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Hamiltonian Operator for Spectral Shape
Analysis

Yoni Choukroun, Alon Shtern, Alex Bronstein, and Ron Kimmel

Abstract—Many shape analysis methods treat the geometry of an object as a metric space that can be captured by the
Laplace-Beltrami operator. In this paper, we propose to adapt the classical Hamiltonian operator from quantum mechanics to the field
of shape analysis. To this end, we study the addition of a potential function to the Laplacian as a generator for dual spaces in which
shape processing is performed. We present general optimization approaches for solving variational problems involving the basis
defined by the Hamiltonian using perturbation theory for its eigenvectors. The suggested operator is shown to produce better functional
spaces to operate with, as demonstrated on different shape analysis tasks.

Index Terms—Hamiltonian, shape analysis, mesh representation, compressed manifold modes, shape matching.
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1 INTRODUCTION

The field of shape analysis has been evolving rapidly
during the last decades. The constant increase in computing
power allowed image and shape understanding algorithms
to efficiently handle difficult problems that could not have
been practically addressed in the past. A large set of theoret-
ical tools from metric and differential geometry, and spectral
analysis has been imported and translated into action within
the shape understanding arena. Among the numerous ways
of analyzing shapes, a common one is to embed them into a
different space where they can be processed more efficiently.

1.1 Related efforts

Elad and Kimmel [1] introduced a method for analyzing
surfaces based on embedding the intrinsic geometry of a
given shape into a Euclidean space, extending previous
efforts of [2]. Their key idea was to consider a shape as a
metric space, whose metric structure is defined by geodesic
distances between pairs of points on the shape. Two non-
rigid shapes are compared by first having their respective
geometric structures mapped into a low-dimensional Eu-
clidean space using multidimensional scaling (MDS) [3], and
then comparing rigidly the resulting images, also called
canonical forms.

Memoli and Sapiro [4] proposed a metric framework
for non-rigid shape comparison based on the Gromov-
Hausdorff distance that was suggested by Gromov as a the-
oretical tool to quantify disimilarity between metric spaces.
Using the Gromov-Hausdorff formalism, the distance be-
tween two shapes is defined by matching pairwise distances
on the shapes. However, the Gromov-Hausdorff distance
is difficult to compute when treated in a straightforward
manner. To overcome this difficulty, Bronstein et al. [5] pro-
posed an efficient numerical solver based on a continuous
optimization problem, known as Generalized MDS (GMDS).
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In the past decade, the Laplace-Beltrami operator (LBO)
– the extension of the Laplacian to non-Euclidean mani-
folds, has become growingly popular. Its properties have
been well studied in differential geometry and it was used
extensively in computer graphics. The LBO can be found
in countless applications such as mesh filtering [6], mesh
compression [7], shape retrieval [8], to name just a few.
It has been widely used in shape matching where several
approaches treat the correspondence problem by compar-
ing isometric invariant pointwise descriptors between the
two shapes. For example, the Global Point Signature (GPS)
[9], the Heat Kernel Signature (HKS) [10] and the Wave
Kernel Signature (WKS) [11], all use the eigenfunctions and
eigenvalues of the LBO to compute local shape descriptors.
Matching only signatures at a small set of points, the cor-
respondence between the points on the two shapes can be
found. These points can serve as anchors and interpolated
for the entire shape [12] where refinement of the basis can
be performed to produce precise dense correspondence [13],
[14], [15].

Recently, learning based approaches [16], [17], [18] have
also become highly popular in the shape matching arena.

The use of the basis defined by the LBO is in many
senses a natural choice for surfaces analysis. It was chosen in
the functional map framework [13] because of its compact-
ness, stability, and invariance to isometries. Subsequently,
it was proven to be optimal [19] for representing smooth
functions on the surface. In an attempt to overcome the
topological sensitivity of the LBO and the non-local support
of its eigenfunctions, compressed eigenfunctions have been
adapted from mathematical physics to shape analysis [20],
[21]. Here, we try to find a richer family of basis functions
that are based on intrinsic properties that can go beyond
the geometry of the shape. Exploring a similar goal, [22]
combined geometric and photometric information within a
unified metric for shape retrieval.

Related to the proposed method, [23] used artificial
surface textures on shapes to define elliptic operators that
give birth to a new family of diffusion distances. Along
a similar line of thought, [24] designed a new family of
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eigen-vibrations using extrinsic curvatures and deforma-
tion energies. These methods involved applications where
specific information such as photometry or curvature can
be incorporated to the Laplacian. Recently, [25] extended
the framework suggested in this paper by introducing a
localized basis orthogonal to the first LBO eigenfunctions.

We suggest to further explore these ideas [23], [24] and
axiomatically construct a so-called potential that is added
to the Laplace Beltrami operator. The perturbation of the
Laplacian allows us to control the vibration modes on the
manifold in order to improve performance compared to
those obtained by the classical Laplace operator.

1.2 Contributions

The main contribution of this paper is the exploration of
the Hamiltonian operator on manifolds. We study spectral
properties of the operator and the impact of an additional
potential function to the Laplacian for shape analysis ap-
plications. The properties of the Hamiltonian allow it to
be efficiently utilized by many spectral-based methods. The
potential part can lead to a more descriptive operator when
treated as a truncated basis generator. Modulated harmonics
on the surface are obtained by treating different regions of
interest as different values of the potential. We show that
using the resulting basis can improve the performance of
classical spectral shape analysis methods. The rest of the
paper is organized as follows: in Section 2, we propose to
study the Hamiltonian on manifolds from the variational
calculus point of view with motivation from quantum me-
chanics. We prove optimality properties of its eigenspace,
characterize the associated diffusion process, the resulting
nodal sets, introduce a discretization method and analyze
the robustness of the operator.

In Section 3, we propose a global optimization frame-
work for variational problems involving the basis defined
by the Hamiltonian. We provide an approach for computing
derivatives with respect to the potential based on eigenvec-
tors perturbation theory. We demonstrate the effectiveness
of the framework on the task of data representation.

In Section 4, we review recent improvement of the com-
putation of the compressed modes [26] that make use of
the decomposition of the Hamiltonian. Finally, in Section 5
we present properties of the proposed basis that make it
a better alternative for the task of shape matching where
priors can be inserted through the potential in order to
improve performance.

