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Scale Invariant Geometry for Nonrigid Shapes∗

Yonathan Aflalo†, Ron Kimmel‡, and Dan Raviv‡

Abstract. In nature, different animals of the same species frequently exhibit local variations in scale. New
developments in shape matching research thus increasingly provide us with the tools to answer such
fascinating questions as the following: How should we measure the discrepancy between a small dog
with large ears and a large one with small ears? Are there geometric structures common to both an
elephant and a giraffe? What is the morphometric similarity between a blue whale and a dolphin?
Currently, there are only two methods that allow us to quantify similarities between surfaces which
are insensitive to deformations in size: scale invariant local descriptors and global normalization
methods. Here, we propose a new tool for shape exploration. We introduce a scale invariant metric
for surfaces that allows us to analyze nonrigid shapes, generate locally invariant features, produce
scale invariant geodesics, embed one surface into another despite changes in local and global size,
and assist in the computational study of intrinsic symmetries where size is insignificant.

Key words. scale invariant, Laplace–Beltrami, shape analysis

AMS subject classifications. 53B21, 58D17

DOI. 10.1137/120888107

1. Introduction. The study of invariants in shape analysis began with the application of
differential signatures—previously used only in differential geometry for planar curves sub-
ject to projective transformations—to contours representing the boundaries of objects in im-
ages [12, 13, 14, 17, 45, 63]. Although analytically elegant, differential signatures are somewhat
messy; the many parameters associated with projective transformations require estimating a
large number of derivatives. In response, some have considered simpler transformations—for
example, similarity (scale) and affine transformations—and others have tried replacing local
differential signatures with global invariants on a local scale [12, 13, 14, 16, 17, 21]. Bruckstein,
Rivlin, and Weiss [15] first introduced scale space signatures, whereby a location is parame-
terized by a factor indicating how far one should move from the point of interest. Another
approach, known as semidifferential invariants, reduces the number of derivatives required for
generating local invariants by using external matching points [18, 39, 45, 58, 59]. Bruckstein et
al. [12] combined both of these methods in their derivation of local, nondifferential invariants
with external matching points that reduce the number of derivatives. Extending support to
a shape as a whole ultimately aids planar shape recognition, despite sacrificing resistance to
occlusions, as demonstrated in [11, 33, 41, 42]. Meanwhile, efforts were also made to simplify
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images while maintaining invariance by using geometric diffusion of the level sets of the image
in gray level [1, 32, 56].

Lowe’s introduction of the scale invariant feature transform (SIFT) [36] represents a mile-
stone in the field of image analysis. His method compensates for distortions resulting from
images taken at various distances by sampling the blur (and scale) space. In the same vein,
Morel and Yu [40] developed affine-SIFT (ASIFT) to sample the space of affine transforma-
tions [40].

Digital photometric images allow us to project the world into numbers that we can readily
process. Through new geometric sensors known as three-dimensional scanners, we can now also
capture the geometric structures of objects. By incorporating SIFT-like descriptors into the
surface recognition process, we can analyze, compare, and understand this new geometric data.
One such descriptor uses heat diffusion on the inspected surface, instead of Lowe’s diffusion
in the image domain. This feature, known as the heat kernel signature (HKS), measures the
rate of virtual heat dissipation from a surface point [57]. The short time realization of this
feature is trivially related to the Gaussian curvature. Many other differential operators have
been proposed as local descriptors, as in [66]. Notably, [54] proposes the related similarity
invariant curvature for surfaces using the ratio between the magnitudes of the surface principal
curvatures. Finally, [53] proposes spectral analysis as a means of choosing the points to
consider.

Chazal et al. [19] explore the treatment of signatures as structures in their own metric
spaces. These tools, first developed to compare one shape to another, were also found to
be useful in exploring intrinsic isometries by computationally mapping a surface to itself
(e.g., [48, 49] and, later, [44]). Most nearly isometric area preserving deformations are explored
in [35, 64]. The former introduces bending energy to the field, while the latter is strictly
intrinsic. Other notable contributions to the field of shape and surface matching include
[30, 60].

