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Abstract
The discrete Laplace operator is ubiquitous in spectral shape analysis, since its eigenfunctions are provably optimal in
representing smooth functions defined on the surface of the shape. Indeed, subspaces defined by its eigenfunctions have been
utilized for shape compression, treating the coordinates as smooth functions defined on the given surface. However, surfaces
of shapes in nature often contain geometric structures for which the general smoothness assumption may fail to hold. At
the other end, some explicit mesh compression algorithms utilize the order by which vertices that represent the surface are
traversed, a property which has been ignored in spectral approaches. Here, we incorporate the order of vertices into an operator
that defines a novel spectral domain. We propose a method for representing 3D meshes using the spectral geometry of the
Hamiltonian operator, integrated within a sparse approximation framework. We adapt the concept of a potential function from
quantum physics and incorporate vertex ordering information into the potential, yielding a novel data-dependent operator.
The potential function modifies the spectral geometry of the Laplacian to focus on regions with finer details of the given
surface. By sparsely encoding the geometry of the shape using the proposed data-dependent basis, we improve compression
performance compared to previous results that use the standard Laplacian basis and spectral graph wavelets.

Keywords Spectral shape analysis · Mesh compression · Hamiltonian

1 Introduction

In most areas that involve representation of discrete virtual
surfaces as 3D meshes, there has been an increasing trend
in working with higher precision. This has led to the gener-
ation of meshes comprised of a large number of elements,
for which the processing, visualization and storage of have
become a challenge. The task of transmission of these geo-
metric models over communication networks can lead to a
large amount of storage space and put a considerable strain
on network resources.

The research onmesh compression started in the direction
of single-rate compression methods that constructed a com-
pact representation of an input mesh as a whole. However,
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the need for transmission of large geometricmodels led to the
development of algorithms based on progressive mesh com-
pression where a mesh can be transmitted and reconstructed
progressively, that is, with increasing levels of detail. This
enables the rendering of the 3D model in progression where
the finer details of themodel can be processed in a cumulative
fashion.

The information contained in a mesh is generally divided
into two categories: the geometry information, which is the
position of each vertex of the mesh in the 3D Euclidean
space and the connectivity or topological information, which
describes the incidence relations between the mesh vertices.
Since the geometric information comprises a dominant part
of the mesh, most recent algorithms focused on its efficient
compression. Complete reviews, summarizingwork onmesh
compression, can be found in [2,21,27].

1.1 Related Results

Fourier analysis has been used extensively in many signal
processing areas. By projecting the data into the frequency
domain, one can retrieve a good approximation of the original
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signal with only a few Fourier coefficients. A very promi-
nent application is the JPEG [37] image compressionmethod
based on the closely related 2D discrete cosine transform.

Karni and Gotsman [14] proposed a generalization of the
Fourier basis on discrete graphs in order to compress mesh
vertex positions. This is achieved by projecting the coordi-
nate vectors onto the orthonormal basis obtained from the
spectral decomposition of the combinatorial Laplacian of
the shape. For smooth meshes, most of the signal energy
is contained in the low frequencies of the mesh spectrum,
and hence, the coefficients corresponding to the lower fre-
quencies are sufficient to build a good approximation of the
original mesh. Ben-Chen and Gotsman [4] proved that for
certain geometric models, spectral compression is optimal
and is equivalent to principal component analysis.

The idea of using a representative basis for approximat-
ing a mesh has been explored in detail in multiple prior
works. [15] proposed to use a fixed basis independent of the
mesh connectivity. [31] proposed a geometry-aware basis
that considers both the connectivity and the geometry of
the mesh for mesh compression. Mahadevan [22] replaced
the manifold harmonics by a diffusion wavelet bases and
showed an improvement in compression performance. This
was attributed to the rich multi-scale nature of the wavelet
basis.

Methods dealing with basis design for meshes have
also been explored in other applications. In order to over-
come the non-local support of the Fourier eigenfunctions,
compressed eigenfunctions have been adapted from mathe-
matical physics to shape analysis [5,25].

Anisotropic phenomena, such as diffusion, have been
explored in different image processing applications [38] and
have recently demonstrated impressive results in image com-
pression [28]. Anisotropic Laplacians have been introduced
in order to improve the performance compared to the classical
isotropic Laplace operator. Kovnatsky et al. [18]modified the
metric tensor of the manifold to take into account photomet-
ric information. Andreux et al. [3] used principal curvatures
in order to construct anisotropic tensor for the task of shape
segmentation and shape matching.

