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ABSTRACT
Automatic tissue classification from medical images is an important step in pathology detection and
diagnosis. Here, we deal with mammography images and present a novel supervised deep learning-
based framework for region classification into semantically coherent tissues. The proposed method uses
Convolutional Neural Network (CNN) to learn discriminative features automatically. We overcome the
difficulty involved in a medium-size database by training the CNN in an overlapping patch-wise manner.
In order to accelerate the pixel-wise automatic class prediction, we use convolutional layers instead of the
classical fully connected layers. This approach results in significantly faster computation, while preserving
the classification accuracy. The proposed method was tested on annotated mammography images and
demonstrates promising image segmentation and tissue classification results.
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1. Introduction

The most common cancer in women is breast cancer. It is the
second leading cause of death among women. Worldwide re-
search efforts have been devoted to try and find a cure for this
disease or any sort of early detection. Medical imaging of the
breast by X-rays, also known as the mammography, is often
used for diagnosis that leads to better treatment. Automatic
classification of such images could play a key role in efficiently
monitoring large populations. Tumours in different types of tis-
sues are characterised differently, and require different treat-
ment procedures. Therefore, automatic analysis of breast tissues
as captured by mammograms, and accurate segmentation into
the known classes is vital for early detection that could take part
of the load from radiologists.

Deep Neural Networks (DNNs) have become popular in un-
derstanding natural images as well as medical ones. Recent
papers demonstrate that in many recognition tasks, features
that were automatically extracted by DNN outperform heuris-
tically crafted descriptors, see, for example, Farabet et al. (2013),
Sermanet et al. (2013). Deep learning methods applied to med-
ical imaging provide state-of-the-art results, see, for example,
Cireşan et al. (2013). In Petersen et al. (2014), the authors describe
a problem and its DNN solution, which is closely related to the
one we deal with in this paper. The authors learn descriptive
features fromunlabeledmammograms, anduse themas an input
to a simple classifier that segments the image into different
type of tissues, and thereby estimates various characteristics.
The framework we propose is different. Here, we present a novel
supervised Convolutional Neural Network (CNN)-based method
for breast tissue classification frommammogram images.

2. Problem formulation

Given a digital mammography image, we wish to associate each
of its pixels with one of the four following classes: pectoral
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muscle, fibroglandular tissue, nipple, and the general breast
tissue, which includes fatty tissue and skin. Our data-set consists
of 40 digital mammograms of mediolateral oblique (MLO) view,
manually segmented by an expert into the four regions. An
illustration of a typical manual segmentation is given in Figure
1. While the images include a significant portion of background
pixels, these pixels are easily detected in a pre-processing step,
by thresholding image intensity values with zero threshold.

2.1. Breast tissue classificationwith DNN

The ability to process large data-sets allowed DNNs to
produce state-of-the-art results when applied to computer vi-
sion, text understanding and speech recognition benchmarks.
DNNs can provide discriminative image representations, some-
times referred to as features, by successive application of linear
filters, non-linear activation functions, normalisation, and pool-
ing operations, thus, avoiding the need to design such features
manually.

The proposed DNN classifier, applied to raw image pixels,
provides the probability of each pixel to belong to one of the
four classes described above: Pr(class(p) = k), k = 0, 1, 2, 3. The
DNN is applied in a patch-wise manner: to classify the pixel p,
the DNN is fed with a square image patch of sizew ×w, centred
at p. In our experiments, we set w = 61 pixels. The patches
are pre-processed prior to training and classification, to have a
zero mean, by subtracting from them the mean of all patches
in the training set. The classification accuracy is acquired by a
multinomial logistic loss function.