2 HAMILTONIAN OPERATOR

2.1 The Laplace Beltrami Operator

Consider a parametrized surfaceM : Ω ⊂ R2 → R3 with a
metric tensor (gij). The space of square-integrable functions
on M is denoted by L2(M) = {f : M → R|

∫
M f2da <

∞} with the standard inner product 〈f, g〉M =
∫
M fg da

, where da is the area element induced by the Riemannian
metric 〈·, ·〉g . The Laplace Beltrami Operator [27] acting on
a scalar function f ∈ L2(M) is defined as

∆Mf ≡ divM(∇Mf) =
1
√
g

∑
ij

∂i(
√
ggij∂jf), (1)

where g is the determinant of the metric matrix and (gij) =
(gij)

−1 is the inverse metric. If M is a domain in the (flat)
Euclidean plane, the metric matrix is generally the identity
matrix and the LBO reduces to the well-known Laplacian

∆f =
∂2f

∂x2
+
∂2f

∂y2
. (2)

The LBO is self-adjoint and thus admits a spectral de-
composition {λi, φi}, where λi ∈ R and 0 = λ1 ≤ λ2 ≤ ... ↑
∞, such that,

−∆Mφi = λiφi,

〈φi, φj〉M = δij .
(3)

with δij the Kronecker delta. In case M has boundary, we
add homogeneous Neumann boundary condition

〈∇Mφi, n̂〉 = 0 on ∂M, (4)

where n̂ is the normal vector to the boundary ∂M.
The LBO eigendecomposition can be extracted from the

Dirichlet energy minimization

min
φi

i∑
j=1

∫
M
‖∇Mφj‖2g da,

s.t. 〈φi, φj〉M = δij .

(5)

Here, each ordered eigenfunction composing the basis on
the manifold corresponds to the function with the smallest
possible energy (smoothest) that is orthogonal to all the
previous ones. Therefore, the LBO eigenfunctions can be
seen as an extension of the Fourier harmonics in Euclidean
spaces to manifolds and are often referred to as Manifold
Harmonics [6].

2.2 Hamiltonian
A Hamiltonian operator H on a manifold M acting on a
scalar function f ∈ L2(M), is an elliptic operator of the
form

Hf = −∆Mf + V f, (6)

where V : M→ R is a real-valued scalar function. It plays
a fundamental role in the field of quantum mechanics ap-
pearing in the famous Schrödinger equation that describes
the wave motion of a particle with mass m under potential
V ,

i~
∂Ψ

∂t
=
−~2

2m
∆Ψ + VΨ, (7)

where ~ is the Planck’s constant and Ψ(x, t) represents
the wave function of the particle such that |Ψ(x, t)|2 is
interpreted as the probability distribution of finding the
particle at a given position x at time t.
The Schrödinger equation can be analyzed via perturbation
theory by solving the spectral decomposition {ψi, Ei}∞i=0 of
the Hamiltonian

Hψi = Eiψi (8)

also known as the time-independent Schrödinger equation,
where Ei is the eigenenergy of a particle at the stationary
eigenstate ψi.

Since the potential V is a diagonal operator, the
Hamiltonian is self-adjoint as a sum of two self-
adjoint operators and its eigenfunctions form a complete
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orthonormal basis on the manifold M. As a generalization
of the regular Laplacian, its spectral theory can be derived
almost straightforwardly from that of the latter. Classical
examples of the influence of potential functions in a one-
dimensional Euclidean domain are depicted in Figure 1.

Fig. 1. Influence of different potentials on the harmonics in one dimen-
sion.

2.3 Variational principle
Let us consider the following variational problem

min
ψi

i∑
j=1

∫
M

(
‖∇Mψj‖2g + V ψ2

j

)
da,

s.t. 〈ψi, ψj〉M = δij ,

(9)

whose the Euler-Lagrange equation defines the eigendecom-
position of the Hamiltonian defined in (8).

The basis defined by the Hamiltonian operator corre-
sponds to the orthogonal harmonics modulated by the po-
tential function. The potential defines the trade-off between
the orientation and the compactness of the basis and its
global support. Larger values of the potential will enforce
smooth solutions that concentrate on the low potential
regions, while smaller ones will give solutions that better
minimize the total energy at the expense of more extended
wave functions.

2.4 Finite step potential
The time-independent Schrödinger equation can yield a
rather complicated problem to solve analytically, even in
one dimension. Let us consider a system with an ideal
step potential in one dimension [28]. We need to solve
the differential equation HΨ = EΨ, with E denoting the
energy of the particle, and V the Heaviside function with
step of magnitude V0 > 0, at point x0, given by

V (x) =

{
0, x < x0

V0, otherwise. (10)

The step divides the space in two constant-potential regions.
At the zero potential region, the particle is free to move
and the harmonic solutions are known. In the high potential
region, on the other hand, for E < V0, the solution is a de-
caying exponentially, meaning that the particle cannot pass
the potential barrier and is reflected according to classical
physics. If E > V0, the solution is also harmonic, which

means there is a probability for the particle to penetrate into
the effective potential region with a different energy than
that of particles in the zero potential region. We illustrate
this effect in Figure 2 by numerically computing the eigen-
vectors of the LBO and the Hamiltonian with a potential V
defined on a human body surface.

Fig. 2. Absolute values of the 1st, 2nd, 5th, 7th, 8th and 11th eigen-
functions {φi} of the LBO (top). Absolute values of the corresponding
eigenfunctions {ψi} of the Hamiltonian with a step-function potential
V (bottom left), with step value V0 = 0.01. For this potential, the first
eigenstate ψi with energy Ei greater than V0 is the eighth. As analyzed,
the eigenfunctions corresponding to lower eigenenergies are restricted
to the region with V = 0, while the higher ones can have effective values
(and oscillate) at the V = V0 > 0 region. An evanescent wave can be
observed at the seventh eigenstate.

Therefore, the potential energy can be tuned to enforce
localization of the basis at the expense of loss of smoothness.

Theorem 1. Let {φi, λi}∞i=1 and {ψi, Ei}∞i=1 be the spectral
decompositions of the Laplacian, and the Hamiltonian, respec-
tively. Then, V ≥ 0 everywhere on the manifold implies that
the eigenvalues Ei satisfy

maxM(V ) + λi ≥ Ei ≥ minM(V ) + λi ≥ 0.