Keeping the anisotropic information out of the metric
leads to lower order of derivatives, a property that yields
numerically more robust operators. Hildebrandt et al. [11]
designed a new kind of eigenvibrations constructed as the
Hessians of surface energies using extrinsic curvatures and
deformation energies. Similarly, Iglesias and Kimmel [13]
used artificial surface textures on shapes to define elliptic
operators that give birth to a new family of diffusion dis-
tances. This operator, also called Hamiltonian, was recently
explored in [7], which provides a broad theoretical founda-
tion of the operator and its use in different shape analysis
tasks, including data-driven potential optimization, com-
pressed manifold modes and shape matching. In this paper,

we extend this work by analyzing the operator for the task
of mesh compression and provide a powerful sparse repre-
sentation framework based on the Hamiltonian operator, that
outperforms previous spectral compression methods.

Given a basis, a plain spectral truncation of the signal
in that basis is a fairly simple method for representation.
Instead, sparse approximation techniques have been pro-
posed and have become very popular. The basic idea is
to estimate a given signal as a sparse linear combination
of a large pool of constituent vectors—called a dictionary.
These vectors, or atoms, are selected such that the coef-
ficients of representation are sparse. The rationale is that
high-dimensional signals generally possess intrinsic struc-
tures that are better represented in a lower-dimensional linear
subspace.Although these dictionaries have traditionally been
populated with complete orthogonal bases, redundant or
overcomplete dictionaries allow greater flexibility in design
by better capturing the intrinsic characteristics of a signal.

The main difficulty with sparse algorithms is the avail-
ability of a rich representative dictionary. This seems trivial
for signals defined over regularly and consistently sampled
domains, like images and speech, but it is not straightfor-
ward to extend the idea to non-flat domains like meshes of
surfaces in 3D or general graphs. The use of redundant rep-
resentations for mesh representation and compression has
started to emerge in [19,29,32,39]. We extend the ideas dis-
cussed in these papers by choosing the eigenfunctions of a
data-aware operator as the constituents of a large overcom-
plete dictionary to represent the mesh.

1.2 Contribution

In this paper,we use the spectral geometry of theHamiltonian
operator for approximation of meshes representing surfaces
in 3D. The operator is obtained by modifying the Laplacian
with a potential function that defines the rate of oscilla-
tion of the harmonics on different regions of the surface.
We use a simple and efficient construction of the potential
function using a vertex ordering scheme. This modulates the
Fourier basis of the 3D mesh to focus on crucial regions
of the shape having fine geometric structures equivalent to
high frequencies in the Fourier domain. We optimize our
approximation using a sparse representation framework by
building optimized dictionaries in order to sparsely encode
mesh geometry [6].

In contrast to [7], which suggests a simplistic trunca-
tion scheme for the representation of discrete surfaces, this
paper provides an elaborate treatise on the design of the
Hamiltonian operator to tackle the specific task of spec-
tral mesh compression. We develop a novel multi-resolution
dictionary learning mechanism which takes advantage of
the adaptable nature of the Hamiltonian to design a con-
text basis. The combination of the spectral geometry of
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Fig. 1 “The devil lies in the details”. The boxed frame on the left is
the original shape. The center and right figures show sparse approxima-
tions obtained using the eigenfunctions of the standard Laplacian and
the Hamiltonian operators, respectively, using a compression ratio of

1:10. The global Laplacian basis, also called manifold harmonics, fails
to capture the structure in the fine details. The approximation using the
proposed Hamiltonian basis (figures on the right) preserves this signif-
icant fine structure for the same compression ratio

the Hamiltonian in conjunction with a sparse approxima-
tion approach outperforms existing spectral compression
schemes as demonstrated in Sect. 5 and is illustrated in Fig. 1.

2 Background

2.1 Laplace Beltrami Operator

Consider a parameterized manifold M : Ω ⊂ R
2 → R

3

with boundary ∂M. The space of square-integrable functions
on M is denoted by L2(M) = { f : M → R| ∫M f 2da <

∞} with the standard inner product 〈 f , g〉M = ∫
M f g da,

where da is an area element induced by the Riemannian
metric 〈·, ·〉g .

The Laplace–Beltrami operator (LBO) acting on a scalar
function f ∈ L2(M) is defined as

ΔM f ≡ divM(∇M f ), (1)

where ∇M represents the intrinsic gradient. The LBO is a
self-adjoint operator and hence admits a spectral decompo-
sition: {λi , φi }, such that,

−ΔMφi = λiφi ,

〈φi , φ j 〉M = δi j ,
(2)

where λi ∈ R, 0 = λ1 ≤ λ2 ≤ ... and δi j the Kronecker
delta function. In caseM has a boundary, we add Neumann
boundary condition to φi . The LBO eigendecomposition can
be obtained by minimizing the Dirichlet energy

min
φi

∫

M
‖∇Mφi‖2g da,

s.t. 〈φi , φ j 〉M = δi j .

