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An important tool in information analysis is dimensionality reduc-
tion. There are various approaches for large data simplification by
scaling its dimensions down that play a significant role in recognition
and classification tasks. The efficiency of dimension reduction tools is
measured in terms of memory and computational complexity, which
are usually a function of the number of the given data points. Sparse
local operators that involve substantially less than quadratic com-
plexity at one end, and faithful multiscalemodelswith quadratic cost
at the other end, make the design of dimension reduction procedure
a delicate balance between modeling accuracy and efficiency. Here,
we combine the benefits of both and propose a low-dimensional
multiscale modeling of the data, at a modest computational cost.
The idea is to project the classical multidimensional scaling problem
into the data spectral domain extracted from its Laplace–Beltrami
operator. There, embedding into a small dimensional Euclidean space
is accomplished while optimizing for a small number of coefficients.
We provide a theoretical support and demonstrate that working in
the natural eigenspace of the data, one could reduce the process
complexity while maintaining the model fidelity. As examples, we
efficiently canonize nonrigid shapes by embedding their intrinsic
metric into R3, a method often used for matching and classifying
almost isometric articulated objects. Finally, we demonstrate the
method by exposing the style in which handwritten digits appear
in a large collection of images. We also visualize clustering of digits
by treating images as feature points that we map to a plane.
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Manifold learning refers to the process of mapping given data
into a simple low-dimensional domain that reveals proper-

ties of the data.When the target space is Euclidean, the procedure
is also known as flattening. The question of how to efficiently and
reliably flatten given data is a challenge that occupies the minds of
numerous researchers. Distance-preserving data-flattening pro-
cedures can be found in the fields of geometry processing, the
mapmaker problem through exploration of biological surfaces
(1–3), texture mapping in computer graphics (4, 5), nonrigid shape
analysis (6), image (7–9) and video understanding (7, 10), and
computational biometry (11), to name just a few. The flat em-
bedding is usually a simplification process that aims to preserve, as
much as possible, distances between data points in the original
space, while being efficient to compute. One family of flattening
techniques is multidimensional scaling (MDS), which attempts to
map all pairwise distances between data points into small di-
mensional Euclidean domains. Review of MDS applications in
psychophysics can be found in ref. 12, which includes the com-
putational realization that human color perception is 2D.
A proper way to explore the geometry of given data points

involves computing all pairwise distances. Then, a flattening
procedure should attempt to keep the distance between all cou-
ples of corresponding points in the low dimensional Euclidean
domain. Computing pairwise distances between points was
addressed by extension of local distances on the data graph (1, 13),
or by consistent numerical techniques for distance computation
on surfaces (14). The complexity involved in storing all pairwise
distances is quadratic in the number of data points, which is a
limiting factor in large databases. Alternative models try to keep
the size of the input as low as possible by limiting the input to
distances of just nearby points.

One such example is locally linear embedding (15), which
attempts to map data points into a flat domain where each feature
coordinate is a linear combination of the coordinates of its neigh-
bors. The minimization, in this case, is for keeping the combina-
tion similar in the given data and the target a flat domain. Because
only local distances are analyzed, the pairwise distances matrix is
sparse, with an effective size of OðnÞ, where n is the number of
data points. Along the same line, the Hessian locally linear em-
bedding (16) tries to better fit the local geometry of the data to the
plane. Belkin and Niyogi (17) suggested embedding data points
into the Laplace–Beltrami eigenspace for the purpose of data
clustering. The idea is, yet again, to use distances of only nearby
points by which a Laplace–Beltrami operator (LBO) is defined.
The data can then be projected onto the first eigenvectors that
correspond to the smallest eigenvalues of the LBO. The question
of how to exploit the LBO decomposition to construct diffusion
geometry was addressed by Coifman and coworkers (18, 19).
De Silva and Tenenbaum (20) recognized the computational

difficulty of dealing with a full matrix of pairwise distances, and
proposed working with a subset of landmarks, which is used for
interpolation in the embedded space. Next, Bengio et al. (21)
proposed to extend subsets by Nystrөm extrapolation, within
a space that is an empirical Hilbert space of functions obtained
through kernels that represent probability distributions; they
did not incorporate the geometry of the original data. Finally,
assuming n data points, Asano et al. (22) proposed reducing both
memory and computational complexity by subdividing the prob-
lem into Oð ffiffiffi