Proof. According to the Courant-Fischer min-max theorem,
we have

Ei = max
Λ

codimΛ=i

min
ϕi∈Λ
ϕi 6=0

{∫
M(‖∇Mϕi‖2g + V ϕ2

i )da∫
M ϕ2

i da

}

≥ max
Λ

codimΛ=i

min
ϕi∈Λ
ϕi 6=0

{∫
M(‖∇Mϕi‖2g + minM(V )ϕ2

i )da∫
M ϕ2

i da

}
= λi + minM(V ). (11)

Similarly,

Ei ≤ max
Λ

codimΛ=i

min
ϕi∈Λ
ϕi 6=0

{∫
M(‖∇Mϕi‖2g + maxM(V )ϕ2

i )da∫
M ϕ2

i da

}
= λi + maxM(V ). (12)

2

Since the family of eigenvalues of the Helmholtz equation
(3) consist of a diverging sequence (λn ∝ n as n→∞ [29]),
there exists an i such that Ei ≥ λi+ minM(V ) ≥ maxM(V )
and the trade-off between local-compact and global support
of the basis elements can be controlled by the potential en-
ergy. Then, we can estimate the magnitude of the potential
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required in order to allow for oscillations outside the regions
where the potential vanishes.

Given a scalar µ ∈ R+ we can define the Hamiltonian as

Hµ = −∆M + µV, (13)

where µ controls the resistance to diffusion induced by the
potential. Let λi and Ei be the i-th eigenvalue of the LBO
and Hamiltonian, respectively. We seek a constant µ such
that Ei > maxM(µV ) so the particle can penetrate the high
potential region. Considering the potential as small pertur-
bation of the Laplacian, up to first order, the eigenenergies
are defined as Ei ≈ λi + µ〈φi, V φi〉M. In order to contain
the basis support at most until the i-th eigenfunction, µmust
satisfy

µ <
λi

maxM(V )− 〈φi, V φi〉M
. (14)

According to its potential energy, the basis can then provide
supervised multiresolution analysis on the manifold by
containing the first eigenfunctions and allow global analysis
for the following.

2.5 Optimality of the Hamiltonian eigenspace
Let us consider a function f ∈ L2(M). We define the
representation residual function as

‖rn‖2M =

∥∥∥∥∥f −
n∑
i=1

〈f, φi〉Mφi

∥∥∥∥∥
2

M

=

∥∥∥∥∥
∞∑

i=n+1

〈f, φi〉Mφi

∥∥∥∥∥
2

M

=
∞∑

i=n+1

〈f, φi〉2M,

(15)

when the second and the third relations are obtained from
the completeness and orthonormality of the basis, respec-
tively. Defining ‖∇gf‖2M =

∫
M ‖∇gf‖

2
gda, we know that

‖∇gf‖2M + ‖
√
V f‖2M =

∫
M

(−∆Mf + V f)f da

=
∞∑
i=1

∫
M

(〈f, ψi〉MEiψi)f da =
∞∑
i=1

Ei〈f, ψi〉2M

≥
∞∑

i=n+1

Ei〈f, ψi〉2M ≥ En+1

∞∑
i=n+1

〈f, ψi〉2M.

(16)

Thus, from (15) and (16) we obtain

‖rn‖2M =

∥∥∥∥∥f −
n∑
i=1

〈f, ψi〉Mψi

∥∥∥∥∥
2

M

≤ ‖∇gf‖
2
M + ‖

√
V f‖2M

En+1
.

(17)
Recall that for V = 0 we return to the LBO case. Among
the numerous reasons that motivated the selection of the
Laplacian for shape analysis, a major one is its efficiency in
representing functions with bounded gradient magnitude.
This result was subsequently proved to be optimal for
representing functions with bounded gradient magnitude
over surfaces in [19], which says that there exists no other
basis with better representation error for all possible L2(M)
functions.

In case of the Hamiltonian, the Dirichlet energy is cou-
pled with the potential energy. Thus the Hamiltonian oper-
ator advocates measuring smoothness differently for differ-
ent regions of the domain where smoothness remains a less

important factor than avoiding vibrations in high potential
areas. This is a useful property to exploit in different shape
analysis scenarios.

Next, we show that the Hamiltonian is optimal in ap-
proximating functions with both bounded gradient and low
values in high potential areas.

Theorem 2. Let 0 ≤ α < 1. There is no integer n and no
sequence {ψi}∞i=0 of linearly independent functions in L2(M)
such that∥∥∥∥∥f −

n∑
i=1

〈f, ψi〉Mψi

∥∥∥∥∥
2

M

≤
α
(
‖∇gf‖2M + ‖

√
V f‖2M

)
En+1

∀f. (18)

The proof of Theorem 2 is given in the Appendix.

2.6 Diffusion process
Let us be given a Riemannian manifold M. A natural ex-
tension of the heat equation governing the diffusion process
with the new operator given a potential V , can be written
as{

∂tu(x, t) = Hu(x, t) = ∆Mu(x, t)− V (x)u(x, t)

u(x, 0) = u0(x),
(19)

with appropriate boundary conditions. The solutions of (19)
have the form [23]

u(x, t) =

∫
M
u0(y)K(x, y, t)da(y), (20)

that represents the diffusion in time of heat on the
manifold M with potential V , where K(x, y, t) =∑
i e
−Eitψi(x)ψi(y). We refer to K(x, y, t) as the heat kernel.

A standard proof is given in the Appendix.
According to the Feynman-Kac formula [30], the solution

of the diffusion process is expressed in terms of the Wiener
process,

u(x, t) = E
(
u0(Xt)exp

( ∫ t

0
V (Xτ )dτ

)
|Xt = x

)
. (21)

In the Laplacian case, the initial value u0(x) is carried
over random paths in time, while the expected value of
the stochastic process is equal to the solution u(x, t). For
V > 0, the diffusion spreads according to the potential
on the manifold, when the transported value is modulated
exponentially by the potential V , diffusing anisotropically
to low potential regions, as shown in Figure 3.

2.7 Nodal sets
An interesting property of the Laplacian is the relation
between its eigenfunctions, the number of connected nodal
(zero) sets, and the number of complementary regions they
define. Given an eigenfunction ψi : M → R, a nodal set
is defined as the set of points at which the eigenfunction
values are zero. That is,

N (ψi) = {x ∈M|ψi(x) = 0}. (22)

The Nodal Theorem [31] states that the i-th eigenfunction of
the LBO can split M to at most i connected sub-domains.
In other words, the zero set of the i-th eigenfunction can
separate the manifold into at most i connected components.
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V

Fig. 3. Heat diffusion with a delta function at the centaur’s head as
initial condition. The diffusion is derived from the LBO (top) and the
Hamiltonian (bottom) for different values of t. The potential V used
in this example is the geodesic distance from the front left leg. A
signature extracted from a diffusion process using the Hamiltonian is
more descriptive and in this case allows to resolve ambiguities due to
symmetry.

