]. [15] showed best performance
in terms of computation time, terminating after a
couple of minutes, at the cost of some visible met-
rication errors, which can be noticed in Figure 8(f). It
is important to note that the proposed algorithm was
implemented in Matlab, without performance consid-
erations in mind, while [15] is a C based efficient
implementation. For [19], a Matlab implementation
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Original image Proposed method Result of [19] Result of [15]

Fig. 4. Segmentation result obtained with the proposed method, applied with the piecewise constant model, and
the results obtained with the algorithms of Chambolle and Pock [19] and Delong et al . [15].

Original image Proposed method Results of [19] Ground truth

Fig. 5. Comparison of the results obtained with the proposed method, applied with the piecewise constant model,
the method of Chambolle and Pock [19], and the manual ”ground truth” segmentation [25].

provided by the authors was used. Applying the
proposed method with the general region competition
model increases the computation time of the proposed
method, in accordance with the algorithm complexity
analysis presented above.

To perform quantitative evaluation of the proposed
method, we used the evaluation framework sug-
gested in [24], [25]. According to it, the detected
regions boundaries are compared to several manual
segmentations given for every image, producing a
precision-recall segmentation score. An F-measure is

then calculated as
(

2 · Precision ·Recall
Precision+Recall

)
. Higher F-

measure corresponds to better agreement with man-
ual segmentations. The region detection quality was
evaluated using the variation of information, the rand
index, and segmentation covering measures - for a
detailed description of each of these measures see [25].

Figure 6 presents a plot of the F-measure values ob-
tained using the proposed method with the piecewise
constant model for the test images from the BSDS500.
Different Precision − Recall pairs were obtained by
varying the weight of the regularization term µ. Ad-
ditional results shown in Figure 6 correspond to the
boundary detection algorithm of [25], and additional
segmentation methods discussed therein.

Tables 1 and 2 present region and boundary bench-
marks on the BSDS500. The learning approach of
Arbelaez et al. [25], whose parameters were optimized
over the training images from the BSDS500, and the
new spectral clustering method utilising multi-layer
affinities of Kim et al. [26], perform best among all
the compared methods. The proposed method, while
not as accurate as [25], [26], outperforms most of other
segmentation methods, including the mean shift and
the multiscale normalized cuts algorithms of [21], [22],
in terms of the F-measure. This is despite the fact that
it was applied using the very simple assumption of
piecewise intensity constancy in image regions.

Figure 9 presents the segmentation results obtained
using the proposed method for various initial con-
tours. For comparison, it also presents the results
obtained with [15] and [19], for some of the examined
contours. Both [15] and [19] were initialized using the
number of the regions defined by the initial contours,
and mean intensity values in these regions, and ap-
plied in the RGB colorspace, where they produced
optimal results. While the results of the proposed
method clearly depend on the initialization, our al-
gorithm produces reasonable segmentation results for
most types of initial contours. Note that [15], [19]
produce segmentation with the number of regions
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[F = 0.79] Human
F−index equal height contours
[F = 0.73] gPb−owt−ucm
[F = 0.71] gPb
[F = 0.64] Mean Shift (Comaniciu, Meer)
[F = 0.64] Normalized Cuts (Cour et al.)
[F = 0.61] Felzenszwalb, Huttenlocher
[F = 0.60] Canny
[F = 0.60] Canny−owt−ucm
[F = 0.65] Proposed method

Fig. 6. Boundary benchmarks on the BSDS500:
precision-recall plots and the best F-measures ob-
tained for different algorithms.

equal (or smaller, in case of [15]) to the number of the
initial regions. Thus, for too small or too large number
of initial contours, [15], [19] may produce sub-optimal
results, as can be observed in Figure 9 (g-l).

Figure 10 presents a comparison of the proposed
method, and the algorithm of Bertelli et al. [46]. Note
that [46] employ a preprocessing step, during which
the images are divided into superpixels, which are
then used to construct the final segmentation. Thus,
the quality of the final region boundaries, produced
by [46], strongly depends on the quality the super
pixel boundaries. The suggested method was applied
with the piecewise constant and the pairwise dissim-
ilarity models. Its segmentation results were compa-
rable, or more detailed than the results presented in
[46].