n
p Þ subsets of Oð ffiffiffi

n
p Þ data points in each. That

reduction may be feasible when distances between data points can
be computed in constant time, which is seldom the case.
The computational complexity of multidimensional scaling

was addressed by a multigrid approach in ref. 23, and vector
extrapolation techniques in ref. 24. In both cases the acceler-
ation, although effective, required all pairwise distances, an Oðn2Þ
input. An alternative approach to deal with the memory com-
plexity was needed.
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Then, embedding into a low-dimensional space is efficiently ac-
complished. Theoretical support and empirical evidence demon-
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In ref. 25, geodesics that are suspected to distort the embedding
due to topology effects were filtered out in an attempt to reduce
distortions. Such filters eliminate some of the pairwise distances,
yet not to the extent of substantial computational or memory
savings, because the goal was mainly reduction of flattening dis-
tortions. In ref. 26, the eigenfunctions of the LBO on a surface
were interpolated into the volume bounded by the surface. This
procedure was designed to overcome the need to evaluate the
LBO inside the volume, as proposed in ref. 27. Both models deal
with either surface or volume LBOdecomposition of objects inR3,
and were not designed to flatten and simplify structures in big data.
Another dimensionality reduction method, intimately related

to MDS, is the principal component analysis method (PCA). The
PCA procedure projects the points to a low-dimensional space
by minimizing the least-square fitting error. In ref. 28, that re-
lation was investigated through kernel PCA, which is related to
the problem we plan to explore.
Here, we use the fact that the gradient magnitude of distance

functions on the manifold is equal to 1 almost everywhere. In-
terpolation of such smooth functions could be efficiently ob-
tained by projecting the distances into the LBO eigenspace. In
fact, translating the problem into its natural spectral domain
enables us to reduce the complexity of the flattening procedure.
The efficiency is established by considering a small fraction of
the pairwise distances that are projected onto the LBO leading
eigenfunctions.
Roughly speaking, the differential structure of themanifold is cap-

tured by the eigenbasis of the LBO, whereas its multiscale structure
is encapsulated by sparse sampling of the pairwise distances matrix.
We exemplify this idea by extracting the R4 structure of points in
R10;000, canonizing surfaces to cope with nonrigid deformations, and
mapping images of handwritten digits to the plane.
The proposed framework operates on abstract data in any

dimension. In the first section, we prove the asymptotic behavior
of using the leading eigenvectors of the LBO for representing
smooth functions on a given manifold. Next, we demonstrate
how to interpolate geodesic distances by projecting a fraction of
the distances between data points into the LBO eigenspace. We
next formulate the classical MDS problem in the LBO eigen-
space. A relation to diffusion geometry (18, 19, 29) is established.
Experimental results demonstrate the complexity savings.

Spectral Projection
Let us consider a Riemannian manifold, M, equipped with a
metric G. The manifold and its metric induce a LBO, often
denoted byΔG, and here w.l.o.g. byΔ. The LBO is self-adjoint and
defines a set of functions called eigenfunctions, denoted ϕi, such
that Δϕi = λiϕi and

R
MϕiðxÞϕjðxÞdaðxÞ= δij, where da is an area el-

ement. These functions have been popular in the field of shape
analysis; they have been used to construct descriptors (30) and lin-
early relate between metric spaces (31). In particular, for problems
involving functions defined on a triangulated surface, when the
number of vertices of M is large, we can reduce the dimensionality
of the functional space by considering smooth functions defined in
a subspace spanned by just a couple of eigenfunctions of the asso-
ciated LBO. To prove the efficiency of LBO eigenfunctions in
representing smooth functions, consider a smooth function f with
bounded gradient magnitude k∇GfkG. Define the representa-
tion residual function rn = f −

Pn
i= 1hf ;ϕiiGϕi. It is easy to see

that ∀i; 1≤ i≤ n; hrn;ϕiiG = 0, and ∀i; 1≤ i≤ n; h∇Grn;∇GϕiiG =
hrn;ΔGϕiiG = λihrn;ϕiiG = 0. Using these properties and assuming
the eigenvalues are ordered in ascending order, λ1 ≤ λ2 . . ., we read-
ily have that krnk2G =

��P∞
i=n+1 hrn;ϕiiGϕi

��2
G
=

P∞
i= n+ 1 hrn;ϕii2G

and k∇Grnk2G =
��P∞

i=n+1hrn;ϕiiG∇Gϕi

��2
G
≥ λn+1

P∞
i= n+ 1hrn;ϕii2G.