V

V
Fig. 4. Nodal domains obtained from the nodal sets of the Hamiltonian
N (ψi)(second and third columns) and the LBO N (φi) (fourth and fifth
columns) for different nearly isometric shapes. We used two different
potentials V that are depicted in the first column. One can observe the
segmentation induced by the nodal sets of the Hamiltonian.

Proposition 1. Given the self-adjoint Hamiltonian operator H
on M, with arbitrary boundary conditions; if its eigenfunctions
are ordered according to increasing eigenvalues, then, the nodal
set of the i-th eigenfunction divides the domain into no more than
i connected sub-domains.

The proof is essentially the same as that of the Laplacian
case. See [31] Vol.1 Sec. VI.6 for a proof.

As shown in Figure 2, the Hamiltonian eigenfunctions
are tuned by the potential. Thus, shape segmentation can be
obtained by separating the surface according to the induced
nodal sets as described in [32]. Given a potential V defined
on the surface, a semantically meaningful segmentation can
be induced by the nodal domains of the resulting eigen-
functions, as presented in Figure 4. One can observe that
the nodal set is determined by the selected potential. The
potential can be derived from the natural texture or albedo
of the given shape, or any other intrinsic or extrinsic quan-
tity as will be exemplified for other tasks in the reminder of
this paper.

2.8 Discretization
In the discrete setting, we consider a triangular mesh M in
R3 with the associated space of functions that are contin-

uous and linear in every triangle. According to the Finite
Element Method (FEM) [33] , the solution of the Hamilto-
nian eigenvalue problem (8) can be computed by imposing
that the equation Hf = Ef is satisfied in a weak sense.
Since the Hamiltonian is a linear operator we have

〈Hf,ϕj〉M = 〈−∆Mf, ϕj〉M + 〈V f, ϕj〉M, (23)

where ϕj denote the Lagrange basis of piecewiselin-
ear hat-functions on M . The matrix representation of
〈−∆Mf, ϕj〉M and λ〈f, ϕj〉M with respect to the Lagrange
basis are well known [34] and define the stiffness matrix W
and the mass matrix A with the entries

Wij = 〈∇ϕi,∇ϕj〉M and Aij = 〈ϕi, ϕj〉M. (24)

Thus,

〈V f, ϕj〉M =
∑
T∈M
〈V f, ϕj〉T

=
∑
T∈M

∑
i

fi〈V ϕi, ϕj〉T

=
∑
T∈M

∑
i

∑
k

fiVk〈ϕkϕi, ϕj〉T = AV f.

(25)

The first equality is obtained by discretizing the the bilinear
form 〈·, ·〉M by splitting the integrals into a sum over the tri-
angles T of M . The last equality is obtained by representing
the potential function V as a diagonal matrix V according
to the Lagrange basis functions. The discretization of the
eigenvalue problem (8) is defined by finding all pairs {E,ψ}
such that

Hψ = Wψ +AV ψ = (W +AV )ψ = EAψ. (26)

Efficient solution methods can be found in [6]. Among the
possible explicit representations of the matrices A and W ,
we use here the cotangent formula [34], [35] where the
stiffness matrix is defined as

Wij =

{
−
∑
j 6=iWij , i = j, (i, j) ∈ Ni

(cotαij + cotβij)/2, i 6= j, (i, j) ∈ Ni,
(27)

with Ni = {j : (i, j) ∈ Γ}, where Γ is the set of edges of
the triangulated surface interpreted as a graph and αij , βij
denote the angles ∠ikj and ∠jhi of the triangles sharing
the edge ij. The mass matrix is replaced by a diagonal
lumped mass matrix of the area of local mixed Voronoi cells
about each vertex mi [35]. The manifold inner product is
discretized as 〈f, g〉A = fTAg. Since V only modifies the
diagonal of W , our operator remains a sparse matrix with
the same effective entries, and thus, there is no increase in
the computational cost of the generalized eigendecomposi-
tion compared to that of the LBO.

2.9 Robustness to noise
As a generalization of the Laplacian, the Hamiltonian ex-
hibits similar robustness to noise. Consider the Hamiltonian
matrix H = A−1(W + AV ) with V the potential. Then, the
perturbed Hamiltonian has the form H̃ = Ã−1(W̃ + ÃṼ ).
Let us define δA = |A − Ã| and δW = |(W − W̃ ) + (AV −
ÃṼ )|. Based on perturbation theory [36], and up to second-
order corrections, the i-th eigenfunction ψ̃i of H̃ has the
form

ψ̃i = ψi(1−
ψTi δAψi

2
) +

∑
k 6=i

ψTi (δW − EiδA)ψk
Ei − Ek

ψk, (28)
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Fig. 5. Robustness to noise of the Hamiltonian. First eigenfunctions ψi

of the Hamiltonian under potential V (top). First eigenfunctions ψ̃i of the
Hamiltonian subject to Gaussian noise in positions of the vertices and
the potential (middle). First eigenfunctions ψ̃i of the Hamiltonian subject
topological noise (bottom).

with ψi and Ei being respectively the i-th eigenfunction
and eigenvalue of the unperturbed Hamiltonian. Assuming
uniformly distributed random noise on the mesh, the eigen-
functions of the regular Laplacian may present smaller dis-
tortion to noise than the Hamiltonian since the perturbation
is amplified by area and potential distortions. Still, in case
of potential with small values the distortion is insignificant.
In Figure 5, we present the original surface and its noisy
version in which vertex positions have been corrupted by
additive Gaussian noise with σ2

x = 20% of the mean edge
length. The potential is also modified by adding a Gaussian
noise with σ2

V = 20% of the initial variance of the potential.
The construction of the Laplacian depends crucially on the
mesh connectivity making it sensitive to topological noise
such as holes and part removal that can be found in many
depth acquisition scenarios. The compact support of the
basis elements of the Hamiltonian makes it robust to noise
compared to the basis elements that are generated by the
Laplacian. We illustrate the robustness property in Figure
5 where 30% of the surface area was removed due to
topological noise in the form of small holes.