Figure 11 presents a comparison of the proposed
method, and the non-local active contours algorithm
of [47]. The suggested method was applied with the
piecewise constant model, and the pairwise dissimi-
larity model with the non-local energy measure (18)
of [47]. When applied with the piecewise constant
model, despite the simplicity of the latter, our algo-
rithm produced accurate segmentation results for both
test images, with tighter boundaries, as compared to
the results of [47]. When applied with the nonlocal
active contour model, our algorithm produced a more
fragmented segmentation, due the local similarity
measure utilized by this model.

ODS OIS AP

Our method 0.65 0.68 0.51

gPb-owt-ucm [25] 0.73 0.76 0.73
gPb [25] 0.71 0.74 0.65
Canny 0.60 0.63 0.58

Mean Shift [21] 0.64 0.68 0.56
NCuts [22] 0.64 0.68 0.45

Canny-owt-ucm [25] 0.60 0.64 0.58
Felz-Hutt [23] 0.61 0.64 0.56

FNCut [26] 0.67 0.71 0.44
fPb-owt-ucm [26] 0.69 0.71 0.62
cPb-owt-ucm [26] 0.72 0.75 0.73

TABLE 1
Boundary benchmarks on BSDS500. Shown are

F-measures obtained with a single optimal parameter
selection for all test images (ODS), optimal parameter
selection per image (OIS), and the average precision

(AP). Results in the upper row correspond to the
proposed method.

Covering PRI VI
ODS OIS Best ODS OIS ODS OIS

Our method 0.54 0.60 0.70 0.79 0.83 1.89 1.64

gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48
Canny-owt-ucm 0.49 0.55 0.66 0.79 0.83 2.19 1.89
Mean Shift [21] 0.54 0.58 0.66 0.79 0.81 1.85 1.64
Felz-Hutt [23] 0.52 0.57 0.69 0.80 0.82 2.21 1.87

NCuts [22] 0.45 0.53 0.67 0.78 0.80 2.23 1.89
FNCut 0.53 0.60 - 0.81 0.84 1.86 1.59

fPb-owt-ucm 0.58 0.63 - 0.82 0.85 1.70 1.50
cPb-owt-ucm 0.59 0.65 - 0.83 0.86 1.65 1.45

TABLE 2
Region benchmarks on BSDS500. Shown are the

Best covering (Covering), the Probabilistic Rand Index
(PRI), and the Variation of Information (VI) measures,
obtained with a single optimal parameter selection for
all test images (ODS), optimal parameter selection per
image (OIS), and the average precision (AP). Results
in the upper row correspond to the proposed method.

The results gPb-owt-ucm and Canny-owt-ucm
correspond to [25], and FNCut, fPb-owt-ucm,

cPb-owt-ucm - to [26].

5.2 Volume segmentation

We applied the proposed method to volume seg-
mentation on a simulated brain MRI scan from the
BrainWeb dataset1 [60]. The scan was generated using
the following parameters: T1 modality, 1 mm slice
thickness, 3% noise, calculated relative to the brightest
tissue, and 20% intensity non-uniformity.

Figure 12 presents the segmentation results ob-
tained for a single MRI slice using the piecewise con-
stant segmentation model, and an arbitrarily chosen
initial contour, shown in the left image. The algorithm
correctly detected the boundaries between the white

1. http://www.bic.mni.mcgill.ca/brainweb/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2385708

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. , 2014 12

(a) (b) (c) (d) (e)

Fig. 7. Segmentation results obtained using the proposed method with piecewise constant and general region
competition models. (a) Original image. (b, c) The piecewise constant model, with (b) heuristic region merging
with Tc = 0.05, and (c) region merging by energy minimization. (d, e) General region competition model, with
image intensity pdf modelled by 323-bin histogram, (d) heuristic region merging with Tp = 0.3, and (e) region
merging by energy minimization.

and the gray matter, while missing some of the bound-
aries between the gray matter and the cerebrospinal
fluid (CSF), due to small contrast changes and the
fact that the initial contour is located far from these
boundaries.