Then,
k∇Grnk2G
krnk2G

≥ λn+1. Moreover, as for i∈ f1; ::; ng, the inner

product vanishes, h∇Grn;∇GϕiiG = 0, we have k∇Gfk2G =
��∇Grn+

Pn
i=1 h f ;ϕiiG∇Gϕi

��2
G
= k∇Grnk2G +

Pn
i= 1 h f ;ϕii2Gλi. It follows

that krnk2G ≤
k∇Grnk2G

λn+1
≤
k∇Gfk2G
λn+1

.

Finally, for d dimensional manifolds, as shown in ref. 32, the
spectra has a linear behavior in n

2
d, that is, λn ≈C1n

2
d as n→∞.

Moreover, the residual function rn depends linearly on k∇Gfk,
which is bounded by a constant. It follows that rn converges

asymptotically to zero at a rate of O
�
n−

2
d

�
. Moreover, this

convergence depends on k∇Gfk2G, i.e., ∃C2, such that

∀f : M→M krnk2G ≤
C2k∇Gfk2G

n
2
d

: [1]

Spectral Interpolation
Let us consider a d dimensional manifold,M, sampled at n points
fVig, and J a subset of f1; 2; . . . ; ng such that jJ j=ms ≤ n. Given
a smooth function f defined on VJ = fVj; j∈J g, our first question
is how to interpolate f, that is, how to construct a continuous
function ~f such that ~f ðVjÞ= f ðVjÞ; ∀j∈J . One simple solution is
linear interpolation. Next, assume the function ~f is required to be
as smooth as possible in L2 sense. We measure the smoothness of
a function by Esmoothðf Þ=

R
Mk∇fk22da. The problem of smooth

interpolation could be rewritten as min
h:M→R

EsmoothðhÞ s.t. ∀j∈

J ; hðVjÞ= f ðVjÞ. We readily have
R
Mk∇hk22da=

R
MhΔh; hida. Our

interpolation problem could then be written as

min
h:M→R

Z
M

hΔh; hida  s:t:  h
�
Vj
�
= f

�
Vj
�

 ∀j∈J : [2]

Any discretization matrix of the LBO could be used for the
eigenspace construction. Here, we adopt the LBO general L=
A−1W form, where A−1 is a diagonal matrix whose entries are
inversely proportional to themetric infinitesimal volume elements.
One example is the cotangent weights approximation (33) for tri-
angulated surfaces; another example is the generalized discrete
LBO suggested in ref. 17. In the first case, W is a matrix in which
each entry is zero if the two vertices indicated by the two matrix
indices do not share a triangle’s edge, or the sum of the cotan-
gents of the angles supported by the edge connecting the corre-
sponding vertices. In the latter case, W is the graph Laplacian,
where the graph is constructed by connecting nearest neighbors.
Like any Laplacian matrix, the diagonal is the negative sum of
the off-diagonal elements of the corresponding row. A, in the
triangulated surface case, is a diagonal matrix in which the Aii th
element is proportional to the area of the triangles about the
vertex Vi. A similar normalization factor should apply in the more
general case.
A discrete version of the smooth interpolation problem 2 can

be rewritten as

min
x

xTWx  s:t:  Bx= f ; [3]

where B is the projection matrix on the space spanned by the
vectors ej; j∈J , where ej is the jth canonical basis vector, and f
now represents the sampled vector f ðVJ Þ.
To reduce the dimensionality of the problem, we introduce f̂ ,

the spectral projection of f to the set of eigenfunctions of the
LBO fϕigme

i=1 as f̂ =
Pme

i= 1h f ;ϕiiϕi, where Δϕi = λiϕi. Then, by
denoting Φ the matrix whose ith column is ϕi, we have f̂ =Φα,
where α is a vector such that αi = hf ;ϕii. Problem 3 can now be
approximated by
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min
α∈Rme

αTΦTWΦα  s:t:  BΦα= f : [4]

By definition, ΦTWΦ=Λ, where Λ represents the diagonal ma-
trix whose elements are the eigenvalues of L. We can alterna-
tively incorporate the constraint as a penalty in the target func-

tion, and rewrite our problem as min
α∈Rme

�
αTΛα+ μkBΦα− fk2

�
=

min
α∈Rme

ðαTðΛ+ μΦTBTBΦÞα+ 2μf TBΦαÞ. The solution to this

problem is given by

α= 2μ
�
Λ+ μΦTBTBΦ

�−1ΦTBTf =Mf : [5]