An important aspect of any shape correspondence measurement method is the set of
transformations and deformations it can handle. Thus far, nonrigid shapes have been treated
as metric spaces characterized by various definitions from theoretical metric geometry [8, 37].
Shapes have been embedded into elementary spaces in order to compare and match structures
using relatively simple procedures, at the cost of drastic simplifications and compromises.
These target spaces include Euclidean spaces [26, 55], spherical domains [7, 8], conformal
disks and spheres [34], and topological graphs [27, 28, 61], to name just a few. Instead of
using exact point-to-point matching for efficient shape recognition, [5] uses local features,
aggregated as a bag of words as a signature for efficient shape recognition.

Choosing an appropriate metric is crucial to developing shape analysis methods that are
resistant to transformations. Researchers have been using Euclidean distances [3, 20], geodesic
distances [6, 8, 26, 29, 37, 43], diffusion distances [9, 50], and affine invariant versions of these
to compare and match shapes [52]. The magnitude of the Fourier transform applied to the
first derivative w.r.t. the logarithmic scale (time) of the log of HKSs was shown to produce
scale invariant local descriptors [10].1 Digne et. al define scale space meshing of raw data

1The scale invariant heat kernel signature SI-HKS(s, ξ) of the surface point s at time t is defined as a
function of the HKS by SI-HKS(s, ξ) = |F( d

dη lg(HKS(s, η)))|, where F denotes the Fourier transform, the
HKS(s, t) is defined in (5.1), and η = log(t).
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points in [24]. Still, though the signature is local, the invariant by which it is constructed
relates to global rather than local scaling. Other nondifferential global invariants can be found
in normalization methods like the commute time distance [47]. Once correspondence between
two objects is achieved, the same measures can then be used to deform, morph, or warp one
shape into another [31].

In section 2, we introduce an invariant metric for surfaces as a new solution to the scale
invariant matching problem. In section 3 we demonstrate the benefit of plugging the new
metric into the diffusion distance framework. We discuss implementation considerations with
the diffusion formulation in section 4. Finally, in section 5, we demonstrate the framework’s
potential through various test cases involving local and global scale variations as well as
nonrigid deformations of shapes. It is shown that the proposed intrinsic measures are efficient
to compute as well as robust to noise, and are invariant to local and global scaling and
isometries.

2. Problem formulation. Consider S(u, v), a parametrized surface S : Ω ⊂ R2 → R3. We
can measure the length of a parametrized curve C in S using either the Euclidean arc-length
s or a general parametrization p. The length is given by

l(C) =

∫

C∈S
ds =

∫

C
|Cp|dp =

∫

C
|Suup + Svvp|dp

=

∫

C

√
|Su|2du2 + 2〈Su, Sv〉dudv + |Sv|2dv2,

from which we have the usual metric definition of infinitesimal distances on a surface,

ds2 = gijdω
idωj ,

where we use the Einstein summation convention, ω1 = u, ω2 = v, and gij = 〈Sωi , Sωj 〉.
Let us first consider the simple case where S = R2. A scale invariant arc-length for a

planar curve C is given by dτ = |κ|ds, where |κ| = |Css| is the scalar curvature magnitude.
The invariance can be easily explained by the fact that the curvature is defined by the rate
of change of the angle θ of the tangent vector w.r.t. the Euclidean arc-length, namely

dθ

ds
= κ,

from which we have the scale invariant measure dθ = κds or in its monotone arc-length form
dτ = |κ|ds.

The next challenge would be dealing with a less trivial surface. By its definition, the
curvature of a planar curve is inversely proportional to the radius of the osculating circle
κ = ρ−1 at any given point along the curve. Thus, for a curve on a nonflat surface we need to
find such a scalar that would cancel the scaling effect. Recall that for surfaces there are two
principal curvatures κ1 and κ2 at each point. These scalars, or combinations thereof, could
serve for constructing normalization factors that modulate the Euclidean arc-length on the
surface for scale invariance. This is the case for

dτ = |κ1|ds =
1

|ρ1|
ds or dτ = |κ2|ds =

1

|ρ2|
ds.
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We could also define similarity or scale invariant arc-length using the mean curvature 2H =
κ1 + κ2 and the Gaussian curvature K = κ1κ2. Thus,

dτ =

∣∣∣∣
K

H

∣∣∣∣ ds =
2

|ρ1 + ρ2|
ds

would be similarity (scale) invariant, as would

dτ =
√

|K|ds =
1√
|ρ1ρ2|

ds.