3 OPTIMIZATION OF THE POTENTIAL

One natural problem emerging when working with the
Hamiltonian is the ability to define an optimal potential
function for a specific task. The choice of the potential
is application dependent but can be represented through
minimization problem generically defined as

min
V

D(X,V )

s.t. V ∈ Rn,
(29)

where D(X,V ) denotes the data term depending on the
data matrix X and the vector V defining the diagonal
potential matrix. Regularization terms can be further be
added. If the analytical solution remains complex, a com-
mon approach is to minimize the goal function with an
optimization algorithm involving the gradient of the goal
function with respect to the potential. In this section we
propose an optimization framework based on perturbation
theory of the eigenvectors where optimal potential is ob-
tained. To that end, we need to derive the gradient∇VD for
a given objective D.

Here we will consider the problem of data representation
using the discrete basis of the Hamiltonian referred to as
Ψk(V ) = Ψk ∈ Rn×k representing the k eigenvectors of
the Hamiltonian such that ΨT

kAΨk = Ik. The discretized
minimization problem is defined as

min
V

‖ΨkΨT
kAX −X‖2A

s.t. V ∈ Rn,
(30)

with k < n and ‖ · ‖2A =< ·, · >A the discrete manifold
inner product. The objective defines the representation error
of the data X in the subspace spanned by the columns of
Ψk and in the sense of the Frobenius norm on the manifold
‖ · ‖A = ‖A 1

2 · ‖F . For a general orthonormal matrix Ψk,
the problem is equivalent to Principal Component Analysis
(PCA). We can straightforwardly obtain that

L = ‖ΨkΨT
kAX −X‖2A

= trace
(
(ΨkΨT

kAX −X)TA(ΨkΨT
kAX −X)

)
= trace

(
XTAX

)
+ trace

(
XTAΨkΨT

kAΨkΨT
kAX

)
− 2trace

(
XTAΨkΨT

kAX
)

= −trace
(
ΨkΨT

kAXX
TA
)

+ trace
(
XAXT

)
.

(31)

Thus, the differential dL of the loss function L with respect
to V is obtained by

dL = −dtrace
(
ΨkΨT

kAXX
TA
)

= −trace
(
dΨkΨT

kAXX
TA
)
− trace

(
ΨkdΨT

kAXX
TA
)

= −2trace
(
ΨT
kAXX

TAdΨk

)
.

(32)
It remains to derive the differential of the Hamiltonian
eigenvectors. Let us consider the full matrix of eigenvectors
Ψn ∈ Rn×n, the n × n diagonal matrix of eigenenergies
[Λ]ii = λi and the discrete Hamiltonian operator H . The
eigenvalue decomposition problem is given by HΨn =
(W + Adiag(V ))Ψn = AΨnΛ. Thus, the differential of the
spectral decomposition problem is given by

dHΨn +HdΨn = A
(
dΨnΛ + ΨndΛ

)
. (33)

Multiplying by ΨT
n on the left side and denoting dΨn =

ΨnC [37] with C ∈ Rn×n, we have

ΨT
ndHΨn + ΨT

nHΨnC = ΨT
nAΨnCΛ + ΨT

nAΨndΛ

ΨT
ndHΨn + ΛC = CΛ + dΛ,

(34)

since ΨT
nAΨn = In. We readily obtain that the off diagonal

elements of the matrix C can be defined by

Cij =
(Ψi)T dHΨj

λj − λi
,∀i 6= j. (35)
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Here Ψj represents the j-th column of the matrix of eigen-
vectors. The diagonal elements of C are defined by the
following

(Ψn + dΨn)TA(Ψn + dΨn) = I

ΨT
nAΨn + ΨT

nAdΨn + dΨT
nAΨn + dΨT

nAdΨn = I

I + ΨT
nAΨnC + CTΨT

nAΨn + CTΨT
nAΨnC = I

C + CT + CTC = 0.

(36)

The diagonal elements are then defined by 2Cii +∑n
k=1 C

2
ki = 0. Since second order elements are negligi-

ble, we have Cii = 0. We obtain that dΨn = ΨnC =
Ψn(ΨT

ndHΨn)�B, with� denoting the Hadamard product
and the matrix B defined as

Bij =


1

λj−λi
, i 6= j

0 , i = j.
(37)

The selection of the first k eigenvectors dΨk are obtained
by multiplying dΨn by the truncated identity matrix Z =
In×k. The differential is now known and can be plugged
into (32) in order to extract dH , that is:

dL = −2trace
(
ΨT
kAXX

TAdΨk

)
= −2trace

(
ΨT
kAXX

TAΨnCZ
)

= −2trace
(
ΨT
kAXX

TAΨn

(
ΨT
ndHΨn �B

)
Z
)

= −2trace
(
Ψn

(
ZΨT

kAXX
TAΨn

)
�BΨT

ndH
)

= 〈
(
− 2
(
Ψn

(
ZΨT

kAXX
TAΨn

)
�BΨT

n

)T
, dH〉.

(38)

The passage in the fourth line stems from the equivalence
trace(A(B � C)) = trace((A � CT )B). Since dH = d(W +
Adiag(V )) = Adiag(dV ), we obtain finally

∇V L = diag
(
− 2
(
Ψn

(
ZΨT

kXX
TΨn

)
�BΨT

nA
))
. (39)

Two problems arise from the suggested scheme. First,
the high computational cost of a full (sparse) matrix di-
agonalization. Second, the matrix C remains undefined
when eigenvectors have non-trivial multiplicities. The first
problem can be relaxed by approximating the matrix dΨ
with less eigenvectors. This is especially justified for distant
indices, where the eigenenergies are well separated and
the corresponding elements of matrix B become negligible.
Also, the data can be projected onto the LBO basis so the
solution complexity remains constant with the size of the
mesh. Even if the second problem has been treated in [37],
it seems that lack of smoothness at isolated points is not
critical for computation and convergence can be obtained
by resorting to a sub-gradient approach. The alternative
opted for here is to stabilize the matrix B in order to avoid
exploding gradients. We use the approximation

Bij ≈
1

(|λj − λi|+ ε)(sign(λj − λi))
, (40)

where the sign function is not vanishing.
In the following experiments we allowed negative poten-

tial for performance consideration only, since the potential
is defined over the whole codomain R. Also, for physically
interpretable solutions we enforced positive potential by
using quadratic function V 2. The extension of the derivation
is straightforward but decreased the performance since it is
more restrictive.