Next, we use the above interpolation expressions to formulate the
pairwise geodesics matrix in a compact yet accurate manner. The
smooth interpolation, problem 2, for a pairwise distances function
can be defined as follows. In this setting, let I =J ×J be the set
of pairs of indices of data points, and FðVi;VjÞ a value defined for
each pair of points (or vertices in the surface example) ðVi;VjÞ,
where ði; jÞ∈ I . We would like to interpolate the smooth function
D : M×M→R, whose values are given at ðVi;VjÞ; ði; jÞ∈ I , by
DðVi;VjÞ=FðVi;VjÞ; ∀ði; jÞ∈ I . For that goal, we first define
a smooth-energy measure for such functions. We proceed as be-
fore by introducing

EsmoothðDÞ=
Z Z
M

k∇xDðx; yÞk2 + ��∇yDðx; yÞ��2daðxÞdaðyÞ:

The smooth interpolation problem can now be written as

min
D:M×M→R

EsmoothðDÞ
s:t: D

�
Vi;Vj

�
=F

�
Vi;Vj

�
; ∀ði; jÞ∈ I : [6]

Given any matrix D, such that Dij =DðVi;VjÞ, we have

Z
M

���∇xD
�
x; yj

����2daðxÞ=
Z
M

�
ΔxD

�
x; yj

�
;D

�
x; yj

�	
daðxÞ

≈DT
j WDj = trace

�
WDjDT

j

�
;

where DT
j represents the jth column of D. Then,

Z Z
M

k∇xDðx; yÞk2daðxÞdaðyÞ≈
X
j

Ajj   trace
�
WDjDT

j

�

= trace



W

X
j

DjDT
j Ajj

�
= trace

�
WDADT�:

A similar result applies to
RR

M
��∇yDðx; yÞ

��2daðxÞdaðyÞ. Then,
Z Z

M
k∇xDðx; yÞk2daðxÞdaðyÞ≈ trace

�
DTWDA

�
Z Z
M

��∇yDðx; yÞ��2daðxÞdaðyÞ≈ trace
�
DWDTA

�
:

[7]

The smooth energy can now be discretized for a matrix D by

EsmoothðDÞ= trace
�
DTWDA

�
+ trace

�
DWDTA

�
: [8]

The spectral projection of D onto Φ, is given by

~Dðx; yÞ=
X
i

hDð ·; yÞ;ϕiiϕiðxÞ

=
Xn
i= 1

Xn
j= 1

D
hDðu; vÞ;ϕiðuÞi;ϕjðvÞ

E
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

αij

ϕjðyÞϕiðxÞ ;

where αij =
RR

M×MDðx; yÞϕiðxÞϕjðyÞdaðxÞdaðyÞ. In matrix notations,
denoting by D the matrix such that Dij = ~Dðxi; yjÞ, we can show that

D=ΦαΦT : [9]

Combining Eqs. 8 and 9, we can define the discrete smooth energy
of the spectral projection of a function as
~EsmoothðDÞ= trace

�
ΦαTΦTWΦαΦTA

�
+ trace

�
ΦαΦTWΦαTΦTA

�
= trace

�
ΦαTΛαΦTA

�
+ trace

�
ΦαΛαTΦTA

�
= trace

�
αTΛαΦTAΦ

�
+ trace

�
αΛαTΦTAΦ

�
= trace

�
αTΛα

�
+ trace

�
αΛαT

�
: [10]

Using the spectral smooth representation introduced in Eq. 9, we
can define the smooth spectral interpolation problem for a func-
tion from M×M to R as

min
α∈Rme ×me

trace
�
αTΛα

�
+ trace

�
αΛαT

�
s:t: 

�
ΦαΦT�

ij =D
�
Vi;Vj

�
;  ∀ði; jÞ∈ I : [11]