Yet, of the above possible options, only the last one is intrinsic in the sense that it is also
invariant to isometric transformations of the surface. We therefore consider the scale invariant
isometric metric

g̃ij = |K|〈Sωi , Sωj 〉,(2.1)

so that

dτ2 = |K|
(
〈Su, Su〉du2 + 2〈Su, Sv〉dudv + 〈Sv, Sv〉dv2

)
,

as our candidate for a scale invariant arc-length.
Given the surface normal

&n =
Su × Sv

|Su × Sv|
,

the second fundamental form is defined by

bij = 〈Sωiωj ,&n〉 =
det(Sωiωj , Su, Sv)√

g
,

from which we have the Gaussian curvature K ≡ b/g, where b = det(bij) and g = det(gij).
Using the above notation we can write our similarity (scale) invariant metric g̃ij as a

function of the regular metric gij and the second fundamental form bij. Recall that the metric
structure is positive definite, that is, g > 0. It allows us to write

g̃ij = |K|gij =
|b|
g
gij .

It is interesting to note that the recent affine invariant metric explored in [51] could be written
using similar notation as

gequiaffine

ij = |K|−1/4bij =

(
g

|b|

)1/4

bij,

projected onto a positive definite metric-matrix. The equiaffine intrinsic metric can be coupled
with the scale invariant one to produce a full affine invariant metric for surfaces given by

gaffine
ij = |Kequiaffine|gequiaffine

ij = |Kequiaffine|
(

g

|b|

)1/4

bij ,
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where the Gaussian curvature is extracted from the affine invariant metric, that is, Kequiaffine =
bequiaffine/gequiaffine and |gequiaffine| =

√
g|b|. Note that as we have been using intrinsic measures

to construct this metric, it would also be invariant to isometries within that space.
The following theorem is similar to the one that Raviv and Kimmel prove in [52].
Theorem 2.1. Given a parametrized surface S(u, v) : Ω ⊂ R2 → R3, the geometric quantity

g̃ij = |K|〈Sωi , Sωj 〉

is both scale and isometric invariant.
Proof. Considering the surface S̄ = αS, we have

〈S̄ωi , S̄ωj 〉 = α2〈Sωi , Sωj 〉,

and the Gaussian curvature can be expressed in terms of the first and second fundamental
forms, as follows:

K =
b11b22 − b212
g11g22 − g212

,

where g11, g12, g22 are the coefficients of the first fundamental form and b11, b12, b22 are the
coefficients of the second fundamental form. We readily have

gij = 〈Sωi , Sωj 〉,

bij = 〈Sωi,ωj ,&n〉.

It is easy to show that

ḡij = α2gij ,

b̄ij = αbij ,

where ḡ11, ḡ12, ḡ22, b̄11, b̄12, b̄22, K̄ correspond to fundamental forms of the scaled manifold
S̄. Then

K̄ =
α2

α4
K =

1

α2
K,

and
˜̄gij = |K̄|〈S̄ωi , S̄ωj 〉 =

1

α2
|K|α2〈Sωi , Sωj 〉 = g̃ij .

Finally, since both quantities |K| and 〈Sωi , Sωj 〉 are isometric invariant, the tensor is both
isometric and scale invariant.

Equation (2.1) defines a positive semidefinite matrix. The resulting tensor is bilinear,
symmetric, and positive semidefinite, but it does not satisfy the property of nondegeneration
since g̃ vanishes where the curvature vanishes. We therefore regularize the tensor according
to

g̃ij =
(√

K2 + ε2
)
〈Sωi , Sωj 〉.

This tensor is nondegenerate and defines an isometric and scale invariant metric up to O(ε).
The modulation of the metric tensor by a Gaussian curvature obviously makes flat regions

weigh significantly less than curved domains. When examining articulated objects in nature
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we notice that the limbs are connected with generalized cylinders–like structures for which
the local geometry is that of a flat manifold with vanishing Gaussian curvature. From a
theoretical point of view this would appear, at first glance, to be a deficiency of the proposed
framework—flat regions would simply shrink to points in the new metric. Yet, recall that the
interesting regions, from a scale invariant point of view, are exactly those at which there is an
effective Gaussian curvature.