The motivation for using patch-wise classification is twofold.
In medical imaging applications in general, data, manually an-
notated by experts, is rarely available. This is in contrast to gen-
eral computer vision tasks, such as natural image classification,
segmentation and object boundary detection, for which there
exist data-sets with thousands and even millions of annotated
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Figure 1. Manual segmentation. (a), (d) Original mammography images. (b), (e) Manual labelling into the pectoral muscle (yellow), fibroglandular tissue (cyan), nipple
(bordo), breast tissue (light blue), and background (dark blue). (c), (f) Manual labelling superimposed over the mammography image.

Table 1. Initial deep neural network architecture.

Layer 1 2 3 4 5 6 7 – Output

Stage conv+relu+max conv+relu+max conv+relu+max dropout full+relu full+relu full
# Channels 16 16 16 16 128 16 4
Filter size 7 × 7 5 × 5 5 × 5 – – – –
Pooling size 3 × 3 3 × 3 3 × 3 – – – –
Pooling stride 2 2 2 – – – –
Dropout factor – – – 0.5 – – –
Spatial input size 61 × 61 27 × 27 11 × 11 3 × 3 3 × 3 1 × 1 1 × 1

Notes: The first three stages are comprised of convolutional layers, followed by ReLU andmax pooling layers. Dropout layer with dropout factor of 0.5 is placed before the
first fully connected layer, which is followed by two additional fully connected layers. The last fully connected layer acts as a pixel classifier.

Table 2. Conversion of fully connected layers into convolutional layers, for fast full image pixel classification.

Layer 5 6 7 5 6 7

Stage full+relu full conv+relu conv
# Channels 128 16 4 128 16 4
Filter size – – – 3 × 3 128 × 1 × 1 16 × 1 × 1
Pooling size – – – ⇒ – – –
Pooling stride – – – – – –
Dropout factor – – – – – –
Spatial input size 3 × 3 1 × 1 1 × 1 Depends on the network input size

Figure 2. DNN output post-processing example. (a) Original image, (b) manual segmentation, (c) DNN output, (d) post-processed DNN output. Colour coding as in
Figure 1.

examples, see for example Russakovsky et al. (2015). Since a
typical DNNhas between tens of thousands tomillions of param-
eters, it requires a large amount ofmanually annotated examples
to properly train all the parameters and avoid overfitting to an
insufficient training data. Therefore, by working with separate,
possibly overlapping image patches, we can obtain a training
set large enough to overcome these limitations – in our experi-
ments, we used training sets of approximately 8 · 105 training

examples. In addition, we expect that large enough patches
would capture a sufficient part of the local information required
to correctly classify pixels belonging to different breast tissues.

By applying the DNN to separate image patches, we loose
the spatial dependency between neighbouring patch labels,
as well as information about the spatial pixel location. Clearly,
Pr(class(p)) and Pr(class(q)) are dependent for neighbouring
patches p and q. Although, using overlapping patches implicitly
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imposes some smoothness in the output label space, it is not
trivial to add such information to the proposed patch-based
classifier. Alternative solutions include switching to recurrent
neural networks, or changing the network, so that it would
act on larger image patches and produce an image of class
probabilities, as opposed to a single class probability vector
produced by the proposed network. The latter would allow to
condition the class probabilities of neighbouring pixels, and
improve the classification results. Such architectures were suc-
cessfully deployed to perform dense natural image labelling in
Farabet et al. (2013), Long et al. (2015), Chen et al. (2014). We
plan to explore this line of thought in the future research.

In contrast, the spatial pixel location information is easier to
include into the proposed network, for instance, in the form of
x and y pixel coordinates, given that the images are identically
aligned, similarly to Bar et al. (2015). To normalise the location
information across images of breasts of different sizes, the x
pixel coordinate is divided by the x coordinate of the rightmost
image pixel which does not belong to the background. The y
coordinate is normalised to the range [0,1]. The coordinates can
then serve as an additional input for the proposed network, and
added after the first fully connected layer by concatenating them
to the first fully connected layer output, and then transferring
the results to the next fully connected layer. While this simple
approach allows us to incorporate the spatial information in our
learning scheme, it produces equivalent or inferior results than
only intensity-based classification – see the results in Table 3.
Thus, more research is required to devise a correct way to use
the spatial information.