(3)

Therefore, the LBO eigenfunctions can be seen as an exten-
sion of the smooth Fourier harmonics in Euclidean space
to manifolds and are also referred to as manifold harmon-
ics[20,36].

2.2 Graph Laplacian

Let G = (Π,Υ ) be an undirected graph of n vertices Π =
{πi }ni=1 representing a sampled version of a manifold M.
Let the graph edges be equipped with nonnegative weights
{wi j }n{i, j}=1, defining the weighted adjacency matrix W of
the graph as

[
W

]
i j =

{
wi j , if (i, j) ∈ Υ ,

0, otherwise.
(4)

The diagonal vertex degree matrix A is defined as

[
A
]
i i = aii =

∑

j

wi j . (5)

The unnormalized graph Laplacian is defined as the n × n
matrix L = A − W . For properties of the Laplacian, the
reader is referred to [8,24].

The combinatorial graph Laplacian is constructed by
solely considering the connectivity of the mesh, where the
edge weights are defined as wi j = 1. Therefore, the degree
matrix A is populated with the valence of each vertex. While
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other geometric discretizations of the Laplacian on graphs
exist [30], the combinatorial Laplacian is used in this paper,
since the mesh topology can be efficiently encoded .

The discrete manifold harmonics are then obtained by
solving the spectral decomposition of the combinatorial
Laplacian

LΦ = ΦΛ. (6)

Here, Φ ∈ R
n×n is the matrix of eigenvectors where each

column φk is one eigenvector and Λ is the diagonal matrix
of eigenvalues where each element λk is one eigenvalue.

2.3 Spectral Mesh Compression

Given a complete basis {ϕi }∞i=0 on M, any function f ∈
L2(M) can be expressed as

f =
∞∑

i=1

〈 f , ϕi 〉Mϕi =
∞∑

i=1

f̂iϕi , (7)

where f̂i is the i th (manifold) Fourier coefficient of f . Since
the manifold harmonics form a complete basis, Karni and
Gotsman [14] proposed to use them for spectral mesh com-
pression. Considering themesh coordinate functions X ,Y , Z
as functions defined on the vertices of the mesh, the basic
idea of spectral mesh compression is to compute the Fourier
transform of the coordinate functions and truncate the high-
frequency coefficients. Thus, if u is a coordinate function, it
can be approximated using the graph Laplacian decomposi-
tion as

u ≈
K∑

i=1

〈u, φi 〉Gφi (8)

with K  n and 〈u, φi 〉G = φT
i u. By using the graph

connectivity information and constructing the manifold har-
monics as a representative basis, the geometric information
of the mesh can be encoded efficiently through the obtained
coefficients. Figure 2 illustrates spectral reconstructions as
applied to a toy example of a 2D curve.

Simple truncation as shown in Eq. (8) uses a restrictive
assumption of only focusing on the lower frequencies and
is analogous to low-pass filtering of the signal. In general,
the lower frequencies encapsulate most of signal energy, and
the reconstructed mesh tends to preserve the global features
of the original. However, local geometry and fine details of
the mesh corresponding to high frequencies are generally
missing and require a high number of eigenvectors for their
preservation if a truncation approach is followed.

In the next section,we propose amore pragmatic approach
of sparsity where the data itself searches for its best con-

Fig. 2 Approximation of a planar curve by simple truncation of the
LBO and the proposed basis (Hamiltonian). The potential function for
the Hamiltonian is defined by the error between the curve and its LBO
truncated approximation. By biasing the 1D harmonics with this poten-
tial, the reconstruction with the Hamiltonian can be seen to preserve
finer details of the contour for the same number of coefficients

stituents (frequencies) with the objective of attaining sparsity
in a certain basis of representation. This leads to an improved
compression strategy.

2.4 Sparse Approximation of Mesh Coordinates

As motivated in the last section, classical methods are based
on the premise that family of signals are best represented
using only the first few components of an optimal orthonor-
mal basis. The concept of sparsity provides an alternative
perspective for representation.

Consider a graph G and D ∈ R
n×m a normalized over-

complete (m � n) dictionary containing m atoms di ∈ R
n .