3. Scale invariant diffusion geometry. Diffusion geometry was introduced by Coifman
and Lafon [22]. It uses the Laplace–Beltrami operator ∆g ≡ − 1√

g∂i
√
ggij∂j of the surface as

a diffusion or heat operator by which distances are measured. In fact, diffusion maps embed
a given shape into the Euclidean space spanned by the eigenfunctions of the shape’s Laplace–
Beltrami operator [2]. Euclidean distances in the eigenspace are diffusion distances on the
actual surface. Here, without giving up its isometric nature w.r.t. the metric, we use the
operator ∆g̃ to construct a scale invariant diffusion geometry. The diffusion distance between
two surface points s, ŝ ∈ S is given by the surface integral over the difference between two heat
profiles dissipating from two sources, one located at s and the other at ŝ. The heat profile
on the surface from a source located at s, after heat has dissipated for time t, is given by the
heat kernel

hs,t(ŝ) =
∑

i

e−λitφi(s)φi(ŝ),

where φi and λi are the corresponding eigenfunctions and eigenvalues of ∆g̃, which satisfy
∆g̃φi = λiφi. Obviously, hs,t(ŝ) satisfies the heat equation as

∂h

∂t
=
∑

i

−λie−λitφi(s)φi(ŝ),

and

∆g̃h =
∑

e−λit∆g̃φi(s)φi(ŝ) =
∑

e−λitλiφi(s)φi(ŝ) = −∂hs,t(ŝ)
∂t

.

The diffusion distance is then defined by

d2g,t(s, s
′) = ‖hs,t − hs′,t‖2g̃
=

∫

S
(hs,t(ŝ)− hs′,t(ŝ))

2da(ŝ)

=
∑

i

e−2λit(φi(s)− φi(s
′))2.(3.1)

One can prove that dg,t is indeed a distance as it satisfies the following three properties [23]:
1. Nonnegativity: d(s, s′) ≥ 0. As the argument in the integral is never negative, the

integral cannot be negative.
2. Indistinguishability: d(s, s′) = 0 if and only if s = s′.

(a) If s = s′, then certainly φi(s) = φi(s′) for all i. Therefore, φi(s) − φi(s′) = 0 for
all i, and the summation defines the distance to be zero.

(b) If d(s, s′) = 0, we have
∑

i

e−2λit(φi(s)− φi(s
′))2 = 0.
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As the summation is over nonnegative terms, the sum vanishes if and only if each
term is equal to zero. Thus, φi(s) − φi(s′) = 0 for every i. We next prove that
this implies s = s′.
The eigenfunctions {φi} form a complete orthonormal basis, which allows us to
express any function f as f =

∑
i〈f,φi〉φi, where 〈f,φi〉 =

∫
φifdx is the inner

product in that basis. Consider, for example, f = δε(x − s) − δε(x − s′), where
δε(x) = 1

(4πε)d
e−x2/4t such that limε→0 δε(x) = δ(x) is the delta function. f is

smooth and continuous everywhere, and we readily have that

lim
ε→0

∫
φifdx =

∫
lim
ε→0

φiδε(x− s)dx−
∫

lim
ε→0

φiδε(x− s′)dx = φi(s)− φi(s
′) = 0

for all i. Thus, the decomposition of f is zero for all i; this is the case if and only
if f = 0, that is, if δ(x− s) = δ(x− s′), which implies s = s′.

3. Triangle inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2).

d2(s1, s2) =
∑

i

e−2λit(φi(s1)− φi(s2))
2 =

∑

i

(e−λitφi(s1)− e−λitφi(s2))
2

=
∑

i

((e−λitφi(s1)− e−λitφi(s3)) + (e−λitφ(s3)− e−λitφi(s2)))
2.

Let ai = e−λitφi(s1)− e−λitφi(s3) and bi = e−λitφ(s3)− e−λitφi(s2)). Then, we have

∑

i

|ai + bi|2 ≤
∑

i

(|ai|+ |bi|)|ai + bi| =
∑

i

|ai||ai + bi|+
∑

i

|bi||ai + bi|

and, by Holder’s inequality,

∑

i

|ai||ai + bi| ≤
(
∑

i

|ai|2
)1/2(∑

i

|ai + bi|2
)1/2

,

and similarly for the term in bi. Combining the common factors, we arrive at

∑

i

|ai + bi|2 ≤
(
∑

i

|ai + bi|2
)1/2




(
∑

i

|ai|2
)1/2

+

(
∑

i

|bi|2
)1/2





and, thus, (
∑

i

|ai + bi|2
)1/2

≤
(
∑

i

|ai|2
)1/2

+

(
∑

i

|bi|2
)1/2

.