Expressing the constraint again as a penalty function, we end up
with the following optimization problem

min
α∈Rme ×me

trace
�
αTΛα

�
+ trace

�
αΛαT

�
+ μ

X
ði;jÞ∈I

����ΦαΦT�
ij−D

�
Vi;Vj

����2
F

; [12]

where k · kF represents the Frobenius norm, and me the number
of eigenfunctions. Problem 12 is a minimization problem of a qua-
dratic function of α. Then, representing α as an ðm2

e × 1Þ vector α,
the problem can be rewritten as a quadratic programming prob-
lem. We can find a matrix M, similar to Eq. 5, such that α=MD,
where D is the row stack vector of the matrix DðVi;VjÞ.
Another, less accurate but more efficient, approach to obtain

an approximation of the matrix α is to compute

α=MFMT ; [13]

where F is the matrix defined by Fij =FðVi;VjÞ and M is the
matrix introduced in Eq. 5.
Notice that spectral projection is a natural choice for the

spectral interpolation of distances because the eigenfunctions
encode the manifold geometry, as do distance functions. More-
over, the eikonal equation, which models geodesic distance
functions on the manifold, is defined by k∇GDk= 1. Eq. 1, in
this case, provides us with a clear asymptotic convergence rate
by spectral projection of the function D, because k∇GDk is a
constant equal to 1.
At this point, we have all of the ingredients to present the

spectral MDS. For simplicity, we limit our discussion to clas-
sical scaling.

Spectral MDS
MDS is a family of dimensionality reduction techniques that at-
tempt to find a simple representation for a dataset given by the
distances between every two data points. Given anymetric spaceM
equipped with a metric D : M×M→R, and V = fV1;V2; . . .Vng
a finite set of elements of M, the multidimensional scaling of V in
Rk involves finding a set of point X = fX1;X2; . . . ;Xng in Rk whose
pairwise Euclidean distances dðXi;XjÞ=

��Xi −Xj
��2 are as close as

possible to DðVi;VjÞ for all ði; jÞ. Such an embedding, for the MDS
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member known as classical scaling, can be realized by the following
minimization program min

X

��XTX−1
2 JDJ

��
F , where D is a matrix

defined by Dij =DðVi;VjÞ2 and J= In − 1
n 1n1

T
n , or Jij = δij − 1=n.

Classical scaling (Eq. 12) finds the first k singular vectors and cor-
responding singular values of the matrix −1

2 JDJ. The classical
scaling solver requires the computation of a ðn× nÞ matrix of dis-
tances, which is a challenging task when dealing with more than,
say, thousands of data points. The quadratic size of the input data
imposes severe time and space limitations. Several acceleration
methods for MDS were tested over the years (20–24). However, to
the best of our knowledge, the multiscale geometry of the data was
never used for lowering the space and time complexities during the
reduction process. Here, we show how spectral interpolation, in the
case of classical scaling, is used to overcome these complexity
limitations.
In the spectral MDS framework we first select a subset of ms

points, with indices J of the data. For efficient covering of the
data manifold, this set can be selected using the farthest-point
sampling strategy, which is known to be 2-optimal in the sense of
covering. We then compute the geodesic distances between every
two points ðVi;VjÞ∈M×M; ði; jÞ∈ I =J ×J .
Now, we are ready to choose any Laplacian operator that is

constructed from the local relations between data points. The
LBO takes into consideration the differential geometry of the
data manifold. We compute Laplacian’s first me eigenvectors
that are arranged in an eigenbasis matrix denoted by Φ. Finally,
we extract the spectral interpolation matrix α from the computed
geodesic distances and the eigenbasis Φ using Eqs. 12 or 13.
The interpolated matrix distance ~D between every two points

ofM can be computed by ~D=ΦαΦT . It is important to note that
there is no need to compute this matrix explicitly.

At this point let us justify our choice of representation. Denote
by Dy : M→R+ the geodesic distance function from a source
point y to the rest of the point in the manifold. Geodesic distance
functions are characterized by the eikonal equation

��∇GDy
��2 = 1.

This property can be used in the bound provided by Eq. 1. Spe-

cifically,
���∇GD2

y

���2 = ��2Dy∇GDy
��2 ≤ 4

��Dy
��2. Plugging this re-

lation to Eq. 1, the error of the squared geodesic distance function

projected to the spectral basis is given by
krnk2G
kDk2G

≤ 4C2

n
2
d
, where kDkG

is the diameter of the manifold. We thereby obtained a bound on
the relative projection error that depends only on Weyl’s constant
and the number of eigenvectors used in the reconstruction by
projection.
Next, the spectral MDS solution is given by XXT = − 1

2 J
~DJ.

This decomposition can be approximated by two alternative
methods. The first method considers the projection of X to the
eigenbasis Φ, which is equivalent to representing X by ~X=Φβ.
To that end, we have to solve ΦββTΦT = − 1

2 JΦαΦTJ. Because
ΦTAΦ= Ime , we have

ββT = −
1
2
ΦTAJΦ|fflfflfflfflffl{zfflfflfflfflffl}

H

αΦTJAΦ= −
1
2
HαHT ; [14]

which leads to the singular value decomposition of the ðme ×meÞ
matrix −

1
2
HαHT .