We aim to approximate any given signal u on G by

u = Dα =
m∑

i=1

diαi , (9)

with α = [
α1, . . . , αm

]T the coefficient representation of the
input signal u with respect to the dictionary D. In order to
achieve significant reduction in storage, we should assume
that the number of nonzero elements of the coefficient vector
α should satisfy ‖α‖0 = k  n. Thus, the sparse approx-
imation of the signal can be obtained by solving the sparse
coding problem

min
α

‖u − Dα‖22
s.t. ‖α‖0 = k.

(10)

Let us be given a multiple channel signals U ∈ R
n×c, the

new coefficient matrix is designated by Γ = [
α1, ..., αc

]T

with U = DΓ . The new sparse approximation is obtained
by solving the simultaneous sparse approximation

min
Γ

‖U − DΓ ‖2F
s.t. ‖α1‖0 = ... = ‖αc‖0 = k,

(11)
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where ‖ · ‖F denotes the Frobenius norm. In our mesh com-
pression configuration, the input signal is defined by themesh
coordinates such that U = [

X ,Y , Z
]
.

Since sparse coding solution is a combinatorial NP-hard
problem, well-known relaxations are generally used [23,26].
In this paper, Simultaneous Orthogonal Matching Pursuit
algorithm [33] is used for sparse approximation of the mesh
geometry. Pursuit algorithms are based on a greedy approach
of solving for the optimization in (11) by incrementally
selecting atoms from the dictionary D that minimize the
residual error. The orthogonal matching pursuit is one such
way of picking the atomswhere at each stage of the selection,
the residual error vector is orthogonal to the atoms already
selected in the support and hence will not be chosen again.
Simultaneous OMP is a scheme of atom selection such that
multiple signals have the same support in the dictionary D,
i.e., simultaneously solving three sparse problems by impos-
ing same support constraint.

The success of a sparsity-based algorithm depends on the
availability of a representative dictionary. However, devel-
oping dictionaries for the representation of functions defined
over graphs is a non-trivial task, since they do not possess a
fixed structure as in Euclidean domains (grid). As a result,
elements composed from fixed spectral bases have been used
for populating the atoms of the dictionary [19].

The manifold harmonics can be used because of their
stability and compactness, that is, low frequencies contain
most of the signal energy. However, fine local structures
are not well represented using this basis due to the global
nature of their support. In [39], it was shown that a dictio-
nary constructed from spectral graph wavelets [10] shows
better compression performance as compared to the stan-
dard Laplacian basis, since it encapsulates fine details and
some dominant high-frequency structures of the mesh. How-
ever, since the locality of the basis cannot be controlled, the
wavelet dictionaries are highly overcomplete, yielding large
dictionaries which enforce higher compression rates. These
shortcomings motivate the need for finding a basis which can
be modulated in a data-dependent manner. This will lead to
an optimal local–global structure trade-off, thereby requiring
a smaller cardinality of representation. In the next section,
we borrow an operator from quantum mechanics which has
precisely the aforementioned properties.

3 Hamiltonian Operator

3.1 Definition

AHamiltonian operator H , also called Schrödingeroperator,
is an operator acting on a scalar function f ∈ L2(M) on a
manifold M that has the form

Fig. 3 First eigenfunctions of the LBO on a sphere (top). Potential
function defined on the sphere and the corresponding Hamiltonian basis
(bottom). Hot and cold colors represent positive and negative values,
respectively. The Hamiltonian basis concentrates the harmonics to the
low potential region

H f = −ΔM f + μV f , (12)

where V : M → R is a potential function and μ ∈ R.
The Hamiltonian plays a fundamental role in the field of
quantum mechanics via the famous Schrödinger equation
that describes the wave motion of a particle. The spectral
decomposition {ψi , Ei }∞i=0 of the Hamiltonian is defined by

Hψi = Eiψi (13)

where Ei denotes the energy of a particle at the stationary
eigenstate ψi . Here, ψi (x) represents the wave function of
the particle such that |ψi (x)|2 is interpreted as the probability
distribution of finding the particle at a given position x . Since
the Hamiltonian is a symmetric operator, its eigenfunctions
form a complete orthonormal basis on the manifold M. An
illustration of the Hamiltonian basis is given in Fig. 3.

The Hamiltonian eigendecomposition from (13) is obtai-
ned from the Euler–Lagrange equation of

min
ψi

∫

M

(
‖∇Mψi‖2g + μVψ2

i

)
da,

s.t. 〈ψi , ψ j 〉M = δi j .