Substituting for ai and bi, we have

d(s1, s2) =

(
∑

i

|e−λitφi(s1)− e−λitφi(s2)|2
)1/2
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≤
(
∑

i

|e−λitφi(s1)− e−λitφi(s3)|2
)1/2

+

(
∑

i

|e−λitφ(s3)− e−λitφi(s2)|2
)1/2

= d(s1, s3) + d(s3, s2),

proving the inequality.
Integrating over the parameter t of the diffusion distance constructed with the regular

metric g, one can obtain a global scale invariant diffusion distance [47]. This measure, also
known as the commute time distance, is defined by

d2CT(s, s
′) =

∫ ∞

0
d2g,t(s, s

′)dt =
∑

i

1

2λi
(φi(s)− φi(s

′))2.(3.2)

This is indeed an elegant setting for global scale invariance derived from the regular metric
g. Yet, our goal is a bit more ambitious, that is, a measure that would be invariant to both
local and global scale deformations. Here, by local we refer to parts of the shape that are
connected by generalized cylinders. Next, we redefine the surface geometry so that it is both
scale invariant in a differential fashion and stable by the integral averaging nature of the
diffusion geometry. To that end, our new scale invariant differential geometric structure g̃ is
integrated within the diffusion distance framework.

4. Implementation considerations. In our experiments we assume a triangulated surface.
We follow the decomposition of the Laplace–Beltrami diffusion operator proposed in [51]. In
order to compute diffusion distances we need the eigenfunctions and eigenvalues of the scale
invariant operator∆g̃. For this purpose we could use the finite element method for triangulated
surfaces; see [25].

The weak form of the eigendecomposition ∆g̃φ = λφ is given by
∫

S
ψk∆g̃φ da = λ

∫

S
ψkφ da,(4.1)

where {ψk} is a sufficiently smooth basis of L2(S), in our case first order finite element
functions, and da =

√
g̃dudv is a surface area element w.r.t. the metric g̃. The finite element

function ψk is equal to one at the surface vertex k and decays linearly to zero in its 1-ring. The
number of basis elements is thus equal to the number of vertices in our triangulated surface.
Assuming vanishing boundary conditions, we readily have that

∫

S
ψk∆g̃φ da =

∫

S
〈∇ψk,∇φ〉g̃ da

=

∫

S
g̃ij(∂iφ)(∂jψk) da

= λ

∫

S
ψkφ da.(4.2)

Approximating the eigenfunction φ as a linear combination of the finite elements φ =∑
l αlψl leads to

∫

S
g̃ij
(
∂i
∑

l

αlψl

)
(∂jψk) da =

∑

l

αl

∫

S
g̃ij(∂iψl)(∂jψk) da,
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which should be equal to

λ

∫

S
ψk

∑

l

αlψl da = λ
∑

l

αl

∫

S
ψlψk da.(4.3)

We thus need to solve for αl that satisfy

∑

l

αl

∫

S
g̃ij(∂iψl)(∂jψk) da

︸ ︷︷ ︸
akl

= λ
∑

l

αl

∫

S
ψlψk da

︸ ︷︷ ︸
bkl

,(4.4)

or, in matrix form, Aα = λBα, defined by the above elements.
Another option is to numerically approximate the Laplace–Beltrami operator on the tri-

angulated mesh and therein compute its eigendecomposition. There are many ways to approx-
imate ∆g̃; see [62] for an axiomatic analysis of desired properties and possible realizations,
and [46] for the celebrated cotangent weights approach. A comprehensive and useful intro-
duction to geometric quantities approximation on triangulated surfaces can be found in [38].
We define the scale invariant cotangent weight by computing the cotangent weight of a scaled
version of the mesh. Each triangle is scaled by the Gaussian curvature and then is used to com-
pute the Laplace–Beltrami operator. We define the discrete scale invariant Laplace–Beltrami
as

(4.5) L = K−1A−1W,

where A represents the diagonal matrix whose ith component along the diagonal is the sum of
the areas of every triangle that contains vertex i. K represents the discrete Gaussian curvature
computed by [65] and regularized by

|Ki| =

√√√√
(
3(2π −

∑
j γ

i
j)

Aii

)2

+ ε.