2.2. DNN architecture

The architecture of the proposed network is summarised in
Table 1. It consists of three stages of convolutional layers, ReLU
(rectified linear unit) activation layers, and max pooling lay-
ers, followed by three fully connected layers. To prevent over-
fitting, a dropout layer (Srivastava et al. 2014) with dropout
factor of 0.5 was added between the convolutional and the
fully connected layers. The image intensity and the normalised
coordinate information can be combined after the first fully
connected layer in the following manner: the two normalised
patch centre coordinates and the 128-dimensional fifth layer
output are concatenated into a 130-dimensional vector, passed
to the second fully connected layer.

2.3. Fast full image pixel classification

During the classification stage, the networkmust be applied sep-
arately to all the overlapping image patches. This introduces a
significant computation overhead, since both the convolutional
layers, and the fully connected layers are applied multiple times
to overlapping regions. Inspired by Sermanet et al. (2013) and
Long et al. (2015), we converted the proposed classification
network into a fully convolutional network. That is, we converted
the fully connected layers #5, 6, 7, into convolutional layers, as
shown in Table 2. The new network is able to output dense
predictions for input images of arbitrary sizes. Specifically, for
the 829 × 640 images we used in our experiments, the new
network output was 97 × 73. To obtain dense prediction for the

whole image, we adopt the shift-and-stitchmethod of Sermanet
et al. (2013).

In the proposed network, the outputs were downsampled
by a factor of 8 with respect to inputs. Hence, by feeding the
new network shifted versions of the input, by i ∈ {0, 1, . . . , 7}
pixels right and j ∈ {0, 1, . . . , 7} pixels down, and interlacing the
obtained 64 output images, we obtain a dense prediction for
the whole image. The classification time of the new network is
approximately 1.8 seconds as opposed to 114 seconds for the
per-patch neural network application. Conversion to the fully
connected network requires the following adjustment. Previ-
ously, themean of all training examples was subtracted from the
network input during the training and the classification. Now,
a single value is subtracted from the training examples at the
training stage, and from the entire image at the classification
stage, allowing a full-image classification. In our experiments,
this change had a minor effect on the classification accuracy.
We used a single mean intensity value of the pixels in the mean
image, computed over all the training examples.

2.4. Classifier output post-processing

The raw DNN classifier output obtained for one of the images in
our data-set is shown in Figure 2(c). Since the proposed patch-
based classifier cannot incorporate constraints in relative spatial
locationsof different tissues, itmayproduce fragmented regions,
as shown in Figure 2(c). Therefore, during the post-processing
step, as dictated by the physiological breast structure, (i) the
interior of the large pectoral muscle region adjacent to origin of
the image is filled with its corresponding label, while small un-
connected components of the pectoral muscle region are given
the label of the general breast tissue; (ii) the outer boundary
of the fibrogladular tissue region is morpholocally filled to con-
tain thefibrogladular tissue label, and its connected components
smaller than some predefined threshold, are removed; (iii) a
single connected component of the nipple region, closest to
the centre of the image, is retained.

3. Segmentation results

3.1. Pre-processing

In our experiments, we used a data-set with 40 manually
segmented MLO views. All images were aligned so that the
pectoralmuscle appearedon the left sideof the image, for spatial
consistency. A leave-one-subject-out cross validation procedure
was used.We considered different 40 image setswith 39 training
images, and the remaining image was used to evaluate the
classification performance. The results presented below were
averaged over all 40 possible training and test image combi-
nations. Approximately 800,000 patches were extracted to form
the training set, containing an equal number of patches centred
at pixels belonging to the four different regions.