(14)

The parameterμ controls the potential energy and defines
the trade-off between local and global support of the basis.
Larger values ofμwill give solutions that concentrate on the
low potential regions, while a smaller μ will give solutions
that better minimize the total energy at the expense of more
extended wave functions.

In its discrete setting, the Hamiltonian basis is obtained
by solving

Hψi = (L + μV )ψi = Eiψi (15)

with {ψi }ni=1 ∈ R
n . Here L denotes the previously described

graph Laplacian, and V a diagonal matrix that is defined by
the potential scalar function values at vertices πi ∈ Π . Since
V only modifies the diagonal of the sparse Laplacian, the
Hamiltonian is also a sparse matrix with the same nonzero
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entries. Thus, there is no increase in the computational cost
of the decomposition compared to that of the Laplacian.

3.2 Analysis andVisualization of the Operator

Among the numerous reasons that motivated the selection of
the Laplacian basis for shape analysis, one ubiquitous is its
efficiency in representing smooth functions. This property is
defined by the following observation for functions with L2

bounded gradient magnitudes:

‖rn‖22 =
∥
∥
∥
∥
∥
f −

n∑

i=1

〈 f , φi 〉φi

∥
∥
∥
∥
∥

2

2

≤ ‖∇g f ‖2g
λn+1

. (16)

This result can be established as follows,

‖∇g f ‖2g =
∫

M
(−ΔM f ) f da

=
∞∑

i=1

∫

M
(〈 f , φi 〉Mλiφi ) f da =

∞∑

i=1

λi 〈 f , φi 〉2M

≥
∞∑

i=n+1

λi 〈 f , φi 〉2M ≥ λn+1

∞∑

i=n+1

〈 f , φi 〉2M = λn+1‖rn‖22. (17)

The representation error rn for a function f using the Lapla-
cian basis {φi }i=∞

i=1 is bounded by a factor of the squared
magnitude of its gradient. This result was subsequently
proved to be optimal for representing smooth functions over
surfaces in [1], which says that there exists no other basis
with such a bound for all possible L2(M) bounded gradient
functions.

To gain further insight, we simulate this result in a discrete
setting by analyzing the gradient operators for a simple one-
dimensional case. In matrix form, since L is a positive semi-
definite matrix, there exists a matrix D such that L = DT D
and the discrete equivalent of result 17 is:

‖rn‖22 =
∥
∥
∥
∥
∥
f −

n∑

i=1

〈 f , φi 〉φi

∥
∥
∥
∥
∥

2

2

≤ ‖Df ‖22
λn+1

, (18)

It is interesting to performa similar analysis on the eigenfunc-
tions of the Hamiltonian, and Fig. 4 shows a visualization of
the gradient operator of the Laplacian and the induced gradi-
ent of the Hamiltonian. The result in Eq. (18) gets modified
to account for the action of the potential.

‖rn‖22 =
∥
∥
∥
∥
∥
f −

n∑

i=1

〈 f , ψi 〉ψi

∥
∥
∥
∥
∥

2

2

≤ ‖WDf ‖22
En+1

, (19)

with W = (I + D−T V D−1)
1
2 such that H = (WD)T W D.

Thus, the Hamiltonian basis can be considered as optimal

Fig. 4 Matrix visualizations of the potential function (left), the standard
gradient matrix D (middle) and the weighted gradient matrix WD =
(I + D−T V D−1)

1
2 D (right) for Euclidean 1D example

for the representation of functions which have a bounded
weighted gradient. Theweights depend on the potential func-
tion and its action in different regions.

The gradient matrix D for the 1D case is the result of
a simple finite difference scheme of one-dimensional for-
ward differentiation yielding a circulant populated with the
kernel [1,− 1] circulated along the diagonal. The Hamilto-
nian has the effect of escalating the cost of a strong gradient
exclusively in regions of high potential. This shows that
coefficients of the induced gradient matrix are larger in the
high potential regions as compared to anywhere else in the
domain. The nonzero values of the off-diagonal elements
suggest that the linear operation loses its shift invariance
property and the effect of a derivative is no more an exclu-
sive property of its local neighborhood but also depends on its
global positioning imposed by the potential function. Thus,
the Hamiltonian operator advocates measuring smoothness
differently for different regions of the domain, and this is a
useful property to exploit in a compression setup.

The Hamiltonian operator can improve the compression
performance by modifying the harmonics in order to empha-
size designated regions of interest. We propose a method
for choosing a potential function which does not require any
additional encoding. We construct a dictionary based on the
eigendecomposition of both the Laplacian and the Hamilto-
nian that can focus on difficult reconstruction areas of the
harmonics. Thus, by designing high vibrations in selected
regions of the shape, our dictionary is much less redundant
than the wavelets proposed in [22], has a better ability to
encode high- frequency details and achieves better compres-
sion performance.