3.1 Experimental Evaluation

As a toy experiment, we propose to find the best potential
for the representation of a function in the one dimensional
Euclidean domain. Given a function f ∈ Rn, we seek for
the best potential minimizing ‖ΨkΨT

k f − f‖22. We com-
pare in Figure 6 the reconstruction performance on a one
dimensional linear function with the Laplacian and the
Hamiltonian built from the optimized potential.

Fig. 6. Reconstruction of a linear function using the Laplacian and the
Hamiltonian constructed with the proposed framework. 15 eigenvectors
were used in this experiment. Observe that the potential is high close to
the boundary to reduce the representation error.

In Figure 7, we propose to reconstruct the matrix of
coordinates of a mesh so the data matrix is defined by
X = (x, y, z) ∈ Rn×3. The experiments were conducted
using the quasi-Newton method with initial zero poten-
tial, with the first-order constrained minimization algorithm
implemented within MATLAB’s Optimization Toolbox.The
constant ε is fixed to 10−6.

V LBO Hamiltonian

Fig. 7. Potential function defined on the original mesh (left), recon-
struction of the mesh coordinates with 50 eigenvectors using the LBO
(middle) and the Hamiltonian constructed with the proposed method
(right). Blue and red colors represent negative and positive values
respectively. The Hamiltonian is able to focus on sharp regions of
the mesh designated by the blue regions of the potential for a better
reconstruction (fingers). The errors are 0.0015 and 0.00061 for the LBO
and the Hamiltonian respectively.

An important application related to data representation
is spectral mesh compression. [7] proposed to project the
coordinates functions of the mesh onto the LBO eigenfunc-
tions in order to encode the mesh geometry via the first
coefficients only. Since most of the function energy is gen-
erally contained in the first coefficients, the reconstruction
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distortion is low, up to fine details related to higher frequen-
cies. Since matrix decomposition is an expensive operation,
they suggested to segment the shape into smaller parts that
can be processed separately. By sending the mesh topology
(triangles) separately, the combinatorial graph Laplacian is
built on the decoder side and the signal can be reconstructed
with the received coefficients. We suggest to apply this idea
to our basis which potential V is obtained by the proposed
optimization framework. However, one major drawback is
that we need to encode the potential as well as the coeffi-
cients. Also, some methods use the ordering of the vertices
in order to encode information [38]. Here we suggest to
reorder the vertices such that the vertex with the smallest
potential is be assigned the index 1 and the vertex with
the largest potential is be assigned the index n. Thus no
encoding of the permutation is needed. By using a fixed
quantized potential defined as

Ṽ = diag(1, ..., n), (41)

the decoder simply applies L + αṼ + β in order to obtain
the Hamiltonian basis. Here α and β are the regression
coefficients minimizing ‖αṼ +β−V ‖22 that are also encoded.
To keep the eigendecomposition feasible, we decompose the
shape into segments as proposed in [7]. Thus the computa-
tion time scales linearly with the number of fixed sized seg-
mented parts. We present spectral compression performance
compared to the LBO in Figure 8.

Fig. 8. Geometry compression performance comparison between the
Laplacian (MHB), the proposed projected operator (H), and the optimal
Hamiltonian (H opt) using the proposed framework for the Fandisk (6475
vertices), and Centaur (15768 vertices) models. The optimal Hamilto-
nian performance are presented without encoding of the potential itself.

4 COMPRESSED MANIFOLD MODES

[26] proposed a a novel method to create a set of localized
eigenfunctions in Euclidean domains. To that end, they
modified the construction of standard differential operators
by adding an L1 regularization term to the variational

Iteration 1 Iteration 10 Iteration 15 Iteration 20

Fig. 9. First eigenfunction of the Hand model obtained iteratively with
the proposed IRLS framework.

leading to the decomposition of the operator. The resulting
eigenfunctions were called compressed modes and were
shown to be compactly supported [39] . [20] extended this
construction to manifolds, suggesting the following discrete
L1 regularization problem

min
Φ

trace(ΦTWΦ) + µ‖Φ‖1

s.t. ΦTAΦ = I.
(42)

with the parameter µ that controls the localization of the
basis. Proposed solutions require the use of expensive op-
timization techniques [40] based on ADMM and proximal
operators, also unstable over nearly isometric shapes [20].

The latter optimization problem (42) can be written as an
Hamiltonian eigendecomposition problem [21]

min
Φ

trace(ΦTWΦ) + µ trace(ΦTAViΦ)

s.t. ΦTAΦ = I,
(43)

where Vi is the diagonal matrix operator defining the poten-
tial that corresponds to the i-th eigenvector that localizes the
support of φi in low-potential areas. Thus, every eigenvector
has a different potential defining it. The potential is defined
iteratively using a re-weighted least squares scheme

Vi =
1

2|φi|
, (44)

ensuring that the minimizers of (42) and (43) coincide.
Interestingly, the potential here is defined as a function
of the eigenfunction, namely Vi = Vi(φi). The potential
and the resulting eigenstate are then intrinsically linked,
meaning that the potential is influenced by the state of the
particle itself. Consequently, a perturbation of the potential
enforces perturbation of the eigenfunction and vice versa
until reaching steady state.

Note that since we are interested in a φi vanishing every-
where except some local support, the potential will grow to
infinity at many points on the manifold. This phenomenon
can be countered by adding a small regularization constant
to the denominator (which is equivalent to smoothing of
the L1 norm) or capping the values of Vi. While such a
growth increases the condition number of the Hamiltonian,
the lower part of the spectrum, in which we are generally
interested, remains unaffected. The operator is never in-
verted, hence, the growth of Vi does not introduce numerical
instabilities. Figure 9 shows the iterative refinement of the
eigenfunction.
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We formulate the compressed manifold modes problem
as

min
φi

φT
i Hiφi + β

∑
j<i

‖φT
j Aφi‖22

s.t. φT
i Aφi = 1,

(45)

with Hi = W + µAVi and where β is a sufficiently large
constant such that the third term guarantees that the i-
th mode φi is A-orthogonal to the previously computed
modes φj , j < i. Here, orthogonality is only required for
the first few eigenvectors, which are unaffected even by very
large values of the potential. Observe that albeit non-convex,
the problem has a closed form global solution, that is the
smallest generalized eigenvector φi of

(Hi + Zi)φi = λiAφi (46)

with

Zi = UiU
T
i = βA

∑
j<i

φjφ
T
j

A.
For small number of compressed modes, Zi is a low rank
matrix and finding the smallest generalized eigenvector can
be solved efficiently since the involved matrix is the sum of
a sparse and a low-rank matrix.