Figure 13 presents the segmentation results ob-
tained using the 3D version of the proposed method,
with the piecewise constant segmentation model. The
initial segmentation was given by 6 small spheres,
arbitrarily placed inside the gray matter outer bound-
ary. Figure 14 presents the comparison of the detected
white matter region and the ground truth segmenta-
tion. Total of 93.27% of the white matter pixels were
correctly classified by our method, producing Dice
coefficient DC = 93.37 [61]. Mislabeling occurs at the

pixels where there is no significant contrast change
between the white matter and the adjacent tissues,
and where our algorithm, based on piecewise constant
model, is indeed more likely to fail.

We plan to extend the proposed method for color
volumetric image and video segmentation. For medi-
cal image segmentation, we expect that incorporating
prior knowledge about intensity statistics of different
tissues will help performing accurate segmentation
targeted for more specific tasks, for instance detection
of boundaries between pre-specified set of regions.
Further evaluation of the proposed method for 3D
segmentation, and its application for other types of
volumetric data analysis are left for future research.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Additional segmentation results obtained using the proposed method with piecewise constant and general
region competition models, using heuristic merging algorithm with Tc = 0.05 and Tc = 0.05, and results of [15],
[19]. (a) Original image; (b, d) piecewise constant model, applied in (b) RGB and (d) CIELAB colorspaces; (c,
e) general region competition model, with image intensity pdf modelled using [53], applied in (c) RGB and (e)
CIELAB colorspaces; (f) results of [15]; (g) results of [19].

5.3 Algorithm limitations

Initalization and parameter selection As illustrated by
Figure 9, the segmentation results are initialization-
dependent. Furthermore, parameter tuning may be
required to adapt the proposed method to different
energy functionals.

Time complexity As mentioned in Section 4.3, calcu-
lating the evolution force for the the pairwise model
and the region-competition model with general prob-
ability density functions is computationally expen-
sive. For the test image presented above, between
50 and 200 iterations were required for convergence.
Another time consuming part of the algorithm is
region merging based on energy minimization, as
opposed to heuristic region merging. According to our
experiments, in many cases the region competition
model with heuristic region merging is sufficient to
obtain good segmentation results, and may be used
to facilitate the computation.

5.4 Additional energy models

The proposed method is not limited to the two seg-
mentation models described above. It can be easily
extended for texture image segmentation, using the
image gradient magnitude, Gabor features, textons,
etc., instead of, or in addition to the color features.
Our method can also be applied with various edge

alignment functionals, for instance the following func-
tional, suggested in [62], [57], [63],

E(C) =

∮
C

〈∇I(C(s)),n(s)〉 ds, (42)

or with a different class of segmentation models for
active contours, suggested in [7], [27], [29]. In these
papers, the energy functional is designed to measure
the discrepancy between empirical distributions of
image features inside and outside the segmenting
contour. Evaluation and comparison of these and
additional multi-region segmentation models will be
a subject of future research.

6 CONCLUSIONS

We addressed the problem of segmenting an image
into an arbitrary number of regions using a novel
multi-region active contours formulation. The pro-
posed framework treats multiple regions in a uni-
form manner by utilising the new Voronoi implicit
interface method, while avoiding metrication errors.
It can be applied with various region and boundary
appearance priors, for both 2D and volumetric image
segmentation, for which it produces accurate and
detailed segmentation results.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 9. Segmentation results obtained for various initial contours, with the piecewise constant model and heuristic
region merging algorithm. (a, c, e) Initial contours, and (b, d, f) the corresponding segmented images, colored
according to mean intensity values in the obtained regions. Results of [15] (g, i, k) and [19] (h, j, l), initialized
using the circular initial regions, shown in columns (a, c, e) above, in the second and the fourth rows. See the
accompanying text for details.
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(a) (b) (c) (d)

Fig. 10. Comparison of the proposed method and [46]. (a) The original image. (b) Results obtained with our
method using the piecewise constant model. (c) Results obtained with our method using the pairwise similarity
model (13) and the similarity measure (16). (d) Results reported in [46].