4 Hamiltonian Operator for Spectral Mesh
Compression

4.1 Potential Design

Consider a mesh (graph) M = {Π,Υ } with |Π | = n and
the coordinates matrix U . Given the Laplacian eigenvectors
matrix Φ ∈ R

n×n , one can design a fixed dictionary DL
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Fig. 5 Zero potential (left up) and its corresponding harmonics (right
up). Linear potential for different parameter μ (left middle and bottom)
and their corresponding first eigenfunctions (right middle and bottom).
The Hamiltonian eigenfunctions focus on the low potential areas with-
out neglecting other regions for higher energies

composed of the full harmonics basis matrix DL = Φ and
solve the simultaneous sparse coding problem of (11) where
Ũ = DLΓ ≈ U . Then, a L2 norm reconstruction error
ε(πi ) = ‖πi − π̂i‖2 can be obtained at each vertex of the
mesh. This vertex error profile over the mesh provides an
indication of difficult regions that can be enhanced through
the potential.

Since a fixed potential must be used to avoid additional
encoding, we permute the arbitrary indexing of the mesh
according to this error. The vertices are sorted in ascending
order such that vertices having small indexes correspond to
points with a small error, while vertices with the larger index
correspond to regions with higher distortion in approxima-
tion. It can be done trivially inO(Υ ) complexity and has no
influence on themesh itself since the ordering has no physical
meaning.

Given the Hamiltonian H = L + μV , we propose to use
a fixed potential matrix defined as

V = diag(1, .., n), (20)

normalized such that ‖V ‖2F = ∑n
i V

2
i i = 1. We illustrate

the influence of a linear potential in one dimension in Fig. 5.
Sincewe sorted the indexes according to the error, a designed
hierarchical energy of the potential is defined over the shape,
while the potential encoding itself is avoided. At the decoder
side, the Hamiltonian can be built using the mesh connec-
tivity (Laplacian) and the encoded scalar μ coupled with the
fixed linear potential V described above.

4.2 Dictionary Construction

We construct a dictionary built from the eigendecomposition
of both the Laplacian and the Hamiltonian to benefit from
their global and local properties. The potential is defined

according to the representation error of the Laplacian basis
as described in the previous section. We encode multiple
constants μ in order to obtain a multi-resolution of the basis.
The regularization constants are found via a direct search on
a given domain.

Thus, our dictionary can be obtained as:

DS = [Φ,Ψμ1 , ..., ΨμS ], (21)

where the sub-dictionary Ψμi ∈ R
n×n is the matrix of eigen-

vectors of the Hamiltonian L + μi V and Φ = Ψ0. The
constant μi is obtained by solving

min
μi

min
Γ

‖U − DiΓ ‖2F
s.t. ‖α1‖0 = ... = ‖αc‖0 = k,

(22)

The algorithm is summarized in Algorithm 1. Given a com-
pression ratio requirement, the number of atoms is calculated
according to the formulas elucidated in Sect. 5.2.

Algorithm 1: Algorithm for sparse approximation
Input : Mesh connectivity Υ , mesh coordinates U and

compression ratio k
Output: Sparse coding {αi }i and coefficients {μ j } j

1 Compute the pointwise error ε(πi ) = ‖Ũ (πi ) −U (πi )‖2 where
Ũ = ΦΓ is obtained from (11);

2 Permute the vertices according to the sorting of the error ε;
3 Build constant potential V as in (20) and set j = 0;
4 do
5 j=j+1;
6 Find μ j minimizing (22) using Dj = [Φ,Ψμ1 ..., Ψμ j ];
7 while Decrease in representation error;

4.3 Discussion

Algorithm 1 is designed to take advantage of the two
principle components of our contribution: sparsity- and data-
dependent basis. The potential design described in Sect. 4.1
alters the Laplacian basis to focus on error-prone regions
of the shape. The extent to which such an alteration must
be enforced is encoded in the coefficients: {μ j } j=K

j=1 which
are sequentially optimized in Algorithm 1. The final dic-
tionary is comprised of the regular Laplacian eigenvectors
appended with these Hamiltonian eigenvectors. The results
in Sect. 5 demonstrate that this provides a distinct improve-
ment in shape-reconstruction errors.