In the second method, to overcome potential distortions caused
by ignoring the high-frequency components, one may prefer to
decompose the matrixΦαΦT using the algebraic trick presented in
algorithm 1.

Fig. 1. Canonical forms of Armadillo (Left) and Ho-
mer (Right). Within each box is (from left to right) the
shape, followed by canonical forms obtained by reg-
ular MDS, and spectral MDS.

Fig. 2. Spectral MDS compared with MDS with the same number of sampled points (same complexity). Each point in the plane on the central frames
represents a shape. The input to the MDS producing the position of the points was distances between the corresponding canonical forms (MDS applied to the
result of MDS). Red points represent dogs, and blue points represent lionesses. The spectral MDS result (Right) provides better clustering and separation
between classes compared with the regular MDS (Left).
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Algorithm 1: Spectral MDS
Require: A data manifold M densely sampled at n points,

number of subsampled points ms, number of eigenvectors me.
Compute J a subset of ms points sampled from M.
Compute the matrix D of squared geodesic distances between

every two points ðpi; pjÞ; i∈J ; j∈J .
Compute the matrices Φ;Λ containing the first mth

e eigen-
vectors and eigenvalues of the LBO of M.
Compute the matrix α according to 12 or 13.
Compute the SVD decomposition of the ðn×meÞ matrix JΦ,

such that JΦ=SUVT , where J= In − 1
n 1n1

T
n .

Compute the eigendecomposition of the ðme × meÞ matrix
UVTαVU, such that UVTαVU =PΓPT .
Compute the matrix Q=SPðΓÞ12 such that QQT = JΦαΦTJ.

Return: the first k columns of the matrix Q.
Relation to diffusion maps: An interesting flat-embedding op-

tion is known as diffusion maps (18, 29). Given a kernel function
KðλÞ, the diffusion distance between two points ðx; yÞ∈M is de-
fined as

D2ðx; yÞ=
X
k

ðϕkðxÞ−ϕkðyÞÞ2KðλkÞ; [15]

where ϕk represents the kth eigenfunction of ΔM, and λk its as-
sociated eigenvalue. Note that Dij =D2ðxi; yjÞ. In a matrix form,
Eq. 15 reads Dij =

Pme
k= 1 ðΦik −ΦjkÞ2Kkk, whereΦ represents the

eigendecomposition matrix of the LBO and K is a diagonal matrix
such that Kkk =KðλkÞ.
Denoting by Ψ, the matrix such that Ψij =Φ2

ij, it follows that
D=ΨK1me1

T
n + ðΨK1me1

T
n ÞT − 2ΦKΦT . Next, let us apply classi-

cal scaling to D, which by itself defines a flat domain. Be-
cause 1Tn J= 0, then ΨK1me1

T
n J= 0, and we readily have JDJ=

− 2JΦKΦTJ= JΦð−2KÞΦTJ.
Applying MDS to diffusion distances turns out to be nothing

but setting α= − 2K in the proposed spectral MDS framework.
The spectral MDS presented in Eq. 14 and algorithm 1 can be
directly applied to diffusion distances without explicit computation
of these distances. Moreover, using data-trained optimal diffusion
kernels, as those introduced in ref. 34, we could obtain a discrim-
inatively enhanced flat domain, in which robust and efficient
classification between different classes is realized as part of the
construction of the flat target space.