Several numerical eigendecomposition implementations
use the Arnoldi iteration algorithm. In our matrix decom-
position problem, the core operation is the multiplication by
the inverse of the matrix with a vector, operation that cannot
be solved straightforwardly. Also, shifting the matrix with
maximum eigenvalue in order to get the required minimum
eigenvalue using the power method is too unstable since
it depends on the gap of the first eigenvalues, which is
generally tight. In our configuration the Woodbury identity
[41]

(Hi +UiU
T
i )−1 = H−1

i −H
−1
i Ui(I +UT

i H
−1
i Ui)

−1UT
i H

−1
i

can be used to compute efficiently the vector multiplication
with the inverse of the matrix as a cascade of sparse and
low-rank systems as follows:

Algorithm 1 Computation of (Hi + Zi)y = x

1: Solve the sparse system Hiy1 = x
2: Compute the low rank multiplication
3: y2 = Ui

(
(I + UT

i H
−1
i Ui)

−1(UT
i y1)

)
4: Solve the sparse system Hiy3 = y2

5: y = y1 − y3

Unlike solutions of the inconsistently discretized prob-
lem (42), the basis obtained with the proposed Hamiltonian
framework is more robust under various discretizations
(order and localization of the eigenfunctions) and can be
computed at a fraction of the computational cost as pre-
sented in Figure 10 where the discrete Laplacian has been
simulated as suggested in [40].

Lasso minimization of an aggregation of the L2 and L1

norms is a convex problem (typically, even a strictly convex
one) which due to its lack of smoothness is usually solved
using proximal descent methods. Our setting is different,
as we have a non-convex problem due to the orthogonality
constraints. Our initial setting for the potential is always
Vi = A where A is the mass matrix, which yields efficient

Mesh size n ×10
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Fig. 10. Runtimes of Neumann et al. and the proposed framework on
meshes of varying size (number of vertices n) and number of eigenvec-
tors k. Averages and standard deviations are presented over 10 runs.
Same stopping criteria were applied to all methods.

convergence and meaningful localized modes. The frame-
work is presented in Algorithm 2. Recently, [42] assessed the
efficiency of the suggested method compared to the ADMM
approach.

Algorithm 2 IRLS CMM
Input: k,W,A
Output: {φi}ki=1

1: U0 ← ∅
2: for i = 1...k do
3: V ← A
4: while convergence rate > εr do
5: Obtain φi from eq. 46 using Alg. 0

6: V ← diag
(
2
√
ε+ φ2

i

)−1

7: Ui ← [Ui−1, βAΦi]

5 SHAPE MATCHING

The task of matching pairs of shapes lies at the core of many
shape analysis tasks and plays a central role in operations
such as 3D alignment and shape reconstruction. While rigid
shape matching has been well studied in the literature, non-
rigid correspondence remains a difficult task even for nearly
isometric surfaces. When dealing with rigid objects, it is
sufficient to find the rotation and translation that aligns one
shape to the other [43]. Therefore, the rigid matching prob-
lem amounts to determining only six degrees of freedom.
At the other end, non-rigid matching generally requires
dealing with many more degrees of freedom. Since the LBO
is invariant to isometric deformations, it has been used
extensively to aid the solution of correspondence problem.
Several properties of the Hamiltonian operator make it a
better choice for this task compared to its zero-potential
particular case that is the LBO.
Invariance. The Laplace-Beltrami Operator is defined in
terms of the metric tensor which is invariant to isometries.
For a potential function defined intrinsically, the resulting
Hamiltonian is also isometry-invariant.
Compactness. Compactness means that scalar functions on
a shape should be well approximated by using only a
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small number of basis elements. From Theorem 2 and as
a generalization of the Laplacian, the global support and
compactness hold for a bounded (low) potential.
Descriptiveness. The LBO eigenvalues are related to fre-
quency. Similarly, eigenenergies of the Hamiltonian relate
to the number of oscillations on the manifold. Theorem
1 demonstrates that the modes corresponding to small
eigenvalues of the Hamiltonian defined with a positive
potential, encapsulate higher frequencies, even when local-
ized, compared to the modes of the regular LBO. At the
other end, highly oscillating eigenfunctions can be used
to represent fine details of the shape that can be crucial
for shape matching. Also, the potential enforces different
oscillations in different regions on the manifold, allowing for
better discrimination of similar areas and disambiguation of
intrinsic symmetries with asymmetric potential.
Stability. Deformations of non-rigid shapes and articulated
objects can stretch the surface. In such cases, the LBO
eigendecomposition of the two shapes will be different.
We could compensate for such local metric distortions by
carefully designing a potential. Assigning high potential to
strongly distorted regions would lead to lower values of
the eigenfunctions in those areas (9). Such a potential will
reduce the discrepancy between corresponding eigenfunc-
tions at least for the lower eigenergies, as shown via the
functional maps representations [13] in Figure 11. In order to
simulate such a potential, let us defineAM (mi) andAN (ni),
the area at vertex mi on mesh M and ni on the second
mesh N respectively and τ : M → N a bijection between
two (discretized) surfaces M and N . Then, we define the
potential V at vertex mi = τ−1(ni) as

V (mi) = max

{
AM (mi)

AN (ni)
,
AN (ni)

AM (mi)

}
. (47)

(a) Nearly isometric shapes

(b) LBO (c) Hamiltonian

Fig. 11. Two nearly isometric meshes with high potential (hot colors) in
large distortion regions (a), functional maps matrix C of the LBO (b) and
the Hamiltonian (c).

Among the few stable intrinsic invariants that can be
extracted from the geometry, we will use the stable first

eigenfunctions of the LBO and geodesic distances. Addi-
tional non necessarily intrinsic information such as photo-
metric properties or even extrinsic shape properties such
as principal curvatures [24] can also be integrated into the
potential field.

5.1 Experimental Evaluation

We tested the proposed basis and compared its matching
performances to that the LBO basis as applied to pairs of
triangulated meshes of shapes from the TOSCA dataset [44]
and the SCAPE dataset [45]. The TOSCA data set contains
densely sampled synthetic human and animal surfaces,
divided into several classes with given ground-truth point-
to-point correspondences between the shapes within each
class. The SCAPE data set contains scans of real human
bodies in different poses. The evaluation method used
is described in [46] where the distortion curves describe
the percentage of surface points falling within a relative
geodesic distance from what is assumed to be their true
locations. Symmetries were not allowed in all evaluations.
Note that we assume that the sign ambiguity of the first
eigenfunctions generating the potential is resolved [47].