Another advantage of our approach is that the potential
design is based on mesh connectivity information alone. The
vertex re-ordering enables us to encode information about the
error-prone regions of the shape, which are encoded in the
eigenvectors of the Hamiltonian. This re-ordering scheme
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avoids any secondary encoding of information and hence
provides a distinct gain in saving of information units for
compression.

5 Experimental Results

5.1 EvaluationMetric

In order to measure the loss resulting from an estimated
approximation, Karni and Gotsman [14] used a visual metric
that captures the visual difference between the original mesh
M = {Π,Υ } and its reconstruction M̃ = {Π̃, Υ̃ }. The mea-
sure is a linear combination of the RMS geometric distance
between corresponding vertices in both models and a visual
metric capturing the smoothness of the reconstruction. The
error ε ∈ R

n at each vertex is defined as

εM (π̃i ) = 1

2n

(

‖πi − π̃i‖2 + ‖GL(πi ) − GL(π̃i )‖2
)

.

(23)

The visual metric GL is defined as

GL(πi ) = πi −
∑

j∈N (i) l
−1
i j π j

∑
j∈N (i) l−1

i j

(24)

with N (i) is the set of indexes of the neighbors of vertex i ,
and li j is the geometric distance between vertices i and j . A
global representation error is obtained by summing εM over
the mesh vertices. We normalize the error by the area of the
shape for uniform comparison between different shapes.

5.2 Compression Ratio

The compression ratio calculation is obtained as a ratio of
the net information before and after the dictionary encoding
[39]. If each coordinate takes up to k bits, then for a mesh of
n vertices, the total uncompressed information is 3nk. Now,
assuming that the dictionary D ∈ R

m×n is known in advance,
or can be constructed from the connectivity information of
themesh, on both the encoder and decoder sides, let nd be the
total number of selected atoms each taking kd bits to encode
each coordinate function, making the total information equal
to 3ndkd . The information is required to store the indexes of
the coefficients which is given by min(m, nd� log2 m�). The
compression ratio is given as

C.R. = 3ndkd + min(m, nd� log2 m�)
3nk

. (25)

The min function is used since it can be more efficient to rep-
resent the selected atoms with a bit vector of size m instead

of the indexes themselves. The compression ratio in the coef-
ficient truncation scheme is given by

C.R. = nd
n

, (26)

since only the ordered coefficients must be encoded. The
compression ratio of theHamiltonian dictionary can be easily
extended by adding nμkμ to the numerator of (25), with nμ

the number of regularization coefficients of the Hamiltonian
and kμ the number of bits required to encode each one of
them.

5.3 Shape Partition

Spectral methods, including the one proposed in this paper,
are hinged on the eigendecomposition of a large matrix. This
O(n3) time complexity operation can be computationally
demanding, especially when the number of points is large.
Therefore, as motivated in [14], we resort to mesh partition-
ing, where we segment a mesh into smaller constituents and
compress each segment independently. We use the METIS
[16] package for fast graph partitioning and segmentation.
Therefore, the time complexity of the proposed framework
can be seen as linear in the number of partitions of fixed
size.

The Neumann boundary conditions induced by the graph
Laplacian may cause a discrepancy between the recon-
structed segments along shared boundaries. Mesh partition-
ing may result in a so-called edge effects [14], a degradation
of the reconstruction along the sub-mesh boundaries. How-
ever, compressing smaller meshes separately has the advan-
tage of better capturing local properties of themesh evenwith
low number of coefficients. Also, from our experiments, this
degradation is not visually sensitive even for low compres-
sion rate and especially not with the suggested method. We
partition the mesh into sub-meshes of few hundred vertices.
This ensures both faster computation of the coefficients and
fewer difficult areas for reconstruction the Hamiltonian oper-
ator can focus on.

5.4 Results

Figures 6 and 7 show a visual comparison of the shape
approximation results. We propose two visualizations. The
first row presents a regular reconstruction with the three dif-
ferent methods for a fixed compression ratio. The second
row shows a profile of the error plot over the original mesh
to highlight regions of erroneous representation. Clearly, the
MHB has a fairly large error profile over the surface. The
results with the spectral graph wavelets show an improve-
ment as compared to the manifold harmonics. However, the
sparse approximation with the Hamiltonian basis shows a
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Fig. 6 Fandiskmodel (boxedmesh) composed of 12,946 vertices.(Top)
Shape reconstruction for a compression ratio of 6:10 using dictionar-
ies composed of theMHB,MHB+SGWandMHB+Hamiltonian (from

left to right). (Bottom) Reconstruction error using the proposed spectral
bases. Cold and hot colors represent nonnegative low and high values,
respectively

Fig. 7 Horse model (boxed mesh) composed of 19248 vertices. (Top) Shape reconstruction for a compression ratio of 4:10 using dictionaries
composed of the MHB, MHB+SGW and MHB+Hamiltonian (from left to right). (Bottom) Reconstruction error using the proposed spectral bases

distinct positive difference as compared to the other two
methods both in the reconstruction and in the error pro-
files.