3.2. Network training

The DNN was trained by stochastic gradient descend with
momentum. We used minibatches of 256 image patches, and
learning rate of 10−3, reducedby a factor of 10 twice, after 30,000
and 60,000 training iterations (approximately 10 and 20 epochs).
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Figure 3. Segmentation results. (a) Original image. (b), (c) Manual labels. (d), (e) Labels obtained using the proposed method. Colour coding is as in Figure 1.
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Table 3. Average Dice coefficients obtained using the proposed methods for different breast tissues, and average coefficients over the four tissues.

Pectoral muscle Fibroglandular tissue Nipple Breast tissue (fat, skin) Average over four tissues

Raw DNN output 0.78 0.60 0.47 0.80 0.66
Post-processed DNN output 0.85 0.61 0.56 0.81 0.71
Raw DNN output, with (x , y) coordinates 0.78 0.60 0.56 0.77 0.68
Post-processed, with (x , y) coordinates 0.79 0.61 0.57 0.77 0.69

Weusedmomentum0.9,weightdecay5·10−4, and initialised the
net weights randomly, using normal distributionwith zeromean
and 0.01 and 0.1 variances for the convolutional and the fully
connected layers, respectively. During testing, the dropout layer
was removed, and the outputs of the layer #3 weremultiplied by
a factor of 0.5.

3.3. Quantitative evaluation

The quality of the proposed classification method was evalu-
ated using the Dice coefficient (DC), which denotes the volume
overlap between two sets of pixels A and B

DC = 2|A ∩ B|
|A| + |B| .

Dice coefficients were computed for each of the four regions,
and averaged over the 40 test images. The results are presented
in Table 3. The pectoral muscle has the highest DC, of 0.85,
the fibrogladular tissue and the nipple have DC equal to 0.61
and 0.56, respectively. Adding spatial information in the form
of normalised patch centre coordinates does not improve the
segmentation accuracy, contrary to our expectations. The latter
is probably due to large variations in the breast spatial structure
and size, and the correct way to use the spatial information is not
yet clear.

For comparison, in a related work, Oliver et al. (2014) pre-
sented an algorithm for automatic segmentation of digitised
mammography images into breast, pectoral muscle and back-
ground. They reported a DC of 0.83 for the pectoral muscle
region, obtained using intensity, texture and atlas (spatial)
information. Without the atlas information, best pectoral muscle
DC reported in Oliver et al. (2014) was 0.54 – significantly lower
than the result obtained using the proposed method.

The segmentation results obtained using the proposed
method are presented in Figure 3. We notice that the pectoral
muscle is detected with relatively high accuracy. The fibrogladu-
lar tissue and the nipple are detected with a lower accuracy.
It could be explained by the high appearance variability across
different regions. In our future research, we will explore how
the classification can be improved using a larger annotated
data-set, together with breast structure priors and smart data
normalisation.

4. Conclusions

We proposed a new deep learning-based framework for tissue
classification with application to the problem of mammogram
image segmentation. The proposed method deploys CNN to
learn discriminative features automatically during the classifier
training. We train the CNN using the patch-wise approach; this

ensures sufficient number of training examples. To speed up
pixel-wise class prediction, we use convolutional layers instead
of the fully connected ones. This approach yields nearly two
orders of magnitude faster computation, while maintaining the
sameclassification accuracy. In the future,weplanon integrating
spatial smoothness into the classification process, and further
improve the classification rates. To that end, we plan to extend
the proposed framework and explore the use of recurrent neural
networks instead of the fully convolutional set-up.

Acknowledgements

We would like to thank Menashe-Meni Amran for his help with the image
annotation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Advanced European Community’s FP7-ERC
program [grant number 267414].

References

Bar Y, Diamant I, Wolf L, Greenspan H. 2015. Chest pathology detection using
deep learningwith non-medical training. In: IEEE International Symposium
on Biomedical Imaging (ISBI). New York (NY).

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2014. Semantic
image segmentation with deep convolutional nets and fully connected
CRFs. arXiv preprint arXiv:14127062.
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