Figure 12 compares the two operators by matching
diffusion kernel descriptors derived from the correspond-
ing eigenfunctions. The diffusion on the shape using the
Hamiltonian as the diffusion operator is more descriptive
than regular diffusion that cannot resolve the symmetries.
Also, it would be natural to compute the WKS signature
when the Schrödinger equation is governed by a given
effective potential. As intrinsic positive potential we use the
normalized sum of the four first nontrivial eigenfunctions of
the LBO on each shape, adding a constant of minimal value
in order to obtain a non-negative potential. This way only
the intrinsic unstable geometry of the shape is involved in
defining the Hamiltonian operator.
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Fig. 12. Evaluation of the diffusion kernels signatures matches on the
TOSCA and SCAPE datasets.

In case we know which regions are prone to elastic
distortions, like joints and stretchable skin in articulated
objects, we could suppress the effect of those regions in
our matching procedures by using an appropriate potential
as a selective mask. Figure 13, compares the operator with
and without potential by matching the spectral signatures
computed by the framework of [48]. The potential we used
is the local area distortion when comparing the meshes of
two corresponding objects, as in (47). The descriptiveness of
the potential and the localization of the harmonics lead to
more accurate matching results.
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Fig. 13. Evaluation of the spectral signature matches on the TOSCA
and SCAPE data-sets.

To investigate the performances of the Hamiltonian with
photometric textures used as potential, we present in Figure
14 the results of different signatures matching with a dalma-
tian texture defined for the ”Dogs” shapes from the TOSCA
data set.

(a) Photometric data
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Fig. 14. Evaluation of the descriptors matches on the ”Dogs” benchmark
from the TOSCA dataset with dalmatian texture.

Iterative refinement of functional representations have
been proven to be powerful in shape matching [13]. Given
an initial partial or dense map, it tries to recover iteratively
dense and accurate matching between two given shapes.
Here we use a similar refinement framework dubbed as
Iterative Closest Spectral Kernel Maps (ICSKM) [15] for
performance comparison between the two bases. Figure 15
compares the regular ICSKM algorithm working with the
Laplacian eigenspace and the Hamiltonian method when
we provided one, two, or three landmark points, that were
randomly selected from the ground-truth mapping. The
potential used in these examples is the geodesic distance
from the landmark points. This approach has been extended
to partial shape matching by [25], where Gaussian around
anchor points is used for better matching. Note that again
we use only the geometry of the shapes in order to refine
the match between them using the new basis.

6 CONCLUSION

A classical operator was adopted from the field of quantum
mechanics and adapted to shape analysis problems. Func-
tional and spectral properties of the Hamiltonian operator
were presented and compared to the popular Laplacian
often used in many shape analysis procedures. General
optimization methods for solving variational problems in-
volving the Hamiltonian operator have been proposed and
employed to the task of mesh compression and computation
of compressed manifold modes. Features and texture prop-
erties can be incorporated into the new operator to obtain
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Fig. 15. Evaluation of the ICSKM algorithm with different landmark
initialization matches on the TOSCA dataset. We used geodesic dis-
tances from given landmark points as intrinsic geometric potential on
the shapes.

a descriptive and stable basis that provides a powerful
domain of operation for shape matching. Various directions
for future research include exploration of the operator on
other shape analysis tasks such as partial shape matching
where occluded areas could be refined via the potential.
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APPENDIX A
PROOF OF THEOREM 2.
Let us be given the Hamiltonian operator H = −∆ + V .

Recall the Courant-Fischer min-max principle; see also
[19] and [49] Problems 37 and 49. We have for every i ≥ 0,

Ei+1 = max
Λ

codimΛ=i

min
f∈Λ
f 6=0

{‖∇f‖22 + ‖
√
V f‖22

‖f‖22
.

}
(48)

That is, the min is taken over a linear subspace Λ ⊂ H1(S)
with H1(S) is the Sobolev space {f ∈ L2,∇f ∈ L2} of co-
dimension i and the max is taken over all such subspaces.
Set Λ0 = {f ∈ H1(S); 〈f, ψk〉 = 0, k = 1, 2, ..., i}, so that
Λ0 is a subspace of co-dimension i.
By (48) we have that for all f 6= 0, f ∈ Λ0 and with 0 ≤ α <
1,

‖∇f‖22 + ‖
√
V f‖22

‖f‖22
≥ Ei+1

α
, (49)

and thus

X0 = min
f∈Λ
f 6=0

‖∇f‖22 + ‖
√
V f‖22

‖f‖22
≥ Ei+1

α
. (50)

On the other hand, by 48,

Ei+1 ≥ X0. (51)

Combining 50 and 51 yields α ≥ 1. 2

APPENDIX B
DIFFUSION KERNEL OF THE HAMILTONIAN

In order to solve the diffusion equation, we first need to find
the fundamental solution kernel K(x, y, t) to the Dirichlet
problem that yields the heat equation{

∂tK(x, y, t) = H(K(x, y, t))

lim
t→0

K(x, y, t) = δy(x).
(52)

Recall that for V = 0 we return to the regular LBO diffusion
case. In other case, we assume V is a square-integrable
function allowing the existence of a fundamental solution
(kernel).
Suppose that H has a eigendecomposition {ψi, Ei}∞i=1. In
that case, we can write

K(x, y, t) =
∑
i

〈K(x, y, t), ψi(x)〉Mψi(x) =
∑
i

αi(t)ψi(x),

(53)
and from the linearity of H we have

H(K(x, y, t)) =
∑
i

αi(t)H(ψi) =
∑
i

−Eiαi(t)ψi

∂tK(x, y, t) =
∑
i

∂tαi(t)ψi.
(54)

Since 〈ψi, ψj〉M = δij , we have from (52) and (54)

∂tαi(t) = −Eiαi(t), (55)

that leads to
αi(t) = αi(0)e−Eit. (56)

As δy(x) =
∑
i ψi(y)ψi(x), from the initial condition

K(x, y, 0) = δy(x), we obtain

K(x, y, 0) =
∑
i

αi(0)ψi(x) =
∑
i

ψi(y)ψi(x) = δy(x)

⇔ αi(0) = ψi(y)

⇒ K(x, y, t) =
∑
i

e−Eitψi(x)ψi(y).

(57)
The solutions have the form

u(x, t) =

∫
M
u0(y)K(x, y, t)da(y). (58)
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