Figures 8, 9 and 10 show compression results of our
method compared with other spectral techniques on differ-
ent shapes. We present results according to four prominent

spectral methods. First with the plain truncation scheme of
the Manifold Harmonic Basis (MHB) as suggested in [14].
Second, the truncation scheme of the Hamiltonian with opti-
mal potential as suggested in [7]. Third, MHB with sparse
coding, i.e., using the S-OMP algorithm (MHB-SOMP) on
the manifold harmonics dictionary. Fourth, we present Spec-
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Fig. 8 Reconstruction error as a function of the compression ratio for
the seahorse model (2194 vertices)

Fig. 9 Reconstruction error as a function of the compression ratio for
the wolf model (4344 vertices)

Fig. 10 Reconstruction error as a function of the compression ratio for
the centaur model (15768 vertices)

tral graph wavelets with sparse coding (MHB + SGW −
SOMP) using dictionaries defined with the harmonics and
the graph wavelets as presented in [39]. We used 32 bits as
for single bit-precision in the computation of compression
ratio. An illustration of the mesh partition result and recon-

struction performance between the methods is presented in
Fig. 11.

We can see that our algorithm shows a considerable
improvement in compression performance by generating
smaller errors over the entire span of compression require-
ments for different shapes, even under non-uniform trian-
gulations. We highlight the fact we leverage benefits in
optimizing on both fronts: a superior basis and the improved
sparse coding mechanism for representation. Using only the
Hamiltonian basis in a simple truncation scheme as suggested
in [7] shows improvement over standard spectral techniques
making it comparable to the pursuit-based solutions, but the
major gain comes only after its use in conjunctionwith sparse
representation.

Finally, in order to gain a global assessment of the
performance of our method in comparison with generic non-
spectralmesh compression algorithms (motivated from [21]),
we compiled an average bits-per-vertex (bpv) analysis in
Table 1, where the proposed method bpv is obtained on
the same shapes tested in [14] and with the same recon-
struction error threshold. However, since other prominent
non-spectral methods like [9,17] involve some form of
remeshing, the comparison may not be entirely appropriate,
but provides a high-level comparison between the com-
pression types. The general comparison shows that spectral
algorithms show lower compression rates as compared to
methods like [17] and [9]. However, our approach of using
the spectral route along with sparse representations shows
considerable gains without any assumption on the mesh con-
nectivity.

6 Conclusion and FutureWork

We introduced the Hamiltonian operator for spectral mesh
compression. This operator uses the concept of a potential
function whose action leads to the modulation of the spectral
geometry of that domain. We use this operation to mod-
ify the standard manifold harmonics of the 3D surface by
emphasizing the role of regions with errors that emerge as
a result of compression with classical harmonics. We maxi-
mize compression performance by constructing meaningful
dictionaries from this basis in a sparse approximation frame-
work and showadistinct improvement fromprevious spectral
techniques.

In future work, we intend to explore the design and con-
struction of newer meaningful potential functions for 3D
surfaces. The use of the Schrödingeroperator for generic
graph structures or discrete manifolds is an unchartered ter-
ritory that can lead to interesting spectral embeddings.
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Fig. 11 Michael model after mesh partition (boxed mesh) composed
of 52565 vertices followed by the shape-reconstruction error map for a
compression ratio of 1:10 using MHB truncation and dictionaries com-

posed of the MHB+SGW and MHB+Hamiltonian (from left to right).
The error scale of theMHB truncation is ten times bigger than the others

Table 1 Comparison of the
suggested method with the main
progressive mesh compression
algorithms

Algorithm Total compression
rates (bpv)

Compression type

Progressive meshes [12] 37 Vertex split

Wavemesh [35] 19 Irregular Wavelets

Spectral compression [14] 19 Spectral

Incremental parametric refinement [34] 15 Parametric refinement

Spectral Hamiltonian (proposed method) 12 Spectral

Wavelet compression [17] 8 Remeshing based

Normal meshes [9] 6 Mesh-Sequence compression

The bold enlighten the performance of the proposed method (best results among related methods (above) and
slightly worser than other less restrictive approaches (below))
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