(a) (b) (c) (d)

Fig. 11. Comparison of the proposed method (piecewise constant model, heuristic region merging) and the
non-local active contour algorithm of [47]. (a) Original image with initial contours. (b) Final contour obtained with
the piecewise constant model. (c) Final contour obtained with the nonlocal pairwise model (13) with the similarity
measure (18). (d) Results reported in [47].
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(a) (b) (c) (d)

Fig. 12. Segmentation of a single MRI scan slice from the BrainWeb dataset. (a) Initial contour. (b) Final contour,
(c) A closeup on the final contour. (d) The obtained regions, colored according to their mean grayscale value.

(a) (b) (c) (d)

Left: two MRI slices with initial contour. Right: three slices (upper row) and the obtained segmentation (bottom row).

Exterior boundary of the white matter. Left to right: sagittal, axial, and coronal view.

Fig. 13. Segmentation of an MRI scan from the BrainWeb dataset.
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Fig. 14. Comparison with the ground-truth segmentation of the white matter, from the BrainWeb dataset. Top
row - original MRI image slices, bottom row - segmentation overlap, where correctly segmented pixels are shown
with dark gray, pixels mistakenly labeled as the white matter region are shown with black, and white matter pixels
not found by our method are shown with white.

APPENDIX

Steepest descend step minimizing the data term
Edata(C) in Eq. (13) is given by

Ct = −δEdata
δC

= −
∑
i

[∫
Ωi

w(x1, x)dx1 +

∫
Ωi

w(x, x2)dx2

]
ni,

where x ∈ C, and ni is the normal to C at x.
Proof: Consider a single term of the sum in

Eq. (13)

Ei(C(t)) =

∫
Ωi(t)

∫
Ωi(t)

w(x1, x2)dx1dx2. (43)

where C denotes the boundary of Ωi. We may re-write
the above functional using two auxiliary variables
τ(t) = t and t′(t) = t

Ei(C(t)) =

∫
Ωi(τ(t))

∫
Ωi(t′(t))

w(x1, x2)dx1dx2. (44)

The variation of Ei(C) with respect to t is given by

δEi
δC

=
δEi
δC(τ)

∂τ

∂t
+

δEi
δC(t′)

∂t′

∂t
. (45)

To calculate the above two functional derivatives,
let us define F (x2, t

′) =

∫
Ωi(t′(t))

w(x1, x2)dx1. Thus,

the functional Ei(C) becomes

Ei =

∫
Ωi(τ(t))

F (x2, t
′)dx2. (46)

It was shown in [8] that the first variation of Ei as
above, with respect to C(τ), is

δEi
δC(τ)

=
δ

δC(τ)

{∫
Ωi(τ(t))

F (x2, t
′)dx2

}
= −F (x2, t

′)ni

= −

[∫
Ωi(t′(t))

w(x1, x)dx1

]
ni. (47)

Similarly, the first variation of Ei with respect to
δC(t′) is given by

δEi
δC(t′)

= −

[∫
Ωi(τ(t))

w(x, x2)dx2

]
ni. (48)

Now, we can substitute the two last results in
Eq. (45). We thus obtain

δEi
δC

= −
[∫

Ωi

w(x1, x)dx1 +

∫
Ωi

w(x, x2)dx2

]
ni

= −
[∫

Ωi

(w(x1, x) + w(x, x1)) dx1

]
ni. (49)

Finally, the first variation of the data term Edata(C)
given in Eq. (13) is

δEdata
δC

= −
∑

i∈N(C)

[∫
Ωi

(w(x1, x) + w(x, x1)) dx1

]
ni,

(50)

which concludes the proof.
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