Here, γij is the angle at vertex i of the jth triangle that contains vertex i, and W is the classic
cotangent weight matrix

Wij =






∑

j
(i,j)∈E

(cotαij + cot βij) if i = j,

−(cotαij + cot βij) if i .= j, (i, j) ∈ E,

where αij and βij are shown in Figure 1 and E is the set of all edges in our triangulated
surface.

5. Experimental results. The first experiment demonstrates the invariance of the eigen-
functions of the Laplace–Beltrami operator w.r.t. the new metric g̃. Figures 2 and 3 present
the first eigenfunctions, φ1,φ2, . . . , texture mapped on the surface using the usual metric
gij = 〈Sωi , Sωj 〉 and the scale invariant metric g̃ij = |K|gij . The upper row of each frame
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Figure 1. Cotangent weight.

shows the original surface, while the second row presents a deformed surface using isotropic
inhomogeneous distortion field in space (local scales). Color represents the value of the eigen-
function at each surface point.

We next experiment with scale invariant heat kernel signatures [5, 57]. The heat kernel
signature (HKS) at a surface point is a linear combination of all eigenfunctions given by

HKS(s, t) = hs,t(s) =
∑

i

e−λitφ2i (s)(5.1)

at that point. Figure 4 illustrates the invariance of the HKS when, in the top frame, it is
texture mapped onto a centaur and its locally scaled version and, in the bottom frame, onto
a normal horse and its distorted image—a horse with enlarged head that looks like a mule.
Figure 5 displays the inconsistency of corresponding signatures with the regular metric (left)
and the consistency achieved with the invariant metric (right). The signatures were extracted
at three points as indicated in the figure: two finger tips (one on the right and one on the left
hand of the centaur) and the horseshoe of the front left leg. In the graphs, the signature value
at each time t is scaled w.r.t. the integral of the signatures at that time over the (invariant)
surface area, i.e., HKS(s, t)/

∫
S HKS(s, t)da(s), as done in [57] for presentation purposes. As

can be observed, the proposed metric produces invariant nontrivial informative signatures.
Next, we extract Voronoi diagrams for 30 points selected by the farthest point sampling

strategy, using the tip of the nose as the first point. In this example, length is measured
using diffusion distance with either a regular metric or the invariant one. Yet again, the
invariant metric produces the expected result: the correspondence between the two surfaces
is independent of the local scaling deformations. This is obviously not the case for the regular
metric, as shown in Figure 6.

We can match two surfaces by embedding one surface into another, a method known as
the generalized multidimensional scaling (GMDS) [6, 8]. Given two surfaces S and Q, the idea
is to minimize for the mapping ρ : S → Q such that we solve for

argρ min max
s,s′∈S

‖dS(s, s′)− dQ(ρ(s), ρ(s
′))‖.
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Figure 2. Three eigenfunctions of ∆g (top) and the invariant version ∆g̃ (bottom) for the armadillo
with local scale distortions. Unlike the regular metric, the scale invariant metric preserves the correspondence
between the matching eigenfunctions.
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Figure 3. Four eigenfunctions of ∆g (left) and the invariant version ∆g̃ (right) for the centaur and a horse
with local scale distortions. Unlike the regular metric, the scale invariant metric preserves the correspondence
between the matching eigenfunctions.

The matching result for distances measured with the regular metric is demonstrated by the
top two images of Figure 7, and the invariant version with much better correspondences is
exhibited by the bottom images.

Finally, we experimented with HKSs computed with the proposed metric within the Shape-
Google recognition framework applied to the SHREC’10 shape retrieval benchmark. That
database is the only one in which there are supposed to be local scale variations. In fact,
the distortions in that benchmark appear like dilation operations rather than scaling. Still,
Table 1 demonstrates that the proposed framework can handle even these deformations while
being robust to articulations referred to as isometries in the table, as well as topological noise
that is handled by the diffusion part of the signature. The results are comparable to SG3
(relating to the SI-HKS of [10]) in the SHREC’10 framework [4].