Numerical Experiments
The embedding of the intrinsic geometry of a shape into a Eu-
clidean space is known as a canonical form. When the input to an
MDS procedure is the set of geodesic distances between every two
surface points, the output would be such a form. These structures,
introduced in ref. 6, are invariant to isometric deformations of the
shape, as shown in SI Appendix.
In our first example, we explore two shapes containing 5,000

vertices each for which we compute all pairwise geodesic dis-
tances. Then, we select a subset of just 50 vertices, using the
farthest-point sampling strategy, and extract 50 eigenvectors of

the corresponding LBO. Finally, we flatten the surfaces into their
canonical forms using the spectral MDS procedure. A qualitative
evaluation is presented in Fig. 1 demonstrating the similarity of
the results of classical scaling on the full matrix, and the spectral
MDS operating on just 1% of the data.
The relation of within classes and between classes for lionesses

and dogs from the TOSCA database (35) is shown in Fig. 2.
Spectral MDS allows us to consider more points and can thus serve
as a better clustering tool.
Next, we compute the spectral interpolation of the matrix ~D

for sampled points from Armadillo’s surface. We use the same
number of eigenvectors as that of sample points, and plot the
average geodesic error as a function of the points we use. The
mean relative error is computed by mean

�~D−D
�kD+ ek�, and

it is plotted as a function of the ratio between the number of
sample points and the total number of vertices of the shape (Fig.
3, Left). Note that spectral interpolation of the geodesic dis-
tances works as predicted. In this example, 5% of the distances
between the sample points provide us a distance map that is
more than 97% accurate.
In the next experiment, we measured the influence of the

number of sampled points on the accuracy of the reconstruction.
We first generated several triangulations of a sphere, each at
a different resolution reflected by the number of triangles. Next, for
each such triangulation, we used spectral interpolation for calcu-
lating the geodesic distances using just

ffiffiffi
n

p
points, where n repre-

sents the number of vertices of the sphere at a given resolution.
Fig. 3, Right shows the average geodesic error as a function of n.
The average error is a decreasing function of the number of points,
in the case where

ffiffiffi
n

p
points are used for the construction.

Next, we report on an attempt to extract an R4 manifold
embedded in R10;000. We try to obtain the low-dimensional
hyperplane structure from a given set of 100,000 points in R10;000.
The spectral MDS could handle 105 points with very little effort,
whereas regular MDS had difficulties already with 104 points.
Being able to process a large number of samples is important
when trying to deal with noisy data, as is often the case in big-
data analysis. See MatLab code of this experiment in the Supporting
Information.
Fig. 4 depicts the embedding of 5,851 images of handwritten

digit 8 into a plane. The data are taken from the Modified Na-
tional Institute of Standards and Technology (MNIST) database
(36). We used a naive metric by which the distance between two
images is equal to integration over the pixel-wise differences
between them. Even in this trivial setting, the digits are arranged
in the plane such that those on the right tilt to the right, and
those on the left slant to the left. Fat digits appear at the bottom,
and thin ones at the top.
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Fig. 3. (A) Relative geodesic distortion as a function of the number of sample
points for interpolating D. (B) Geodesic error as a function of sample points.

Fig. 4. Flat embedding of handwritten digit 8 from the MNIST database.
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Fig. 5 presents two cases of flat embedding of ones vs. zeros,
and fours vs. threes, from the MNIST dataset. Here, the pairwise
distance is the difference between the distance functions from
the white regions in each image. While keeping the metric sim-
ple, the separation between the classes of digits is obvious. The
elongated classes are the result of slanted digits that appear at
different orientations. This observation could help in further
study toward automatic character recognition.
Finally, we computed the regular MDS and the spectral MDS

on different numbers of samples of randomly chosen images,
referred to as points. Two hundred eigenvectors of the LBO
were evaluated on an Intel i7 computer with 16 GB memory. The
following table shows the time it took to compute MDS and
spectral MDS embeddings.

Conclusions
By working in the natural spectral domain of the data, we showed
how to reduce the complexity of dimensionality reduction pro-
cedures. The proposed method exploits the local geometry of the
data manifold to construct a low-dimensional spectral Euclidean
space in which geodesic distance functions are compactly repre-
sented. Then, reduction of the data into a low-dimensional Eu-
clidean space can be executed with low computational and space
complexities. Working in the spectral domain allowed us to ac-
count for large distances while reducing the size of the data we
process in an intrinsically consistent manner. The leading func-
tions of the LBO eigenbasis capture the semidifferential structure
of the data and thus provide an optimal reconstruction domain
for the geodesic distances on the smooth data manifold. The
proposed framework allowed us to substantially reduce the space
and time involved in manifold learning techniques, which are
important in the analysis of big data.
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No. of points MDS run time, s Spectral MDS run time, s

1,000 3 0.1
2,000 5.3 0.4
4,000 46 2.3
10,000 366 3.2
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Fig. 5. Flat embedding of zeros (blue) vs. ones (red) (A), and fours (red) vs.
threes (blue) (B).
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