6. Conclusions. We introduced a new metric that gracefully handles changes in size at vir-
tually any scale—local (at shape parts connected with developable surfaces) to global changes
as well as articulations that have relatively small effects on the Gaussian curvature. The pro-
posed metric was integrated within the diffusion geometry and used to construct heat time
kernels, which are, in fact, semidifferential scale invariant signatures for surfaces. Our fu-
ture plans are to use the proposed measures and computational tools to study the geometric
relations between objects in nature.
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Figure 4. The HKS at different times, texture mapped onto the surface for the regular metric (left frames)
and the invariant metric (right frames). The four shapes in each row, left to right, capture the HKS values at
t = 10, 50, 100, and 500, respectively.

7. Appendix: Useful notation and relations. The Laplace–Beltrami operator is defined
as ∆g ≡ 1√

g∂i
√
ggij∂j , where

(gij) = (gij)
−1 =

1

g

(
g22 −g12
−g12 g11

)

is the inverse metric matrix. The mean curvature vector can then be written as

2H&n = (κ1 + κ2)&n = ∆gS =
1
√
g
∂i
√
ggij∂jS,

where ∂i ≡ ∂
∂ωi ; for example, ∂1 = ∂u = ∂

∂u .
For a surface given as a graph z = f(x, y), we have

K =
fxxfyy − fxy

2

(1 + fx
2 + fy

2)2
=

det(Hess(f))

(1 + |∇f |2)2 ,

H =
(1 + fxx)f2

y − 2fxyfxfy + (1 + fyy)f2
x

(1 + fx
2 + fy

2)3/2
= div

(
∇f√

1 + |∇f |2

)
,

where Hess(f) is the Hessian of f(x, y).
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Figure 5. Scaled HKSs for the regular metric (right) and the invariant version (left). The blue circles
represent the signatures for three points on the original surface, while the red plus signs are computed from the
deformed version. Using a log-log axis, we plot the scaled HKS as a function of t.

Figure 6. Voronoi diagram using diffusion distances for farthest point sampling each surface with 30 points,
applying the regular metric (left two surfaces) and the invariant version (right two surfaces).
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Figure 7. Using the GMDS method for surface matching with the regular metric (top) and the invariant
one (bottom).
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Table 1
Performance of the g̃-HKS on SHREC’10 shape retrieval benchmark with the ShapeGoogle framework

(recognition rate in %).

Strength
Transformation 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 97.76 97.44
Topology 100.00 100.00 100.00 98.72 97.82
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 100.00 93.33 83.73
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00

The mean curvature is given by

H =
g22b11 − 2g12b12 + g11b22

2g
=

1

2
bijg

ij ,

where (gij) = (gij)−1 is the inverse metric matrix. The two principal curvatures can now be
written as functions of H and K,

κ1 = H +
√

H2 −K,

κ2 = H −
√

H2 −K.

This allows us to define other scale invariant differential forms. For example, an intrinsic
measure for surfaces embedded in R3 is

κ2min = min(κ21,κ
2
2) =

(√
H2 −K − |H|

)2
.

It could be used to define an alternative isometric and scale invariant metric by

ǧij = κ2min〈SωiSωj 〉 = κ2mingij,(7.1)

which is not explored in this paper.
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[30] A. Ion, N. M. Artner, G. Peyré, W. G. Kropatsch, and L. D. Cohen, Matching 2D and 3D articu-
lated shapes using the eccentricity transform, Computer Vis. Image Underst., 115 (2011), pp. 817–834.

[31] M. Kilian, N. J. Mitra, and H. Pottmann, Geometric modeling in shape space, ACM Trans. Graph.,
26 (2007), 64.

[32] R. Kimmel, Affine differential signatures for gray level images of planar shapes, in Proceedings of the
13th International Conference on Pattern Recognition, Vol. 1, Vienna, Austria, 1996, IEEE Computer
Society, Washington, DC, 1996, pp. 45–49.

[33] H. Ling and D. W. Jacobs, Using the inner-distance for classification of articulated shapes, in Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), Vol. 2, San Diego, CA, 2005, pp. 719–726.
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